CET CEP740G

CEP740G/CEB740G
CEF740G
N-Channel Enhancement Mode Field Effect Transistor
PRELIMINARY
FEATURES
Type
VDSS
RDS(ON)
ID
@VGS
CEP740G
400V
0.55Ω
10A
10V
CEB740G
400V
0.55Ω
10A
10V
CEF740G
400V
0.55Ω
10A e
10V
D
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
Lead free product is acquired.
G
D
G
D
S
G
S
CEB SERIES
TO-263(DD-PAK)
G
CEP SERIES
TO-220
ABSOLUTE MAXIMUM RATINGS
Parameter
D
S
Tc = 25 C unless otherwise noted
Limit
Symbol
TO-220/263
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
Drain Current-Continuous
Drain Current-Pulsed
S
CEF SERIES
TO-220F
ID
IDM
a
Maximum Power Dissipation @ TC = 25 C
f
PD
- Derate above 25 C
TO-220F
400
Units
V
±30
V
10
10
e
e
A
A
40
40
125
40
W
1.0
0.32
W/ C
TJ,Tstg
-55 to 150
C
Symbol
Limit
Units
Operating and Store Temperature Range
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Case
RθJC
1.0
3.1
C/W
Thermal Resistance, Junction-to-Ambient
RθJA
62.5
65
C/W
This is preliminary information on a new product in development now .
Details are subject to change without notice .
1
Rev 1. 2007.Nov.
http://www.cetsemi.com
CEP740G/CEB740G
CEF740G
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
400
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 400V, VGS = 0V
50
µA
IGSSF
VGS = 30V, VDS = 0V
100
nA
IGSSR
VGS = -30V, VDS = 0V
-100
nA
4
V
550
mΩ
Off Characteristics
V
On Characteristics b
Gate Threshold Voltage
Static Drain-Source
On-Resistance
Forward Transconductance
Dynamic Characteristics
VGS(th)
VGS = VDS, ID = 250µA
2
RDS(on)
VGS = 10V, ID = 6A
450
gFS
VDS = 50V, ID = 6A
6
S
1245
pF
190
pF
25
pF
c
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VDS = 25V, VGS = 0V,
f = 1.0 MHz
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 200V, ID = 10A,
VGS = 10V, RGEN = 9.1Ω
20
40
ns
9
18
ns
50
100
ns
Turn-Off Fall Time
tf
8
16
ns
Total Gate Charge
Qg
35.6
47.3
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = 320V, ID = 10A,
VGS = 10V
6.7
nC
12
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
Drain-Source Diode Forward Voltage
IS f
b
VSD
VGS = 0V, IS = 10A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature .
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2% .
c.Guaranteed by design, not subject to production testing.
d.Limited only by maximum temperature allowed .
e.Pulse width limited by safe operating area .
f.Full package IS(max) = 5.5A .
2
10
A
2
V
CEP740G/CEB740G
CEF740G
18
VGS=10,8,7,6V
5
ID, Drain Current (A)
ID, Drain Current (A)
6
4
3
2
VGS=5V
1
0
0
1
2
3
4
5
25 C
3
1
2
-55 C
3
4
5
6
Figure 1. Output Characteristics
Figure 2. Transfer Characteristics
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
Ciss
1200
800
Coss
400
Crss
0
5
10
15
20
25
2.6
2.2
ID=6A
VGS=10V
1.8
1.4
1.0
0.6
0.2
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
ID=250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
TJ=125C
VGS, Gate-to-Source Voltage (V)
IS, Source-drain current (A)
C, Capacitance (pF)
VTH, Normalized
Gate-Source Threshold Voltage
6
VDS, Drain-to-Source Voltage (V)
1600
1.2
9
6
2000
1.3
12
0
2400
0
15
-25
0
25
50
75
100
125
150
VGS=0V
10
1
10
0
10
-1
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
10
10
VDS=320V
ID=10A
6
4
2
0
0
2
RDS(ON)Limit
8
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CEP740G/CEB740G
CEF740G
10
20
30
100ms
10
1ms
10ms
DC
10
10
40
1
0
TC=25 C
TJ=150 C
Single Pulse
-1
10
0
10
1
10
2
10
Qg, Total Gate Charge (nC)
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
V IN
RL
D
VGS
RGEN
toff
tr
td(on)
td(off)
tf
90%
90%
VOUT
VOUT
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
Figure 9. Switching Test Circuit
r(t),Normalized Effective
Transient Thermal Impedance
10
0
D=0.5
10
0.2
0.1
-1
0.05
0.02
0.01
10
10
PDM
t1
Single Pulse
-2
-3
10
t2
1. RθJC (t)=r (t) * RθJC
2. RθJC=See Datasheet
3. TJM-TC = P* RθJC (t)
4. Duty Cycle, D=t1/t2
-2
10
-1
10
0
10
1
10
2
Square Wave Pulse Duration (msec)
Figure 11. Normalized Thermal Transient Impedance Curve
4
10
3
10
4
3