APT40GP90J APT40GP90J TYPICAL PERFORMANCE CURVES 900V E E POWER MOS 7 IGBT ® C G The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss 27 2 T- SO "UL Recognized" ISOTOP • SSOA Rated C • Low Gate Charge G • Ultrafast Tail Current shutoff E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 900 VGE Gate-Emitter Voltage ±20 VGEM Gate-Emitter Voltage Transient ±30 IC1 Continuous Collector Current @ TC = 25°C 68 IC2 Continuous Collector Current @ TC = 110°C 32 ICM Pulsed Collector Current SSOA PD TJ,TSTG TL UNIT APT40GP90J 1 Volts Amps 160 @ TC = 150°C 160A @ 900V Switching Safe Operating Area @ TJ = 150°C 284 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range °C 300 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. STATIC ELECTRICAL CHARACTERISTICS MIN BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 900 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C) 3.2 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C) 2.7 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 1000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 5-2004 Characteristic / Test Conditions 050-7481 Rev A Symbol APT40GP90J DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic 3300 VGE = 0V, VCE = 25V 325 Reverse Transfer Capacitance f = 1 MHz 35 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 145 VCE = 450V 22 55 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 40A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 160 A 15V, L = 100µH,VCE = 900V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Turn-on Switching Energy (Diode) td(off) tf Eon1 75 Turn-off Switching Energy 4 TBD TJ = +25°C 5 1415 6 Inductive Switching (125°C) VCC = 600V 16 VGE = 15V 110 Turn-off Delay Time 27 I C = 40A Current Fall Time Eoff Turn-off Switching Energy 55 ns 105 R G = 5Ω 44 Turn-on Switching Energy (Diode) µJ 825 Current Rise Time Eon2 ns 60 R G = 5Ω Turn-on Delay Time Turn-on Switching Energy 27 I C = 40A Eon2 tr VGE = 15V Current Fall Time Turn-on Switching Energy td(on) 16 Turn-off Delay Time Eon1 Eoff Inductive Switching (25°C) VCC = 600V TBD TJ = +125°C 2370 µJ 1505 66 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .44 RΘJC Junction to Case (DIODE) N/A Package Weight 21.9 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7481 Rev A 5-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 160 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 140 IC, COLLECTOR CURRENT (A) 140 120 100 TC = 125°C 80 TC = 25°C 60 TC = -50°C 40 20 0 100 80 TJ = -55°C 60 TJ = 25°C TJ = 125°C 20 TC = 125°C 60 TC = -50°C 40 IC = 80A TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 40A 3 IC = 20A 2 1 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.10 IC = 40A TJ = 25°C 14 VCE = 180V 12 VCE = 450V 10 8 VCE = 720V 6 4 2 0 2 4 6 8 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0 20 40 60 80 100 120 140 160 GATE CHARGE (nC) FIGURE 4, Gate Charge 5 IC = 80A 4 IC = 40A 3 IC = 20A 2 1 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -55 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 100 90 1.05 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 80 70 60 50 40 5-2004 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 40 VGE, GATE-TO-EMITTER VOLTAGE (V) 120 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) TC = 25°C 80 FIGURE 2, Output Characteristics (VGE = 10V) 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 250µs PULSE TEST <0.5 % DUTY CYCLE 140 0 100 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 160 0 120 20 FIGURE 1, Output Characteristics(VGE = 15V) 200 180 APT40GP90J VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 050-7481 Rev A IC, COLLECTOR CURRENT (A) 160 20 VGE = 15V 15 10 VCE = 600V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 0 100 VGE =15V,TJ=125°C 80 VGE =15V,TJ=25°C 60 40 20 VCE = 600V RG = 5Ω L = 100 µH 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 70 140 RG = 5Ω, L = 100µH, VCE = 600V 60 120 50 100 tf, FALL TIME (ns) tr, RISE TIME (ns) APT40GP90J 120 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 40 30 20 RG = 5Ω, L = 100µH, VCE = 600V TJ = 125°C, VGE = 15V 80 60 TJ = 25°C, VGE = 15V 40 TJ = 25 or 125°C,VGE = 15V 10 20 0 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 3500 VCE = 600V VGE = +15V RG = 5Ω 5000 4000 EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 6000 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 125°C,VGE =15V 3000 2000 1000 TJ = 25°C,VGE =15V 0 7000 Eoff, 80A Eon2, 40A 3000 Eoff, 40A Eon2, 20A 1000 0 Eoff, 20A 0 1500 1000 500 TJ = 25°C, VGE = 15V 6000 5000 2000 2000 VCE = 600V VGE = +15V RG = 5Ω Eon2, 80A 6000 4000 TJ = 125°C, VGE = 15V 2500 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 5-2004 050-7481 Rev A VCE = 600V VGE = +15V TJ = 125°C 3000 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 8000 VCE = 600V VGE = +15V RG = 5Ω 5000 Eon2, 80A 4000 Eoff, 80A 3000 2000 1000 0 Eoff, 40A Eon2, 40A Eon2, 20A Eoff, 20A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 7,000 IC, COLLECTOR CURRENT (A) Cies 1,000 P C, CAPACITANCE ( F) APT40GP90J 180 500 Coes 100 50 Cres 160 140 120 100 80 60 40 20 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.9 0.40 0.7 0.30 0.5 Note: 0.20 PDM 0.3 t2 0.10 Duty Factor D = t1/t2 SINGLE PULSE Peak TJ = PDM x ZθJC + TC 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10-5 RC MODEL 140 0.0966 0.00997F 0.228 0.0158F 0.116 1.96F Case temperature(°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) Junction temp (°C) Power (watts) 10 50 Fmax = min(f max1 , f max 2 ) 10 5 1 TJ = 125°C TC = 75°C D = 50 % VCE = 600V RG = 5Ω f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 10 20 30 40 50 60 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 5-2004 0.1 0 t1 050-7481 Rev A ZθJC, THERMAL IMPEDANCE (°C/W) 0.50 APT40GP90J APT30DF100 Gate Voltage 10% TJ = 125°C td(on) IC V CC Drain Current V CE tr DrainVoltage 90% 5% 5% 10% A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit VTEST 90% *DRIVER SAME TYPE AS D.U.T. DrainVoltage Gate Voltage TJ = 125°C A td(off) V CE 90% 100uH IC V CLAMP tf 10% 0 A Drain Current DRIVER* Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 3.3 (.129) 3.6 (.143) 5-2004 050-7481 Rev A 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter 30.1 (1.185) 30.3 (1.193) Collector * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Emitter Gate Dimensions in Millimeters and (Inches) ISOTOP® is a Registered Trademark of SGS Thomson. B APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.