ADPOW APT65GP60B2

APT65GP60B2
600V
®
POWER MOS 7 IGBT
T-MaxTM
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 400V, 54A
• Low Gate Charge
• 50 kHz operation @ 400V, 76A
• Ultrafast Tail Current shutoff
• SSOA rated
G
C
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT65GP60B2
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
7
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
100
@ TC = 25°C
Amps
96
250
@ TC = 25°C
250A@600V
Safe Operating Area @ TJ = 150°C
Watts
833
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1000µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 2.5mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
2
1000
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
5000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
4-2003
MIN
Rev A
Characteristic / Test Conditions
050-7438
Symbol
APT65GP60B2
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
7400
VGE = 0V, VCE = 25V
580
Reverse Transfer Capacitance
f = 1 MHz
35
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
210
VCE = 300V
50
I C = 65A
65
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
Qgc
SSOA
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
250
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Eon1
Eon2
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy
Turn-on Delay Time
I C = 65A
65
R G = 5Ω
1408
Inductive Switching (125°C)
VCC = 400V
30
VGE = 15V
128
I C = 65A
91
Current Fall Time
Turn-on Switching Energy (Diode)
54
R G = 5Ω
4
Eon2
µJ
896
Turn-off Delay Time
Turn-on Switching Energy
ns
605
TJ = +25°C
5
Current Rise Time
Turn-off Switching Energy
54
6
Eon1
Eoff
91
4
Turn-on Switching Energy (Diode)
td(on)
tf
VGE = 15V
Current Fall Time
Turn-off Switching Energy
td(off)
30
Turn-off Delay Time
Eoff
tr
Inductive Switching (25°C)
VCC = 400V
5
ns
605
TJ = +125°C
1925
6
µJ
1470
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.15
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
6.10
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JEDS24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
050-7438
Rev A
4-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT65GP60B2
100
100
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
90
50
40
30
TC=-55°C
TC=25°C
20
TC=125°C
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
TJ = -55°C
100
TJ = 25°C
50
TJ = 125°C
0
2
3
4 5
6 7
8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
3
IC =130A
2.5
IC = 65A
2
IC = 32.5A
1.5
1
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.05
1.0
0.95
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
1.10
VCE=120V
12
VCE=300V
10
8
VCE=480V
6
4
2
0
50
100
150
200
GATE CHARGE (nC)
FIGURE 4, Gate Charge
250
3
IC =130A
2.5
IC = 65A
2
IC = 32.5A
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
300
1.2
1.15
IC = 65A
TJ = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
FIGURE 2, Output Characteristics (VGE = 10V)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
150
TC=-55°C
TC=125°C
20
0
200
TC=25°C
30
10
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC, COLLECTOR CURRENT (A)
40
0
FIGURE 1, Output Characteristics(VGE = 15V)
250
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
50
10
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
60
250
200
150
100
50
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
4-2003
60
70
Rev A
70
80
050-7438
80
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
90
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT65GP60B2
TYPICAL PERFORMANCE CURVES
160
50
VGE= 10V
40
VGE= 15V
30
20
VCE = 400V
TJ = 25°C or 125°C
RG = 5Ω
L = 100 µH
10
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
60
VGE =10V,TJ=25°C
40
20
120
tf, FALL TIME (ns)
tr, RISE TIME (ns)
VGE =15V,TJ=25°C
60
VCE = 400V
RG = 5Ω
L = 100 µH
140
TJ = 25 or 125°C,VGE = 10V
100
80
60
80
60
TJ = 25°C, VGE = 10V or 15V
VCE = 400V
L = 100 µH
RG = 5 Ω
5000
TJ =125°C, VGE=15V
4500
TJ =125°C,VGE=10V
4000
3500
3000
2500
TJ = 25°C, VGE=15V
2000
1500
1000
500
TJ = 25°C, VGE=10V
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
9000
VCE = 400V
VGE = +15V
TJ = 125°C
8000
5000
Eoff 130A
Eon2 65A
3000
2000
Eoff 65A
1000
Eon2 32.5A
Eoff32.5A
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
TJ = 125°C, VGE = 10V or 15V
3000
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
6000
VCE = 400V
L = 100 µH
RG = 5 Ω
4000
Eon2 130A
7000
4000
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
5000
100
0
SWITCHING ENERGY LOSSES (µJ)
5500
TJ = 125°C, VGE = 10V or 15V
20
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
6000
RG =5Ω, L = 100µH, VCE = 400V
40
TJ = 25 or 125°C,VGE = 15V
RG =5Ω, L = 100µH, VCE = 400V
EON2, TURN ON ENERGY LOSS (µJ)
80
160
20
SWITCHING ENERGY LOSSES (µJ)
VGE =10V,TJ=125°C
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
40
4-2003
100
0
120
Rev A
120
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
140
050-7438
VGE =15V,TJ=125°C
140
5000
VCE = 400V
VGE = +15V
RG = 5 Ω
Eon2 130A
Eoff 130A
4000
3000
2000
Eon2 65A
Eoff 65A
1000
Eon2 32.5A
0
-50
Eoff 32.5A
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT65GP60B2
10,000
300
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
5,000
1,000
Coes
500
100
50
Cres
250
200
150
100
50
0
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.16
ZθJC, THERMAL IMPEDANCE (°C/W)
0.14
0.9
0.12
0.7
0.10
0.08
0.5
Note:
PDM
0.06
0.3
t1
0.04
t2
Duty Factor D = t1/t2
0.1
0.02
0.05
10
-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0
-4
-3
10
10
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
-2
1.0
0.0822491
0.2556989
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
50
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
10
10
30
50
70
90
110
130
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
Fmax = min(f max1 , f max 2 )
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
4-2003
0.0216664
Power
(Watts)
Rev A
0.0683086
Junction
temp. ( ”C)
100
050-7438
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
187
APT65GP60B2
TYPICAL PERFORMANCE CURVES
APT30DF60
Gate Voltage
TJ = 125 C
td(on)
IC
V CC
V CE
Collector Current
tr
90%
A
5%
D.U.T.
10%
5%
Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
Gate Voltage
*DRIVER SAME TYPE AS D.U.T.
TJ = 125 C
Collector Voltage
td(off)
A
tf
V CE
90%
IC
100uH
V CLAMP
B
0
10%
A
Collector Current
Switching Energy
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
®
T-MAX (B2) Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
(Cathode)
5.38 (.212)
6.20 (.244)
20.80 (.819)
21.46 (.845)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
4-2003
Rev A
050-7438
2.87 (.113)
3.12 (.123)
Gate
Collector
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.