ADPOW APT15GP90B

APT15GP90B
TYPICAL PERFORMANCE CURVES
APT15GP90B
900V
POWER MOS 7 IGBT
®
TO-247
®
The POWER MOS 7 IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 600V, 9A
• Low Gate Charge
• 50 kHz operation @ 600V, 17A
• Ultrafast Tail Current shutoff
• SSOA Rated
G
C
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
900
VGE
Gate-Emitter Voltage
±20
VGEM
Gate-Emitter Voltage Transient
±30
IC1
Continuous Collector Current @ TC = 25°C
43
IC2
Continuous Collector Current @ TC = 110°C
21
ICM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
UNIT
APT15GP90B
1
Volts
Amps
60
@ TC = 150°C
60A @ 900V
Switching Safe Operating Area @ TJ = 150°C
291
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
900
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
3.2
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
2.7
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
2
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
8-2004
MIN
Rev C
Characteristic / Test Conditions
050-7470
Symbol
1
APT15GP90B
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
1100
VGE = 0V, VCE = 25V
120
Reverse Transfer Capacitance
f = 1 MHz
32
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
VCE = 450V
10
27
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 15A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
60
nC
60
A
15V, L = 100µH,VCE = 900V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
I C = 15A
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon1
Eon2
Eoff
9
14
VGE = 15V
70
I C = 15A
Current Fall Time
55
ns
100
R G = 5Ω
44
Turn-on Switching Energy (Diode)
µJ
200
Inductive Switching (125°C)
VCC = 600V
Turn-off Delay Time
Turn-off Switching Energy
430
6
Current Rise Time
Turn-on Switching Energy
TBD
TJ = +25°C
5
ns
55
R G = 5Ω
4
Eon2
tf
33
Current Fall Time
Turn-on Switching Energy
td(off)
14
VGE = 15V
Turn-off Delay Time
Eon1
tr
9
Inductive Switching (25°C)
VCC = 600V
TBD
TJ = +125°C
790
66
µJ
500
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.50
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7470
Rev C
8-2004
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
30
TC=25°C
20
TC=125°C
10
0
FIGURE 1, Output Characteristics(VGE = 15V)
100
40
TJ = -55°C
TJ = 25°C
TJ = 125°C
0
6
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
4
IC = 15A
3
IC =30A
IC = 7.5A
2
1
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
1.10
1.05
1.0
0.95
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
10
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
14
IC = 15A
TJ = 25°C
VCE = 180V
12
VCE = 450V
10
8
VCE = 720V
6
4
2
0
10
20
30
40
50
GATE CHARGE (nC)
FIGURE 4, Gate Charge
4
60
70
IC =30A
3.5
3
IC = 15A
2.5
IC = 7.5A
2
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
1.2
1.15
TC=25°C
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
20
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
60
TC=125°C
20
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
80
30
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
40
50
40
30
20
8-2004
40
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
10
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev C
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
50
APT15GP90B
50
050-7470
60
12
VGE = 15V
10
8
6
4
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
2
0
30
VGE =15V,TJ=25°C
20
VCE = 600V
RG = 5Ω
L = 100 µH
10
120
RG = 5Ω, L = 100µH, VCE = 600V
TJ = 125°C, VGE = 15V
25
20
15
TJ = 25 or 125°C,VGE = 15V
10
80
60
20
0
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1200
EOFF, TURN OFF ENERGY LOSS (µJ)
VCE = 600V
VGE = +15V
RG = 5 Ω
1500
TJ = 125°C,VGE =15V
1000
500
TJ = 25°C,VGE =15V
1500
Eoff, 30A
Eon2, 15A
Eon2, 9A
500
Eoff, 15A
Eoff, 9A
0
TJ = 125°C, VGE = 15V
800
600
400
TJ = 25°C, VGE = 15V
200
2000
Eon2, 30A
2000
1000
1000
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
VCE = 600V
VGE = +15V
TJ = 125°C
VCE = 600V
VGE = +15V
RG = 5 Ω
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
2500
TJ = 25°C, VGE = 15V
40
5
0
RG = 5Ω, L = 100µH, VCE = 600V
100
tf, FALL TIME (ns)
tr, RISE TIME (ns)
EON2, TURN ON ENERGY LOSS (µJ)
40
35
0
SWITCHING ENERGY LOSSES (µJ)
50
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
2000
8-2004
60
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
Rev C
VGE =15V,TJ=125°C
70
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
30
050-7470
APT15GP90B
80
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
14
VCE = 600V
VGE = +15V
RG = 5 Ω
1500
Eoff, 30A
Eon2,30A
1000
Eon2,15A
500
Eon2,9A
0
0
Eoff,15A
Eoff, 9A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
500
Coes
100
APT15GP90B
70
3,000
50
60
50
40
30
20
Cres
10
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimum Switching Safe Operating Area
0.50
0.9
0.40
0.7
0.30
0.5
0.20
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
0.3
t1
t2
0.10
SINGLE PULSE
0.1
Duty Factor D = t1/t2
0.05
0
10-5
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
Power
(watts)
0.278
0.125F
Case temperature(°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
50
10
5
Fmax = min(f max1 , f max 2 )
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 600V
RG = 5 Ω
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
0
10
20
30
40
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
8-2004
0.00474F
Rev C
0.222
100
050-7470
RC MODEL
Junction
temp (°C)
FMAX, OPERATING FREQUENCY (kHz)
210
APT15GP90B
Gate Voltage
APT15DF100
10%
TJ = 125°C
td(on)
Drain Current
tr
V CE
IC
V CC
90%
5%
5%
10%
DrainVoltage
A
Switching Energy
D.U.T.
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
90%
*DRIVER SAME TYPE AS D.U.T.
Gate Voltage
TJ = 125°C
td(off)
A
90%
tf
DrainVoltage
10%
V CE
IC
100uH
0
V CLAMP
B
Drain Current
A
Switching Energy
D.U.T.
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
Rev C
8-2004
0.40 (.016)
0.79 (.031)
050-7470
5.38 (.212)
6.20 (.244)
2.21 (.087)
2.59 (.102)
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.