APT65GP60J 600V ® E E POWER MOS 7 IGBT The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 400V, 33A • Low Gate Charge • 50 kHz operation @ 400V, 47A • Ultrafast Tail Current shutoff • SSOA rated 27 2 T- C G SO "UL Recognized" ISOTOP ® C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 I C1 Continuous Collector Current @ TC = 25°C 130 I C2 Continuous Collector Current @ TC = 110°C 60 I CM Pulsed Collector Current VGEM SSOA PD TJ,TSTG TL UNIT APT65GP60J 1 Volts Amps 250 @ TC = 25°C 250A@600V Safe Operating Area @ TJ = 150°C Watts 431 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1000µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 2.5mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 1000 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 5000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 4-2003 MIN Rev A Characteristic / Test Conditions 050-7439 Symbol APT65GP60J DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 7400 VGE = 0V, VCE = 25V 580 Reverse Transfer Capacitance f = 1 MHz 35 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 210 VCE = 300V 50 I C = 65A 65 Input Capacitance Coes Output Capacitance Cres VGEP Qge Qgc SSOA TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 250 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Eon1 Eon2 Turn-on Delay Time Current Rise Time Turn-on Switching Energy Turn-on Delay Time I C = 65A 65 R G = 5Ω 1408 Inductive Switching (125°C) VCC = 400V 30 VGE = 15V 128 I C = 65A 91 Current Fall Time Turn-on Switching Energy (Diode) 54 R G = 5Ω 4 Eon2 µJ 896 Turn-off Delay Time Turn-on Switching Energy ns 605 TJ = +25°C 5 Current Rise Time Turn-off Switching Energy 54 6 Eon1 Eoff 91 4 Turn-on Switching Energy (Diode) td(on) tf VGE = 15V Current Fall Time Turn-off Switching Energy td(off) 30 Turn-off Delay Time Eoff tr Inductive Switching (25°C) VCC = 400V 5 ns 605 TJ = +125°C 1925 6 µJ 1470 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .29 RΘJC Junction to Case (DIODE) N/A Package Weight 29.2 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JEDS24-1. (See Figures 21, 23.) 050-7439 Rev A 4-2003 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT65GP60J 100 100 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 90 50 40 30 TC=-55°C TC=25°C 20 TC=125°C 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) TJ = -55°C 100 TJ = 25°C 50 TJ = 125°C 0 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 3 IC =130A 2.5 IC = 65A 2 IC = 32.5A 1.5 1 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 8 4 2 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.9 0 50 100 150 200 GATE CHARGE (nC) FIGURE 4, Gate Charge 250 3 IC =130A 2.5 IC = 65A 2 IC = 32.5A 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 160 0.95 VCE=480V 6 1.15 1.0 VCE=300V 10 180 1.05 VCE=120V 12 1.2 1.10 IC = 65A TJ = 25°C 14 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 FIGURE 2, Output Characteristics (VGE = 10V) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 150 TC=-55°C TC=125°C 20 0 200 TC=25°C 30 10 250µs PULSE TEST <0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 40 0 FIGURE 1, Output Characteristics(VGE = 15V) 250 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 50 10 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 60 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 4-2003 60 70 Rev A 70 80 050-7439 80 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 90 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT65GP60J TYPICAL PERFORMANCE CURVES 50 VGE= 10V 40 VGE= 15V 30 20 VCE = 400V TJ = 25°C or 125°C RG = 5Ω L = 100 µH 10 160 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 60 VGE =10V,TJ=25°C 40 20 120 tf, FALL TIME (ns) tr, RISE TIME (ns) VGE =15V,TJ=25°C 60 VCE = 400V RG = 5Ω L = 100 µH 140 TJ = 25 or 125°C,VGE = 10V 100 80 60 80 60 TJ = 25°C, VGE = 10V or 15V VCE = 400V L = 100 µH RG = 5 Ω 5000 TJ =125°C, VGE=15V 4500 TJ =125°C,VGE=10V 4000 3500 3000 2500 TJ = 25°C, VGE=15V 2000 1500 1000 500 TJ = 25°C, VGE=10V 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 9000 VCE = 400V VGE = +15V TJ = 125°C 8000 5000 Eoff 130A Eon2 65A 3000 2000 Eoff 65A 1000 Eon2 32.5A Eoff32.5A 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance TJ = 125°C, VGE = 10V or 15V 3000 2000 1000 TJ = 25°C, VGE = 10V or 15V 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 6000 6000 VCE = 400V L = 100 µH RG = 5 Ω 4000 Eon2 130A 7000 4000 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) 5000 100 0 SWITCHING ENERGY LOSSES (µJ) 5500 TJ = 125°C, VGE = 10V or 15V 20 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 6000 RG =5Ω, L = 100µH, VCE = 400V 40 TJ = 25 or 125°C,VGE = 15V RG =5Ω, L = 100µH, VCE = 400V EON2, TURN ON ENERGY LOSS (µJ) 80 160 20 SWITCHING ENERGY LOSSES (µJ) VGE =10V,TJ=125°C 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 40 4-2003 100 0 120 Rev A 120 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 140 050-7439 VGE =15V,TJ=125°C 140 5000 VCE = 400V VGE = +15V RG = 5 Ω Eon2 130A Eoff 130A 4000 3000 2000 Eon2 65A Eoff 65A 1000 Eon2 32.5A 0 -50 Eoff 32.5A -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 10,000 P IC, COLLECTOR CURRENT (A) Cies 5,000 C, CAPACITANCE ( F) APT65GP60J 300 1,000 Coes 500 100 50 Cres 250 200 150 100 50 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.30 0.7 0.20 0.5 0.15 Note: 0.10 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.9 0.25 0.3 t1 t2 0.05 Duty Factor D = t1/t2 0.1 0.05 -5 10 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0 10 10 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 -4 -3 -2 1.0 RC MODEL 0.1363636 0.226556 0.0833333 1.075632 Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL 50 TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 10 7 15 25 35 45 55 65 75 85 95 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Fmax = min(f max1 , f max 2 ) f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 4-2003 Power (Watts) 100 Rev A Junction temp. ( ”C) 0.0174613 050-7439 0.069697 FMAX, OPERATING FREQUENCY (kHz) 187 APT65GP60J APT30DF60 Gate Voltage TJ = 125 C td(on) V CE IC V CC Collector Current tr 90% A 5% D.U.T. 10% 5% Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage *DRIVER SAME TYPE AS D.U.T. TJ = 125 C Collector Voltage td(off) A tf V CE 90% IC 100uH V CLAMP B 0 10% Switching Energy A Collector Current DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 4-2003 14.9 (.587) 15.1 (.594) Rev A 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 050-7439 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) 1.95 (.077) 2.14 (.084) * Emitter 30.1 (1.185) 30.3 (1.193) Collector * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Emitter Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.