APT15GP90B TYPICAL PERFORMANCE CURVES APT15GP90B 900V POWER MOS 7 IGBT ® TO-247 ® The POWER MOS 7 IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 600V, 9A • Low Gate Charge • 50 kHz operation @ 600V, 17A • Ultrafast Tail Current shutoff • SSOA Rated G C E C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 900 VGE Gate-Emitter Voltage ±20 VGEM Gate-Emitter Voltage Transient ±30 IC1 Continuous Collector Current @ TC = 25°C 43 IC2 Continuous Collector Current @ TC = 110°C 21 ICM Pulsed Collector Current SSOA PD TJ,TSTG TL UNIT APT15GP90B 1 Volts Amps 60 @ TC = 150°C 60A @ 900V Switching Safe Operating Area @ TJ = 150°C 291 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range °C 300 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 900 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C) 3.2 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C) 2.7 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 2 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 8-2004 MIN Rev C Characteristic / Test Conditions 050-7470 Symbol 1 APT15GP90B DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 1100 VGE = 0V, VCE = 25V 120 Reverse Transfer Capacitance f = 1 MHz 32 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 VCE = 450V 10 27 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 15A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V 60 nC 60 A 15V, L = 100µH,VCE = 900V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time I C = 15A Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon1 Eon2 Eoff 9 14 VGE = 15V 70 I C = 15A Current Fall Time 55 ns 100 R G = 5Ω 44 Turn-on Switching Energy (Diode) µJ 200 Inductive Switching (125°C) VCC = 600V Turn-off Delay Time Turn-off Switching Energy 430 6 Current Rise Time Turn-on Switching Energy TBD TJ = +25°C 5 ns 55 R G = 5Ω 4 Eon2 tf 33 Current Fall Time Turn-on Switching Energy td(off) 14 VGE = 15V Turn-off Delay Time Eon1 tr 9 Inductive Switching (25°C) VCC = 600V TBD TJ = +125°C 790 66 µJ 500 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .50 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7470 Rev C 8-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 30 TC=25°C 20 TC=125°C 10 0 FIGURE 1, Output Characteristics(VGE = 15V) 100 40 TJ = -55°C TJ = 25°C TJ = 125°C 0 6 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 5 4 IC = 15A 3 IC =30A IC = 7.5A 2 1 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 1.10 1.05 1.0 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 10 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 14 IC = 15A TJ = 25°C VCE = 180V 12 VCE = 450V 10 8 VCE = 720V 6 4 2 0 10 20 30 40 50 GATE CHARGE (nC) FIGURE 4, Gate Charge 4 60 70 IC =30A 3.5 3 IC = 15A 2.5 IC = 7.5A 2 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 60 1.2 1.15 TC=25°C 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 20 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) 60 TC=125°C 20 FIGURE 2, Output Characteristics (VGE = 10V) 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 80 30 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE 40 50 40 30 20 8-2004 40 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev C IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 50 APT15GP90B 50 050-7470 60 12 VGE = 15V 10 8 6 4 VCE = 600V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 2 0 30 VGE =15V,TJ=25°C 20 VCE = 600V RG = 5Ω L = 100 µH 10 120 RG = 5Ω, L = 100µH, VCE = 600V TJ = 125°C, VGE = 15V 25 20 15 TJ = 25 or 125°C,VGE = 15V 10 80 60 20 0 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 1200 EOFF, TURN OFF ENERGY LOSS (µJ) VCE = 600V VGE = +15V RG = 5 Ω 1500 TJ = 125°C,VGE =15V 1000 500 TJ = 25°C,VGE =15V 1500 Eoff, 30A Eon2, 15A Eon2, 9A 500 Eoff, 15A Eoff, 9A 0 TJ = 125°C, VGE = 15V 800 600 400 TJ = 25°C, VGE = 15V 200 2000 Eon2, 30A 2000 1000 1000 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) VCE = 600V VGE = +15V TJ = 125°C VCE = 600V VGE = +15V RG = 5 Ω 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 2500 TJ = 25°C, VGE = 15V 40 5 0 RG = 5Ω, L = 100µH, VCE = 600V 100 tf, FALL TIME (ns) tr, RISE TIME (ns) EON2, TURN ON ENERGY LOSS (µJ) 40 35 0 SWITCHING ENERGY LOSSES (µJ) 50 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 2000 8-2004 60 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current Rev C VGE =15V,TJ=125°C 70 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 30 050-7470 APT15GP90B 80 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 14 VCE = 600V VGE = +15V RG = 5 Ω 1500 Eoff, 30A Eon2,30A 1000 Eon2,15A 500 Eon2,9A 0 0 Eoff,15A Eoff, 9A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES P C, CAPACITANCE ( F) IC, COLLECTOR CURRENT (A) Cies 1,000 500 Coes 100 APT15GP90B 70 3,000 50 60 50 40 30 20 Cres 10 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimum Switching Safe Operating Area 0.50 0.9 0.40 0.7 0.30 0.5 0.20 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 0.3 t1 t2 0.10 SINGLE PULSE 0.1 Duty Factor D = t1/t2 0.05 0 10-5 Peak TJ = PDM x ZθJC + TC 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 Power (watts) 0.278 0.125F Case temperature(°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 50 10 5 Fmax = min(f max1 , f max 2 ) TJ = 125°C TC = 75°C D = 50 % VCE = 600V RG = 5 Ω f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 0 10 20 30 40 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 8-2004 0.00474F Rev C 0.222 100 050-7470 RC MODEL Junction temp (°C) FMAX, OPERATING FREQUENCY (kHz) 210 APT15GP90B Gate Voltage APT15DF100 10% TJ = 125°C td(on) Drain Current tr V CE IC V CC 90% 5% 5% 10% DrainVoltage A Switching Energy D.U.T. Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST 90% *DRIVER SAME TYPE AS D.U.T. Gate Voltage TJ = 125°C td(off) A 90% tf DrainVoltage 10% V CE IC 100uH 0 V CLAMP B Drain Current A Switching Energy D.U.T. DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions T0-247 Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC Collector 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. Rev C 8-2004 0.40 (.016) 0.79 (.031) 050-7470 5.38 (.212) 6.20 (.244) 2.21 (.087) 2.59 (.102) 19.81 (.780) 20.32 (.800) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.