APT32GU30K APT32GU30K TYPICAL PERFORMANCE CURVES 300V POWER MOS 7 IGBT ® TO-220 The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss G C E • SSOA rated C • Low Gate Charge G • Ultrafast Tail Current shutoff E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 300 VGE Gate-Emitter Voltage ±20 VGEM Gate-Emitter Voltage Transient ±30 IC1 Continuous Collector Current @ TC = 25°C 55 IC2 Continuous Collector Current @ TC = 100°C 32 ICM Pulsed Collector Current SSOA PD TJ,TSTG TL UNIT APT32GU30K 1 Volts Amps 120 @ TC = 150°C 120A @ 300V Switching Safe Operating Area @ TJ = 150°C 250 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range °C 300 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 300 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C) 1.5 2.0 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C) 1.5 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 9-2005 MIN Rev A Characteristic / Test Conditions 050-7472 Symbol APT32GU30K DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 1660 VGE = 0V, VCE = 25V 170 Reverse Transfer Capacitance f = 1 MHz 13 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.0 VCE = 150V 11 17 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 15A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V 57 nC 120 A 15V, L = 100µH,VCE = 300V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff 28 VGE = 15V 155 13 I C = 15A Current Fall Time 5 ns 119 R G = 20Ω 4 Turn-on Switching Energy (Diode) µJ 66 Inductive Switching (125°C) VCC = 200V Turn-off Delay Time Turn-off Switching Energy 36 6 Current Rise Time Turn-on Switching Energy TBD TJ = +25°C 5 ns 63 R G = 20Ω 4 Turn-on Switching Energy (Diode) Eon1 127 13 I C = 15A Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 28 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 200V TBD TJ = +125°C 76 6 µJ 111 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) 0.50 RΘJC Junction to Case (DIODE) N/A Package Weight 1.9 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7472 Rev A 9-2005 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES TC=125°C 20 10 0 40 TJ = 25°C 20 TJ = 125°C TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4.5 4 3.5 3 2.5 IC= 30A 2 IC= 15A 1.5 IC= 7.5A 1 0.5 0 5 6 7 8 9 10 11 12 13 14 15 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 14 4 2 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 0 10 20 30 40 50 GATE CHARGE (nC) FIGURE 4, Gate Charge 60 70 2 IC = 30A 1.6 IC = 15A 1.2 IC = 7.5A 0.8 0.4 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 70 0.95 VCE = 240V 6 1.15 1.0 VCE = 150V 8 80 1.05 VCE = 60V 10 1.2 1.10 IC = 15A TJ = 25°C 12 0 1 2 3 4 5 6 7 8 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 5 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 10 FIGURE 2, Output Characteristics (VGE = 10V) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 60 TC=125°C 20 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 80 TC=25°C 30 0 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 100 250µs PULSE TEST TJ = -55°C <0.5 % DUTY CYCLE TC=-55°C 40 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 9-2005 TC=-55°C 30 50 APT32GU30K VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE Rev A TC=25°C 40 IC, COLLECTOR CURRENT (A) 50 IC, COLLECTOR CURRENT (A) 60 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7472 60 VGE= 15V 25 20 15 10 VCE = 200V TJ = 25°C, TJ =125°C RG = 20Ω L = 100 µH 5 0 5 25 140 VGE =15V,TJ=125°C 120 VGE =15V,TJ=25°C 100 80 60 40 VCE = 200V RG = 20Ω L = 100 µH 20 0 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 140 RG =20Ω, L = 100µH, VCE = 200V 120 tf, FALL TIME (ns) 20 tr, RISE TIME (ns) APT32GU30K 160 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 30 15 10 TJ = 25 or 125°C,VGE = 15V 100 TJ = 125°C, VGE = 10V or 15V 80 60 TJ = 25°C, VGE = 10V or 15V 40 5 20 RG =20Ω, L = 100µH, VCE = 200V 0 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 300 VCE = 200V L = 100 µH RG = 20Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 200 TJ =125°C, VGE=15V 150 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 100 50 TJ = 25°C, VGE=15V 0 Eon2 30A Eoff 15A Eon2 15A Eoff 7.5A Eon2 7.5A 0 5 VCE = 200V L = 100 µH RG = 20Ω 150 100 50 TJ = 25°C, VGE = 10V or 15V 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 15 20 25 30 35 40 45 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 9-2005 Rev A 050-7472 Eoff 30A 300 100 200 300 VCE = 200V VGE = +15V TJ = 125°C 200 250 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 400 TJ = 125°C, VGE = 10V or 15V VCE = 200V VGE = +15V RG = 20Ω 250 Eoff 30A 200 150 Eon2 30A Eoff 15A 100 50 Eon2 15A 0 Eoff 7.5A Eon2 7.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT32GU30K 140 3,000 Cies 120 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 1,000 500 Coes 100 50 Cres 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 100 80 60 40 20 0 0 50 100 150 200 250 300 350 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.50 0.9 0.40 0.7 0.30 0.5 0.20 0.3 t1 t2 0.10 0 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 Duty Factor D = t1/t2 0.1 0.05 10-5 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 Power (watts) 0.284 0.161F Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL Fmax = min(f max1 , f max 2 ) 50 TJ = 125°C TC = 75°C D = 50 % VCE = 200V RG = 5Ω 10 0 f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = 10 20 30 40 50 60 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current TJ − TC R θJC 9-2005 0.00600F Rev A 0.216 100 050-7472 RC MODEL Junction temp. ( °C) FMAX, OPERATING FREQUENCY (kHz) 400 APT32GU30K Gate Voltage APT15DS30 10% td(on) tr V CE IC V CC TJ = 125 C Collector Current 90% 5% 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage td(off) Collector Current TJ = 125 C tf A 90% V CE IC 100uH V CLAMP 10% Collector Voltage 0 Switching Energy A D.U.T. DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions TO-220AC Package Outline 1.39 (.055) 0.51 (.020) 12.192 (.480) 9.912 (.390) Drain 4.08 (.161) Dia. 3.54 (.139) 3.42 (.135) 2.54 (.100) 10.66 (.420) 9.66 (.380) 5.33 (.210) 4.83 (.190) 6.85 (.270) 5.85 (.230) 3.683 (.145) MAX. Rev A 9-2005 0.50 (.020) 0.41 (.016) 050-7472 B 2.92 (.115) 2.04 (.080) 4.82 (.190) 3.56 (.140) 14.73 (.580) 12.70 (.500) 1.01 (.040) 3-Plcs. 0.83 (.033) 2.79 (.110) 2.29 (.090) 5.33 (.210) 4.83 (.190) Gate Collector Emitter 1.77 (.070) 3-Plcs. 1.15 (.045) Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.