ADPOW APT13GP120K

APT13GP120K
1200V
POWER MOS 7 IGBT
®
A new generation of high voltage power IGBTs. Using punch-through
technology and a proprietary metal gate, this IGBT has been optimized for very
fast switching, making it ideal for high frequency, high voltage switch-mode
power supplies and tail current sensitive applications. In many cases, the
POWER MOS 7® IGBT provides a lower cost alternative to a Power MOSFET.
• Low Conduction Loss
• 100 kHz operation @ 600V, 10A
• Low Gate Charge
• 50 kHz operation @ 600V, 16A
• Ultrafast Tail Current shutoff
• RBSOA Rated
MAXIMUM RATINGS
Symbol
TO-220
G
C
C
E
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT13GP120K
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
41
I C2
Continuous Collector Current @ TC = 110°C
20
I CM
Pulsed Collector Current
RBSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
Amps
50
@ TC = 150°C
50A @ 960V
Reverse Bias Safe Operating Area @ TJ = 150°C
250
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 13A, Tj = 25°C)
3.3
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 13A, Tj = 125°C)
3.0
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
1200
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
UNIT
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
nA
2-2004
BVCES
MIN
050-7415 Rev B
Symbol
APT13GP120K
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
1145
VGE = 0V, VCE = 25V
90
Reverse Transfer Capacitance
f = 1 MHz
15
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
VCE = 600V
8
I C = 13A
26
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
Qgc
RBSOA
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
55
nC
50
A
15V, L = 100µH,VCE = 960V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
I C = 13A
4
Turn-on Switching Energy (Diode) 5
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon1
Eon2
Eoff
330
9
12
VGE = 15V
70
I C = 13A
Current Fall Time
5
ns
200
R G = 5Ω
4
Turn-on Switching Energy (Diode)
µJ
165
Inductive Switching (125°C)
VCC = 600V
Turn-off Delay Time
Turn-off Switching Energy
114
TJ = +25°C
6
Current Rise Time
Turn-on Switching Energy
ns
34
R G = 5Ω
Eon2
tf
28
Current Fall Time
Turn-on Switching Energy
td(off)
12
VGE = 15V
Turn-off Delay Time
Eon1
tr
9
Inductive Switching (25°C)
VCC = 600V
223
TJ = +125°C
710
6
µJ
840
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.50
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
1.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7415 Rev B
2-2004
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
35
25
TC = -55°C
20
15
TC = 125°C
10
TC = 25°C
5
0
TJ = 25°C
15
TJ = 125°C
10
5
0
2
3
4
5
6
7
8
9
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
5
IC = 26A
4
IC = 13A
3
IC= 6.5A
2
1
0
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
1.10
1.05
1.00
0.95
0.90
-50
-25
0
25
50
75 100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
15
TC = 125°C
10
TC = 25°C
5
14
IC = 13A
TJ = 25°C
VCE = 240V
12
VCE = 600V
10
8
VCE = 960V
6
4
2
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = -55°C
20
VGE, GATE-TO-EMITTER VOLTAGE (V)
25
20
FIGURE 2, Output Characteristics (VGE = 10V)
16
0
10
20
30
40
50
GATE CHARGE (nC)
FIGURE 4, Gate Charge
60
5
IC = 26A
4
IC = 13A
3
IC= 6.5A
2
1
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-55
-25
0
25
50
75 100 125
TJ, JUNCTION TRMPERATURE (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
30
25
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
40
35
TC = -55°C
30
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
2-2004
30
APT13GP120K
050-7415 Rev B
IC, COLLECTOR CURRENT (A)
35
40
IC, COLLECTOR CURRENT (A)
40
12
VGE = 15V
10
8
6
4
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
2
0
5
30
100
80
VGE =15V,TJ=125°C
60
40
20
250
20
200
tf, FALL TIME (ns)
25
10
TJ = 125°C, VGE = 10V or 15V
150
100
TJ = 25°C, VGE = 10V or 15V
TJ = 25 or 125°C,VGE = 15V
50
5
0
0
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
5
SWITCHING ENERGY LOSSES (µJ)
EOFF, TURN OFF ENERGY LOSS (µJ)
TJ = 125°C,VGE =15V
1000
800
600
400
200
TJ = 25°C,VGE =15V
0
2-2004
1600
VCE = 600V
VGE = +15V
RG = 5 Ω
1200
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1400
1200
VCE = 600V
VGE = +15V
RG = 5 Ω
TJ = 125°C, VGE = 10V or 15V
1000
800
600
TJ = 25°C, VGE = 10V or 15V
400
200
0
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
1800
1600
Eoff, 26A
1600
Eon2, 26A
1400
VCE = 600V
VGE = +15V
TJ = 125°C
1200
1000
Eoff, 13A
800
Eon2, 13A
600
Eoff, 6.5A
400
Eon2, 6.5A
200
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
1400
050-7415 Rev B
VGE =15V,TJ=25°C
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
300
RG = 5Ω, L = 100µH, VCE = 600V
RG = 5Ω, L = 100µH, VCE = 600V
15
VCE = 600V
RG = 5Ω
L = 100 µH
0
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
tr, RISE TIME (ns)
APT13GP120K
120
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
14
1400
VCE = 600V
VGE = +15V
RG = 5 Ω
1200
1000
Eon2,26A
Eoff, 13A
800
600
Eoff,26A
Eon2,13A
400
200
0
25
Eon2,6.5A
Eoff, 6.5A
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT13GP120K
60
3,000
Cies
50
500
100
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
1,000
Coes
Cres
10
1
40
30
20
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.50
0.9
0.40
0.7
0.30
0.5
0.20
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
0.3
t1
t2
0.10
0
Duty Factor D = t1/t2
0.1
0.05
10-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.600F
0.284
0.161F
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
Fmax = min(f max1 , f max 2 )
50
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 600V
RG = 5 Ω
10
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
2-2004
0.216
Power
(Watts)
100
050-7415 Rev B
RC MODEL
Junction
temp. ( ”C)
FMAX, OPERATING FREQUENCY (kHz)
181
APT13GP120K
APT15DF120
Gate Voltage
10%
TJ = 125°C
td(on)
V CE
IC
V CC
tr
Drain Current
90%
10%
5%
A
DrainVoltage
D.U.T.
5%
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
A
TJ = 125°C
V CE
td(off)
IC
DrainVoltage
100uH
90%
V CLAMP
tf
A
10% 0
Switching Energy
D.U.T.
DRIVER*
Drain Current
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
TO-220AC Package Outline
1.39 (.055)
0.51 (.020)
16.51 (.650)
14.23 (.560)
Collector
4.08 (.161) Dia.
3.54 (.139)
3.42 (.135)
2.54 (.100)
10.66 (.420)
9.66 (.380)
5.33 (.210)
4.83 (.190)
6.85 (.270)
5.85 (.230)
6.35 (.250)
MAX.
0.50 (.020)
0.41 (.016)
2-2004
2.92 (.115)
2.04 (.080)
050-7415 Rev B
B
4.82 (.190)
3.56 (.140)
14.73 (.580)
12.70 (.500)
1.01 (.040) 3-Plcs.
0.38 (.015)
2.79 (.110)
2.29 (.090)
5.33 (.210)
4.83 (.190)
Gate
Collector
Emitter
1.77 (.070) 3-Plcs.
1.15 (.045)
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.