TI TM124FBK32

TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
D
D
D
D
D
D
D
D
D
D
D
Organization
TM124FBK32 . . . 1 048 576 × 32
TM248GBK32 . . . 2 097 152 × 32
Single 5-V Power Supply
72-pin Single In-Line Memory Module
(SIMM) for Use With Sockets
TM124FBK32 Utilizes Eight 4M-Bit Dynamic
RAMs (DRAMs) in Plastic Small-Outline
J-Lead (SOJ) Packages
TM248GBK32 Utilizes Sixteen 4M-Bit
DRAMs in Plastic SOJ Packages
Long Refresh Period
16 ms (1 024 Cycles)
All Inputs, Outputs, Clocks Fully TTL
Compatible
3-State Output
Common CAS Control for Eight Common
Data-In and Data-Out Lines, In Four Blocks
Extended Data-Out (EDO) Operation With
CAS-Before-RAS (CBR), RAS-Only, and
Hidden Refresh
JEDEC First Generation 72-Pin SIMM
Pinout
D
D
Presence Detect
Performance Ranges:
’124FBK32-60
’124FBK32-70
’124FBK32-80
’248GBK32-60
’248GBK32-70
’248GBK32-80
D
D
D
D
ACCESS
TIME
tRAC
(MAX)
60 ns
70 ns
80 ns
60 ns
70 ns
80 ns
ACCESS ACCESS EDO
TIME
TIME CYCLE
tAA
tCAC tHPC
(MAX)
(MIN) (MIN)
30 ns
15 ns
25 ns
35 ns
18 ns
30 ns
40 ns
20 ns
35 ns
30 ns
15 ns
25 ns
35 ns
18 ns
30 ns
40 ns
20 ns
35 ns
Low Power Dissipation
Operating Free-Air Temperature
Range . . . 0°C to 70°C
Gold-Tabbed Versions Available:†
– TM124FBK32
– TM248GBK32
Tin-Lead- (Solder-) Tabbed Versions
Available:
– TM124FBK32S
– TM248GBK32S
description
TM124FBK32
The TM124FBK32 is a 4M-byte DRAM organized as four times 1 048 576 × 8 in a 72-pin leadless SIMM. The
SIMM is composed of eight TMS44409, 1 048 576 × 4-bit DRAMs, each in a 20/26-lead plastic SOJ package,
mounted on a substrate together with decoupling capacitors. Each TMS44409 is described in the TMS44409
data sheet. The TM124FBK32 is available in the single-sided BK leadless module for use with sockets.
TM248GBK32
The TM248GBK32 is a 8M-byte DRAM organized as four times 2 097 152 × 8 in a 72-pin leadless SIMM. The
SIMM is composed of sixteen TMS44409, 1 048 576 × 4-bit DRAMs, each in a 20/26-lead plastic SOJ package,
mounted on a substrate together with decoupling capacitors. Each TMS44409 is described in the TMS44409
data sheet. The TM248GBK32 is available in the double-sided BK leadless module for use with sockets.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
† Part numbers in this data sheet are for the gold-tabbed version; the information applies to both gold-tabbed and solder-tabbed versions.
Copyright  1996, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
1
TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
operation
TM124FBK32
The TM124FBK32 operates as eight TMS44409DJs connected as shown in the functional block diagram. Refer
to the TMS44409 data sheet for details of operation. The common I/O feature of the TM124FBK32 dictates the
use of early write cycles to prevent contention on D and Q.
TM248GBK32
The TM248GBK32 operates as sixteen TMS44409DJs connected as shown in the functional block diagram.
Refer to the TMS44409 data sheet for details of operation. The common I/O feature of the TM248GBK32
dictates the use of early write cycles to prevent contention on D and Q.
specifications
Refresh period is extended to 16 ms and, during this period, each of the 1 024 rows must be strobed with RAS
in order to retain data. A0–A9 address lines must be refreshed every 16 ms as required by the TMS44409
DRAM. CAS can remain high during the refresh sequence to conserve power.
single in-line memory module and components
PC substrate: 1,27 ± 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage
Bypass capacitors: Multilayer ceramic
Contact area for TM124FBK32 and TM248GBK32: Nickel plate and gold plate over copper
Contact area for TM124FBK32S and TM248GBK32S: Nickel plate and tin-lead over copper
2
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
BK SINGLE IN-LINE PACKAGE†
TM124FBK32†
TM248GBK32†
(TOP VIEW)
(SIDE VIEW)
(SIDE VIEW)
VSS
DQ0
DQ16
DQ1
DQ17
DQ2
DQ18
DQ3
DQ19
VCC
NC
A0
A1
A2
A3
A4
A5
A6
NC
DQ4
DQ20
DQ5
DQ21
DQ6
DQ22
DQ7
DQ23
A7
NC
VCC
A8
A9
RAS3
RAS2
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
NC
NC
VSS
CAS0
CAS2
CAS3
CAS1
RAS0
RAS1
NC
W
NC
DQ8
DQ24
DQ9
DQ25
DQ10
DQ26
DQ11
DQ27
DQ12
DQ28
VCC
DQ29
DQ13
DQ30
DQ14
DQ31
DQ15
NC
PD1
PD2
PD3
PD4
NC
VSS
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PIN NOMENCLATURE
A0–A9
CAS0, CAS3
DQ0–DQ31
NC
PD1– PD4
RAS0–RAS3
VCC
VSS
W
Address Inputs
Column-Address Strobe
Data In/Data Out
No Connection
Presence Detects
Row-Address Strobe
5-V Supply
Ground
Write Enable
PRESENCE DETECT
SIGNAL
(PIN)
PD1
(67)
PD2
(68)
VSS
VSS
VSS
VSS
80 ns
VSS
NC
VSS
NC
70 ns
NC
NC
60 ns
NC
NC
80 ns
TM124FBK32
70 ns
60 ns
TM248GBK32
PD3
(69)
PD4
(70)
NC
VSS
NC
VSS
NC
NC
VSS
NC
NC
VSS
NC
NC
† The packages shown here are for pinout reference only and are not drawn to scale.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
3
10
RAS0
RAS2
W
CAS0
CAS1
10
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
10
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
10
DQ0–
DQ3
10
DQ4–
DQ7
CAS3
CAS2
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
10
DQ8–
DQ11
10
DQ12–
DQ15
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
10
DQ16–
DQ19
10
DQ20–
DQ23
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
DQ24–
DQ27
DQ28–
DQ31
Template Release Date: 7–11–94
A0–A9
TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
4
functional block diagram (for TM124FBK32 and TM248GBK32, Side 1)
functional block diagram (for TM248GBK32, Side 2)
A0–A9
10
RAS1
RAS3
W
CAS0
CAS1
10
DQ0–
DQ3
10
DQ4–
DQ7
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
10
DQ8–
DQ11
10
DQ12–
DQ15
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
10
DQ16–
DQ19
10
DQ20–
DQ23
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
DQ24–
DQ27
DQ28–
DQ31
5
TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
10
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
10
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
CAS3
CAS2
TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V
Voltage range on VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V
Short circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Power dissipation: TM124FBK32, TM124FBK32S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 W
TM248GBK32, TM248GBK32S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to VSS.
recommended operating conditions
MIN
NOM
MAX
5
UNIT
VCC
VIH
Supply voltage
4.5
5.5
V
High-level input voltage
2.4
6.5
V
VIL
TA
Low-level input voltage (see Note 2)
–1
0.8
V
0
70
°C
Operating free-air temperature
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic voltage levels only.
electrical characteristics over full ranges of recommended operating conditions (unless otherwise
noted)
PARAMETER
VOH
VOL
High-level output voltage
Low-level output voltage
TEST CONDITIONS
’124FBK32-60
MIN
IOH = – 5 mA
IOL = 4.2 mA
MAX
2.4
’124FBK32-70
MIN
MAX
2.4
’124FBK32-80
MIN
MAX
2.4
UNIT
V
0.4
0.4
0.4
V
±10
±10
±10
µA
II
Input current (leakage)
VI = 0 to 6.5 V,
VCC = 5 V,
All other pins = 0 to VCC
IO
Output current (leakage)
VO = 0 to VCC,
CAS high
VCC = 5.5 V,
±10
±10
±10
µA
ICC1
Read- or write-cycle current
(see Note 3)
Minimum cycle,
VCC = 5.5 V
840
720
640
mA
16
16
16
ICC1
Standby current
After one memory cycle,
RAS and CAS high,
VIH = 2.4 V (TTL)
mA
After one memory cycle,
RAS and CAS high,
VIH = VCC – 0.2 V (CMOS)
8
8
8
ICC3
Average refresh current
(RAS-only or CBR) (see Note 3)
Minimum cycle,
VCC = 5.5 V,
RAS cycling,
CAS high (RAS-only),
RAS low after CAS low (CBR)
840
720
640
mA
ICC4
Average page current
(see Note 4)
tPC = minimum,
VCC = 5.5 V,
RAS low, CAS cycling
720
640
560
mA
NOTES: 3. Measured with a maximum of one address change while RAS = VIL.
4. Measured with a maximum of one address change while CAS = VIH.
6
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
electrical characteristics over full ranges of recommended operating conditions (unless otherwise
noted)
PARAMETER
VOH
VOL
High-level output voltage
Low-level output voltage
TEST CONDITIONS
’248GBK32-60
MIN
IOH = – 5 mA
IOL = 4.2 mA
MAX
2.4
’248GBK32-70
MIN
MAX
2.4
’248GBK32-80
MIN
MAX
2.4
UNIT
V
0.4
0.4
0.4
V
±20
±20
±20
µA
II
Input current (leakage)
VI = 0 to 6.5 V,
VCC = 5 V,
All other pins = 0 to VCC
IO
Output current (leakage)
VO = 0 to VCC,
CAS high
VCC = 5.5 V,
±20
±20
±20
µA
ICC1
Read- or write-cycle current
(see Note 3)
Minimum cycle,
VCC = 5.5 V
856
736
656
mA
After one memory cycle,
RAS and CAS high,
VIH = 2.4 V (TTL)
32
32
32
After one memory cycle,
RAS and CAS high,
VIH = VCC – 0.2 V (CMOS)
16
16
16
1680
1440
1280
mA
736
656
576
mA
ICC1
Standby current
ICC3
Average refresh current
(RAS-only or CBR)
(see Note 3)
Minimum cycle,
VCC = 5.5 V,
RAS cycling,
CAS high (RAS-only),
RAS low after CAS low (CBR)
ICC4
Average EDO current
(see Note 4)
tPC = minimum,
VCC = 5.5 V,
RAS low, CAS cycling
mA
NOTES: 3. Measured with a maximum of one address change while RAS = VIL.
4. Measured with a maximum of one address change while CAS = VIH.
capacitance over recommended ranges of supply voltage and operating free-air temperature
f = 1 MHz (see Note 5)
’124FBK32
MIN
’248GBK32
MAX
MIN
MAX
UNIT
Ci(A)
Input capacitance, address inputs
40
80
pF
Ci(R)
Input capacitance, RAS
28
28
pF
Ci(C)
Input capacitance, CAS
14
28
pF
Ci(W)
Input capacitance, write-enable input
56
112
pF
Co(DQ)
Output capacitance on DQ pins
7
14
pF
NOTE 5: VCC equal to 5 V ± 0.5 V and the bias on pins under test is 0 V.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
7
TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature
’124FBK32-60
’248GBK32-60
PARAMETER
MIN
MAX
’124FBK32-70
’248GBK32-70
MIN
MAX
’124FBK32-80
’248GBK32-80
MIN
UNIT
MAX
tAA
tCAC
Access time from column address
30
35
40
ns
Access time from CAS low
15
18
20
ns
tRAC
tCPA
Access time from RAS low
60
70
80
ns
Access time from column precharge
35
40
45
ns
tCLZ
tREZ
CAS to output in the low-impedance state
0
Output disable time after RAS high (see Note 6)
3
15
3
18
3
20
ns
3
15
3
18
3
20
ns
tWEZ
Output disable time after W low (see Note 6)
NOTE 6: tREZ and tWEZ are specified when the output is no longer driven.
0
0
ns
EDO timing requirements over recommended ranges of supply voltage and operating free-air
temperature
’124FBK32-60
’248GBK32-60
MIN
MAX
’124FBK32-70
’248GBK32-70
MIN
MAX
’124FBK32-80
’248GBK32-80
MIN
UNIT
MAX
tHPC
tPRWC
Cycle time, EDO page-mode read or write
25
30
35
ns
Cycle time, EDO read-write
80
90
100
ns
tCSH
tDOH
Hold time, CAS from RAS
50
55
60
ns
3
3
3
ns
tCAS
tWPE
Pulse duration, CAS
Pulse duration, W (output disable only)
5
5
5
ns
tCP
Precharge time, CAS
5
5
5
ns
8
Hold time, output from CAS
10
POST OFFICE BOX 1443
10 000
• HOUSTON, TEXAS 77251–1443
12
10 000
15
10 000
ns
TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
timing requirements over recommended range of supply voltage and operating free-air
temperature
’124FBK32-60
’248GBK32-60
MIN
MAX
’124FBK32-70
’248GBK32-70
MIN
MAX
’124FBK32-80
’248GBK32-80
MIN
UNIT
MAX
tRC
tRWC
Cycle time, random read or write (see Note 7)
110
130
150
ns
Cycle time, read-write
150
175
200
ns
tRASP
tRAS
Pulse duration, page-mode, RAS low
60 100 000
70 100 000
80 100 000
ns
Pulse duration, non-page-mode, RAS low
60
70
80
ns
tRP
tWP
Pulse duration, RAS high (precharge)
40
50
60
Pulse duration, W low
10
10
10
ns
tRASS
tRPS
Pulse duration, self-refresh entry from RAS low
100
100
100
µs
Pulse duration, RAS precharge after self-refresh
110
130
150
ns
tASC
tASR
Setup time, column address before CAS low
0
0
0
ns
Setup time, row address before RAS low
0
0
0
ns
tDS
tRCS
Setup time, data before CAS low
0
0
0
ns
Setup time, W high before CAS low
0
0
0
ns
tCWL
tRWL
Setup time, W low before CAS high
10
12
15
ns
Setup time, W low before RAS high
10
12
15
ns
tWCS
tWRP
Setup time, W low before CAS low
0
0
0
ns
Setup time, W high before RAS low (see Note 8)
10
10
10
ns
tCAH
tDH
Hold time, column address after CAS low
10
15
15
ns
Hold time, data after CAS low
10
15
15
ns
tRAH
tRCH
Hold time, row address after RAS low
10
10
10
ns
Hold time, W high after CAS high (see Note 9)
0
0
0
ns
tRRH
tWCH
Hold time, W high after RAS high (see Note 9)
0
0
0
ns
Hold time, W low after CAS low
10
15
15
ns
tWRH
tRHCP
Hold time, W high after RAS low (see Note 8)
10
10
10
ns
Hold time, RAS high from CAS precharge
35
40
45
ns
tCHS
tCHR
Hold time, CAS low after RAS high (self-refresh)
– 50
– 50
– 50
ns
10
10
10
ns
tCRP
tCSR
Delay time, CAS high to RAS low
5
5
5
ns
tRAD
tRAL
Delay time, RAS low to column address (see Note 10)
15
Delay time, column address to RAS high
30
tCAL
tRCD
Delay time, column address to CAS high
20
Delay time, RAS low to CAS low (see Note 10)
20
tRPC
tRSH
Delay time, RAS high to CAS low (CBR only)
tREF
tT
Refresh time interval
Delay time, RAS low to CAS high (see Note 8)
Delay time, CAS low to RAS low (see Note 8)
5
Delay time, CAS low to RAS high
10 000
5
30
15
20
15
20
0
0
0
12
15
30
16
2
ns
40
30
2
ns
ns
30
52
10
2
ns
40
25
45
10 000
5
35
35
16
Transition time
NOTES: 7.
8.
9.
10.
10 000
ns
60
ns
ns
ns
16
ms
30
ns
All cycled times assume tT = 5 ns.
CBR refresh only
Either tRRH or tRCH must be satisfied for a read cycle.
Maximum value specified only to assure access time.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
9
TM124FBK32, TM124FBK32S 1048576 BY 32-BIT
TM248GBK32, TM248GBK32S 2097152 BY 32-BIT
DYNAMIC RAM MODULES
SMMS664A – DECEMBER 1995 – REVISED JUNE 1996
MECHANICAL DATA
BK (R-PSIM-N72)
SINGLE-IN-LINE MEMORY MODULE
0.054 (1,37)
0.047 (1,19)
4.255 (108,08)
4.245 (107,82)
0.125 (3,18) TYP
1.005 (25,53)
0.995 (25,27)
0.128 (3,25)
0.120 (3,05)
0.050 (1,27)
0.010 (0,25) MAX
0.400 (10,16) TYP
0.040 (1,02) TYP
0.208 (5,28) MAX
0.360 (9,14) MAX
(For Double-Sided SIMM)
4040197 / C 4/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
device symbolization (TM124FBK32 illustrated)
TM124FBK32
–SSL
YY
MM
T
–SS
L
=
=
=
=
=
Year Code
Month Code
Assembly Site Code
Speed Code
Temperature Range
NOTE: Location of symbolization may vary.
10
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
YYMMT
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated