ADPOW APT40GP90J

APT40GP90J
APT40GP90J
TYPICAL PERFORMANCE CURVES
900V
E
E
POWER MOS 7 IGBT
®
C
G
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
27
2
T-
SO
"UL Recognized"
ISOTOP
• SSOA Rated
C
• Low Gate Charge
G
• Ultrafast Tail Current shutoff
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
900
VGE
Gate-Emitter Voltage
±20
VGEM
Gate-Emitter Voltage Transient
±30
IC1
Continuous Collector Current @ TC = 25°C
68
IC2
Continuous Collector Current @ TC = 110°C
32
ICM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
UNIT
APT40GP90J
1
Volts
Amps
160
@ TC = 150°C
160A @ 900V
Switching Safe Operating Area @ TJ = 150°C
284
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
MIN
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
900
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C)
3.2
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C)
2.7
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
1000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
5-2004
Characteristic / Test Conditions
050-7481 Rev A
Symbol
APT40GP90J
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
3300
VGE = 0V, VCE = 25V
325
Reverse Transfer Capacitance
f = 1 MHz
35
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
145
VCE = 450V
22
55
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 40A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
160
A
15V, L = 100µH,VCE = 900V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy (Diode)
td(off)
tf
Eon1
75
Turn-off Switching Energy
4
TBD
TJ = +25°C
5
1415
6
Inductive Switching (125°C)
VCC = 600V
16
VGE = 15V
110
Turn-off Delay Time
27
I C = 40A
Current Fall Time
Eoff
Turn-off Switching Energy
55
ns
105
R G = 5Ω
44
Turn-on Switching Energy (Diode)
µJ
825
Current Rise Time
Eon2
ns
60
R G = 5Ω
Turn-on Delay Time
Turn-on Switching Energy
27
I C = 40A
Eon2
tr
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(on)
16
Turn-off Delay Time
Eon1
Eoff
Inductive Switching (25°C)
VCC = 600V
TBD
TJ = +125°C
2370
µJ
1505
66
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.44
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
21.9
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7481 Rev A
5-2004
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
160
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
140
IC, COLLECTOR CURRENT (A)
140
120
100
TC = 125°C
80
TC = 25°C
60
TC = -50°C
40
20
0
100
80
TJ = -55°C
60
TJ = 25°C
TJ = 125°C
20
TC = 125°C
60
TC = -50°C
40
IC = 80A
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 40A
3
IC = 20A
2
1
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.10
IC = 40A
TJ = 25°C
14
VCE = 180V
12
VCE = 450V
10
8
VCE = 720V
6
4
2
0
2
4
6
8
10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
5
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
20
40
60
80 100 120 140 160
GATE CHARGE (nC)
FIGURE 4, Gate Charge
5
IC = 80A
4
IC = 40A
3
IC = 20A
2
1
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-55
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
90
1.05
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
80
70
60
50
40
5-2004
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
40
VGE, GATE-TO-EMITTER VOLTAGE (V)
120
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
TC = 25°C
80
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
250µs PULSE TEST
<0.5 % DUTY CYCLE
140
0
100
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
160
0
120
20
FIGURE 1, Output Characteristics(VGE = 15V)
200
180
APT40GP90J
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
30
20
10
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
050-7481 Rev A
IC, COLLECTOR CURRENT (A)
160
20
VGE = 15V
15
10
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
0
100
VGE =15V,TJ=125°C
80
VGE =15V,TJ=25°C
60
40
20
VCE = 600V
RG = 5Ω
L = 100 µH
0
10 20
30 40
50
60 70
80
90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
10
20 30
40 50
60
70 80
90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
70
140
RG = 5Ω, L = 100µH, VCE = 600V
60
120
50
100
tf, FALL TIME (ns)
tr, RISE TIME (ns)
APT40GP90J
120
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
40
30
20
RG = 5Ω, L = 100µH, VCE = 600V
TJ = 125°C, VGE = 15V
80
60
TJ = 25°C, VGE = 15V
40
TJ = 25 or 125°C,VGE = 15V
10
20
0
0
10 20 30
40 50
60
70 80
90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3500
VCE = 600V
VGE = +15V
RG = 5Ω
5000
4000
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
6000
10
20 30 40 50
60 70 80
90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ = 125°C,VGE =15V
3000
2000
1000
TJ = 25°C,VGE =15V
0
7000
Eoff, 80A
Eon2, 40A
3000
Eoff, 40A
Eon2, 20A
1000
0
Eoff, 20A
0
1500
1000
500
TJ = 25°C, VGE = 15V
6000
5000
2000
2000
VCE = 600V
VGE = +15V
RG = 5Ω
Eon2, 80A
6000
4000
TJ = 125°C, VGE = 15V
2500
10 20
30 40
50 60
70 80
90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
5-2004
050-7481 Rev A
VCE = 600V
VGE = +15V
TJ = 125°C
3000
0
10 20
30
40 50
60 70
80 90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
8000
VCE = 600V
VGE = +15V
RG = 5Ω
5000
Eon2, 80A
4000
Eoff, 80A
3000
2000
1000
0
Eoff, 40A
Eon2, 40A
Eon2, 20A
Eoff, 20A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
7,000
IC, COLLECTOR CURRENT (A)
Cies
1,000
P
C, CAPACITANCE ( F)
APT40GP90J
180
500
Coes
100
50
Cres
160
140
120
100
80
60
40
20
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.9
0.40
0.7
0.30
0.5
Note:
0.20
PDM
0.3
t2
0.10
Duty Factor D = t1/t2
SINGLE PULSE
Peak TJ = PDM x ZθJC + TC
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5
RC MODEL
140
0.0966
0.00997F
0.228
0.0158F
0.116
1.96F
Case temperature(°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
Junction
temp (°C)
Power
(watts)
10
50
Fmax = min(f max1 , f max 2 )
10
5
1
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 600V
RG = 5Ω
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
10
20
30
40
50
60
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
5-2004
0.1
0
t1
050-7481 Rev A
ZθJC, THERMAL IMPEDANCE (°C/W)
0.50
APT40GP90J
APT30DF100
Gate Voltage
10%
TJ = 125°C
td(on)
IC
V CC
Drain Current
V CE
tr
DrainVoltage
90%
5%
5%
10%
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
VTEST
90%
*DRIVER SAME TYPE AS D.U.T.
DrainVoltage
Gate Voltage
TJ = 125°C
A
td(off)
V CE
90%
100uH
IC
V CLAMP
tf
10%
0
A
Drain Current
DRIVER*
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 24, EON1 Test Circuit
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
3.3 (.129)
3.6 (.143)
5-2004
050-7481 Rev A
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter
30.1 (1.185)
30.3 (1.193)
Collector
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a Registered Trademark of SGS Thomson.
B
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.