ADPOW APT32GU30K

APT32GU30K
APT32GU30K
TYPICAL PERFORMANCE CURVES
300V
POWER MOS 7 IGBT
®
TO-220
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
G
C
E
• SSOA rated
C
• Low Gate Charge
G
• Ultrafast Tail Current shutoff
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
300
VGE
Gate-Emitter Voltage
±20
VGEM
Gate-Emitter Voltage Transient
±30
IC1
Continuous Collector Current @ TC = 25°C
55
IC2
Continuous Collector Current @ TC = 100°C
32
ICM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
UNIT
APT32GU30K
1
Volts
Amps
120
@ TC = 150°C
120A @ 300V
Switching Safe Operating Area @ TJ = 150°C
250
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
300
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
1.5
2.0
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
1.5
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
9-2005
MIN
Rev A
Characteristic / Test Conditions
050-7472
Symbol
APT32GU30K
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
1660
VGE = 0V, VCE = 25V
170
Reverse Transfer Capacitance
f = 1 MHz
13
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.0
VCE = 150V
11
17
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 15A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
57
nC
120
A
15V, L = 100µH,VCE = 300V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
28
VGE = 15V
155
13
I C = 15A
Current Fall Time
5
ns
119
R G = 20Ω
4
Turn-on Switching Energy (Diode)
µJ
66
Inductive Switching (125°C)
VCC = 200V
Turn-off Delay Time
Turn-off Switching Energy
36
6
Current Rise Time
Turn-on Switching Energy
TBD
TJ = +25°C
5
ns
63
R G = 20Ω
4
Turn-on Switching Energy (Diode)
Eon1
127
13
I C = 15A
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
28
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 200V
TBD
TJ = +125°C
76
6
µJ
111
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
0.50
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
1.9
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7472
Rev A
9-2005
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TC=125°C
20
10
0
40
TJ = 25°C
20
TJ = 125°C
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4.5
4
3.5
3
2.5
IC= 30A
2
IC= 15A
1.5
IC= 7.5A
1
0.5
0
5
6 7 8 9 10 11 12 13 14 15 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
14
4
2
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
0
10
20
30
40
50
GATE CHARGE (nC)
FIGURE 4, Gate Charge
60
70
2
IC = 30A
1.6
IC = 15A
1.2
IC = 7.5A
0.8
0.4
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
70
0.95
VCE = 240V
6
1.15
1.0
VCE = 150V
8
80
1.05
VCE = 60V
10
1.2
1.10
IC = 15A
TJ = 25°C
12
0
1
2
3
4
5
6
7
8
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
5
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
10
FIGURE 2, Output Characteristics (VGE = 10V)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
60
TC=125°C
20
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
80
TC=25°C
30
0
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
100
250µs PULSE TEST
TJ = -55°C
<0.5 % DUTY CYCLE
TC=-55°C
40
60
50
40
30
20
10
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
9-2005
TC=-55°C
30
50
APT32GU30K
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
Rev A
TC=25°C
40
IC, COLLECTOR CURRENT (A)
50
IC, COLLECTOR CURRENT (A)
60
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7472
60
VGE= 15V
25
20
15
10
VCE = 200V
TJ = 25°C, TJ =125°C
RG = 20Ω
L = 100 µH
5
0
5
25
140
VGE =15V,TJ=125°C
120
VGE =15V,TJ=25°C
100
80
60
40
VCE = 200V
RG = 20Ω
L = 100 µH
20
0
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
140
RG =20Ω, L = 100µH, VCE = 200V
120
tf, FALL TIME (ns)
20
tr, RISE TIME (ns)
APT32GU30K
160
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
30
15
10
TJ = 25 or 125°C,VGE = 15V
100
TJ = 125°C, VGE = 10V or 15V
80
60
TJ = 25°C, VGE = 10V or 15V
40
5
20
RG =20Ω, L = 100µH, VCE = 200V
0
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
300
VCE = 200V
L = 100 µH
RG = 20Ω
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
200
TJ =125°C, VGE=15V
150
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
100
50
TJ = 25°C, VGE=15V
0
Eon2 30A
Eoff 15A
Eon2 15A
Eoff 7.5A
Eon2 7.5A
0
5
VCE = 200V
L = 100 µH
RG = 20Ω
150
100
50
TJ = 25°C, VGE = 10V or 15V
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10 15 20 25 30 35 40 45 50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
9-2005
Rev A
050-7472
Eoff 30A
300
100
200
300
VCE = 200V
VGE = +15V
TJ = 125°C
200
250
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
400
TJ = 125°C, VGE = 10V or 15V
VCE = 200V
VGE = +15V
RG = 20Ω
250
Eoff 30A
200
150
Eon2 30A
Eoff 15A
100
50 Eon2 15A
0
Eoff 7.5A
Eon2 7.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT32GU30K
140
3,000
Cies
120
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
1,000
500
Coes
100
50
Cres
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
100
80
60
40
20
0
0
50
100 150 200 250 300 350
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.50
0.9
0.40
0.7
0.30
0.5
0.20
0.3
t1
t2
0.10
0
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
Duty Factor D = t1/t2
0.1
0.05
10-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
Power
(watts)
0.284
0.161F
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
Fmax = min(f max1 , f max 2 )
50
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 200V
RG = 5Ω
10
0
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
10
20
30
40
50
60
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
TJ − TC
R θJC
9-2005
0.00600F
Rev A
0.216
100
050-7472
RC MODEL
Junction
temp. ( °C)
FMAX, OPERATING FREQUENCY (kHz)
400
APT32GU30K
Gate Voltage
APT15DS30
10%
td(on)
tr
V CE
IC
V CC
TJ = 125 C
Collector Current
90%
5% 10%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
td(off)
Collector Current
TJ = 125 C
tf
A
90%
V CE
IC
100uH
V CLAMP
10%
Collector Voltage
0
Switching Energy
A
D.U.T.
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
TO-220AC Package Outline
1.39 (.055)
0.51 (.020)
12.192 (.480)
9.912 (.390)
Drain
4.08 (.161) Dia.
3.54 (.139)
3.42 (.135)
2.54 (.100)
10.66 (.420)
9.66 (.380)
5.33 (.210)
4.83 (.190)
6.85 (.270)
5.85 (.230)
3.683 (.145)
MAX.
Rev A
9-2005
0.50 (.020)
0.41 (.016)
050-7472
B
2.92 (.115)
2.04 (.080)
4.82 (.190)
3.56 (.140)
14.73 (.580)
12.70 (.500)
1.01 (.040) 3-Plcs.
0.83 (.033)
2.79 (.110)
2.29 (.090)
5.33 (.210)
4.83 (.190)
Gate
Collector
Emitter
1.77 (.070) 3-Plcs.
1.15 (.045)
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.