APT13GP120K 1200V POWER MOS 7 IGBT ® A new generation of high voltage power IGBTs. Using punch-through technology and a proprietary metal gate, this IGBT has been optimized for very fast switching, making it ideal for high frequency, high voltage switch-mode power supplies and tail current sensitive applications. In many cases, the POWER MOS 7® IGBT provides a lower cost alternative to a Power MOSFET. • Low Conduction Loss • 100 kHz operation @ 600V, 10A • Low Gate Charge • 50 kHz operation @ 600V, 16A • Ultrafast Tail Current shutoff • RBSOA Rated MAXIMUM RATINGS Symbol TO-220 G C C E G E All Ratings: TC = 25°C unless otherwise specified. Parameter APT13GP120K VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 41 I C2 Continuous Collector Current @ TC = 110°C 20 I CM Pulsed Collector Current RBSOA PD TJ,TSTG TL 1 UNIT Volts Amps 50 @ TC = 150°C 50A @ 960V Reverse Bias Safe Operating Area @ TJ = 150°C 250 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range °C 300 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. STATIC ELECTRICAL CHARACTERISTICS Characteristic / Test Conditions TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 13A, Tj = 25°C) 3.3 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 13A, Tj = 125°C) 3.0 Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES 1200 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) UNIT 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts nA 2-2004 BVCES MIN 050-7415 Rev B Symbol APT13GP120K DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 1145 VGE = 0V, VCE = 25V 90 Reverse Transfer Capacitance f = 1 MHz 15 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 VCE = 600V 8 I C = 13A 26 Input Capacitance Coes Output Capacitance Cres VGEP Qge Qgc RBSOA TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Reverse Bias Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V 55 nC 50 A 15V, L = 100µH,VCE = 960V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time I C = 13A 4 Turn-on Switching Energy (Diode) 5 Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon1 Eon2 Eoff 330 9 12 VGE = 15V 70 I C = 13A Current Fall Time 5 ns 200 R G = 5Ω 4 Turn-on Switching Energy (Diode) µJ 165 Inductive Switching (125°C) VCC = 600V Turn-off Delay Time Turn-off Switching Energy 114 TJ = +25°C 6 Current Rise Time Turn-on Switching Energy ns 34 R G = 5Ω Eon2 tf 28 Current Fall Time Turn-on Switching Energy td(off) 12 VGE = 15V Turn-off Delay Time Eon1 tr 9 Inductive Switching (25°C) VCC = 600V 223 TJ = +125°C 710 6 µJ 840 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .50 RΘJC Junction to Case (DIODE) N/A Package Weight 1.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7415 Rev B 2-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 35 25 TC = -55°C 20 15 TC = 125°C 10 TC = 25°C 5 0 TJ = 25°C 15 TJ = 125°C 10 5 0 2 3 4 5 6 7 8 9 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 6 5 IC = 26A 4 IC = 13A 3 IC= 6.5A 2 1 0 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 1.10 1.05 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 15 TC = 125°C 10 TC = 25°C 5 14 IC = 13A TJ = 25°C VCE = 240V 12 VCE = 600V 10 8 VCE = 960V 6 4 2 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = -55°C 20 VGE, GATE-TO-EMITTER VOLTAGE (V) 25 20 FIGURE 2, Output Characteristics (VGE = 10V) 16 0 10 20 30 40 50 GATE CHARGE (nC) FIGURE 4, Gate Charge 60 5 IC = 26A 4 IC = 13A 3 IC= 6.5A 2 1 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -55 -25 0 25 50 75 100 125 TJ, JUNCTION TRMPERATURE (°C) FIGURE 6, On State Voltage vs Junction Temperature 60 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 30 25 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 40 35 TC = -55°C 30 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 2-2004 30 APT13GP120K 050-7415 Rev B IC, COLLECTOR CURRENT (A) 35 40 IC, COLLECTOR CURRENT (A) 40 12 VGE = 15V 10 8 6 4 VCE = 600V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 2 0 5 30 100 80 VGE =15V,TJ=125°C 60 40 20 250 20 200 tf, FALL TIME (ns) 25 10 TJ = 125°C, VGE = 10V or 15V 150 100 TJ = 25°C, VGE = 10V or 15V TJ = 25 or 125°C,VGE = 15V 50 5 0 0 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 5 SWITCHING ENERGY LOSSES (µJ) EOFF, TURN OFF ENERGY LOSS (µJ) TJ = 125°C,VGE =15V 1000 800 600 400 200 TJ = 25°C,VGE =15V 0 2-2004 1600 VCE = 600V VGE = +15V RG = 5 Ω 1200 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 1400 1200 VCE = 600V VGE = +15V RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 1000 800 600 TJ = 25°C, VGE = 10V or 15V 400 200 0 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 1800 1600 Eoff, 26A 1600 Eon2, 26A 1400 VCE = 600V VGE = +15V TJ = 125°C 1200 1000 Eoff, 13A 800 Eon2, 13A 600 Eoff, 6.5A 400 Eon2, 6.5A 200 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) 1400 050-7415 Rev B VGE =15V,TJ=25°C 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 300 RG = 5Ω, L = 100µH, VCE = 600V RG = 5Ω, L = 100µH, VCE = 600V 15 VCE = 600V RG = 5Ω L = 100 µH 0 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current tr, RISE TIME (ns) APT13GP120K 120 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 14 1400 VCE = 600V VGE = +15V RG = 5 Ω 1200 1000 Eon2,26A Eoff, 13A 800 600 Eoff,26A Eon2,13A 400 200 0 25 Eon2,6.5A Eoff, 6.5A 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT13GP120K 60 3,000 Cies 50 500 100 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 1,000 Coes Cres 10 1 40 30 20 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.50 0.9 0.40 0.7 0.30 0.5 0.20 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 0.3 t1 t2 0.10 0 Duty Factor D = t1/t2 0.1 0.05 10-5 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.600F 0.284 0.161F Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL Fmax = min(f max1 , f max 2 ) 50 TJ = 125°C TC = 75°C D = 50 % VCE = 600V RG = 5 Ω 10 f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 5 10 15 20 25 30 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 2-2004 0.216 Power (Watts) 100 050-7415 Rev B RC MODEL Junction temp. ( ”C) FMAX, OPERATING FREQUENCY (kHz) 181 APT13GP120K APT15DF120 Gate Voltage 10% TJ = 125°C td(on) V CE IC V CC tr Drain Current 90% 10% 5% A DrainVoltage D.U.T. 5% Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage A TJ = 125°C V CE td(off) IC DrainVoltage 100uH 90% V CLAMP tf A 10% 0 Switching Energy D.U.T. DRIVER* Drain Current Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions TO-220AC Package Outline 1.39 (.055) 0.51 (.020) 16.51 (.650) 14.23 (.560) Collector 4.08 (.161) Dia. 3.54 (.139) 3.42 (.135) 2.54 (.100) 10.66 (.420) 9.66 (.380) 5.33 (.210) 4.83 (.190) 6.85 (.270) 5.85 (.230) 6.35 (.250) MAX. 0.50 (.020) 0.41 (.016) 2-2004 2.92 (.115) 2.04 (.080) 050-7415 Rev B B 4.82 (.190) 3.56 (.140) 14.73 (.580) 12.70 (.500) 1.01 (.040) 3-Plcs. 0.38 (.015) 2.79 (.110) 2.29 (.090) 5.33 (.210) 4.83 (.190) Gate Collector Emitter 1.77 (.070) 3-Plcs. 1.15 (.045) Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.