SMMS694 − AUGUST 1997 D D D D D D − TM16ER72HP-xx . . . 16 777 216 × 72 Bits − TM16ER72LP-xx . . . 16 777 216 × 72 Bits Single 3.3-V Power Supply (±10% Tolerance) JEDEC 168-Pin Dual-In-Line Memory Module (DIMM) With Buffer for Use With Socket TM16ER72xP-xx — Uses 18 64M-Bit High-Speed (16M × 4-Bit) Dynamic RAMs High-Speed, Low-Noise LVTTL Interface High-Reliability 32-Lead 400-Mil-Wide Surface-Mount Thin Small-Outline Package (TSOP) (DGE Suffix) Intended for Workstation / Server Applications D Long Refresh Periods: D D D D D − TM16ER72HP: 64 ms (4 096 Cycles) − TM16ER72LP: 64 ms (8 192 Cycles) 3-State Output Extended-Data-Out (EDO) Operation With CAS-Before-RAS (CBR), RAS-Only, and Hidden Refresh Ambient Temperature Range 0°C to 70°C Gold-Plated Contacts Performance Ranges ’16ER72xx-40 ’16ER72xx-50 ’16ER72xx-60 ACCESS TIME tRAC (MAX) 40 ns 50 ns 60 ns ACCESS ACCESS EDO TIME TIME CYCLE tCAC tAA tHPC (MAX) (MAX) (MIN) 11 ns 20 ns 16 ns 13 ns 25 ns 20 ns 15 ns 30 ns 25 ns description The TM16ER72HP is a 128M-byte, 168-pin, buffered dual-in-line memory module (DIMM). The DIMM is composed of eighteen TMS465409, 16 777 216 × 4-bit 4K-refresh EDO dynamic random-access memories (DRAMs), each in a 400-mil, 32-pin plastic thin small-outline package (TSOP) (DGE suffix), and two SN74LVC162244 16-bit buffers, each in a 48-lead plastic TSOP package mounted on a substrate with decoupling capacitors. See the TMS465409 data sheet (literature number SMKS895). The TM16ER72LP is a 128M-byte, 168-pin, buffered DIMM. The DIMM is composed of eighteen TMS464409, 16 777 216 × 4-bit 8K-refresh EDO DRAMs, each in a 400-mil, 32-pin plastic TSOP (DGE suffix), and two SN74LVC162244 16-bit buffers, each in a 48-lead plastic TSOP package mounted on a substrate with decoupling capacitors. See the TMS465409 data sheet (literature number SMKS895). These modules are intended for multimodule workstation / server applications where buffering is needed for address and control signals. Two copies of address 0 (A0 and B0) are defined to allow maximum performance for 4-byte applications that interleave between two 4-byte banks. A0 is common to the DRAMs used for DQ0−DQ31, while B0 is common to the DRAMs used for DQ32−DQ63. operation The TM16ER72xP operates as eighteen TMS46x409s that are connected as shown in the TM16ER72xP functional block diagram. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1997, Texas Instruments Incorporated !"#$ %%&!' (!)*%$' $+& !"#$,& ! )&'- (+#'& )&,&.("&$/ +#!#%$&!'$% )#$# #) $+&! '(&%%#$' #!& )&'- -#.'/ &0#' '$!*"&$' !&'&!,&' $+& !-+$ $ %+#-& ! )'%$*& $+&'& (!)*%$' 1$+*$ $%&/ POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 1 PRODUCT PREVIEW D Organization SMMS694 − AUGUST 1997 DUAL-IN-LINE MEMORY MODULE ( TOP VIEW ) TM16ER72xP ( SIDE VIEW ) A[0:11] A[0:11] B0 DQ[0:63] CB[0:7] CAS0 and CAS4 ID[0:1] RAS0 and RAS2 WE0 and WE2 OE0 and OE2 NC PD[1:8] PDE VDD VSS 1 10 11 PRODUCT PREVIEW PIN NOMENCLATURE − TM16ER72HP Row Address Inputs Column Address Inputs Addr0 for Bank 2 Devices Data In / Data Out Check Bit In / Check Bit Out Column-Address Strobe ID Pins Row-Address Strobe Write Enable Output Enable No-Connect Pin Presence Detect Presence Detect Enable 3.3-V Supply Ground PIN NOMENCLATURE − TM16ER72LP A[0:12] A[0:10] B0 DQ[0:63] CB[0:7] CAS0 and CAS4 ID[0:1] RAS0 and RAS2 WE0 and WE2 OE0 and OE2 NC PD[1:8] PDE VDD VSS 40 41 Row Address Inputs Column Address Inputs Addr0 for Bank 2 Devices Data In / Data Out Check Bit In / Check Bit Out Column-Address Strobe ID Pins Row-Address Strobe Write Enable Output Enable No-Connect Pin Presence Detect Presence Detect Enable 3.3-V Supply Ground PRESENCE DETECT 84 2 POST OFFICE BOX 1443 PIN - 40 -50 - 60 PD1 1 1 1 PD2 1 1 1 PD3 1 1 1 PD4 1 1 1 PD5 1 1 1 PD6 1 0 1 PD7 0 0 1 PD8 0 0 0 ID0 0 0 0 ID1 0 0 0 • HOUSTON, TEXAS 77251−1443 SMMS694 − AUGUST 1997 Pin Assignments ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PIN NAME NO. PIN NAME NO. PIN NAME NAME NO. 1 VSS DQ0 43 86 VSS DQ32 127 44 VSS OE2 85 2 128 VSS NC 3 DQ1 45 RAS2 87 DQ33 129 NC 4 DQ2 46 CAS4 88 DQ34 130 NC 5 DQ3 47 NC 89 DQ35 131 NC 6 VDD DQ4 48 WE2 90 PDE 49 91 133 8 DQ5 50 VDD NC VDD DQ36 132 7 92 DQ37 134 VDD NC 9 DQ6 51 NC 93 DQ38 135 NC 10 DQ7 52 CB2 94 DQ39 136 CB6 11 DQ8 53 CB3 95 DQ40 137 CB7 12 54 97 VSS DQ41 138 55 VSS DQ16 96 13 VSS DQ9 139 VSS DQ48 14 DQ10 56 DQ17 98 DQ42 140 DQ49 15 DQ11 57 DQ18 99 DQ43 141 DQ50 16 DQ12 58 DQ19 100 DQ44 142 DQ51 17 DQ13 59 101 DQ45 143 18 60 102 VDD DQ52 61 NC 103 VDD DQ46 144 19 VDD DQ14 VDD DQ20 145 NC 20 DQ15 62 NC 104 DQ47 146 NC 21 CB0 63 NC 105 CB4 147 NC 22 CB1 64 NC 106 CB5 148 NC 23 65 DQ21 107 DQ53 66 DQ22 108 VSS NC 149 24 VSS NC 150 DQ54 25 NC 67 DQ23 109 NC 151 DQ55 26 68 111 VDD NC 152 69 VSS DQ24 110 27 VDD WE0 153 VSS DQ56 28 CAS0 70 DQ25 112 NC 154 DQ57 29 NC 71 DQ26 113 NC 155 DQ58 30 RAS0 72 DQ27 114 NC 156 DQ59 31 OE0 73 115 NC 157 32 74 116 158 75 DQ29 117 VSS A1 VDD DQ60 33 VSS A0 VDD DQ28 159 DQ61 34 A2 76 DQ30 118 A3 160 DQ62 35 A4 77 DQ31 119 A5 161 DQ63 36 A6 78 120 A7 162 37 A8 79 VSS PD1 121 A9 163 VSS PD2 38 A10 80 PD3 122 A11 164 PD4 39 A12 81 PD5 123 NC 165 PD6 40 82 PD7 124 PD8 83 ID0 125 VDD NC 166 41 VDD NC 167 ID1 42 NC 84 VDD 126 B0 168 VDD POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 PRODUCT PREVIEW PIN NO. 3 SMMS694 − AUGUST 1997 buffered dual-in-line memory module and components The buffered dual-in-line memory module and components include: D PC substrate: 1,27 " 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage D Bypass capacitors: Multilayer ceramic D Contact area: Nickel plate and gold plate over copper functional block diagram for the TM16ER72xP RAS0 RAS2 WE0 WE2 OE0 OE2 CAS0 CAS4 CAS DQ[0:3] PRODUCT PREVIEW DQ[4:7] OE DQ[8:11] OE DQ[12:15] OE CB[0:3] OE DQ[16:19] OE DQ[20:23] OE DQ[24:27] OE DQ[28:31] OE DQ[0:3] A0 B0 A[1:n] W DQ[48:51] W DQ[52:55] W DQ[56:59] DQ[60:63] VDD U[0:8] DQ[0:3] RAS W RAS W RAS UB3 OE W RAS UB8 OE W RAS UB4 OE W RAS UB5 OE W RAS UB6 DQ[0:3] CAS RAS U7 OE DQ[0:3] CAS RAS W UB2 DQ[0:3] CAS RAS OE DQ[0:3] CAS RAS U6 DQ[0:3] CAS W CB[4:7] RAS UB1 DQ[0:3] CAS RAS U5 DQ[0:3] CAS W DQ[44:47] OE DQ[0:3] CAS RAS U4 DQ[0:3] CAS W DQ[40:43] W UB0 DQ[0:3] CAS RAS U8 DQ[0:3] CAS W DQ[36:39] OE DQ[0:3] CAS RAS U3 DQ[0:3] CAS DQ[32:35] U2 DQ[0:3] CAS W CAS RAS U1 DQ[0:3] CAS W U0 DQ[0:3] CAS 4 OE OE W RAS UB7 U[0:8], UB[0:8] Two 0.1 µF (Minimum) per DRAM UB[0:8] A[1:n]: U[0:8], UB[0:8] POST OFFICE BOX 1443 VSS • HOUSTON, TEXAS 77251−1443 U[0:8], UB[0:8] SMMS694 − AUGUST 1997 absolute maximum ratings over ambient temperature range (unless otherwise noted)† Supply voltage range, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.5 V to 4.6 V Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Power dissipation: TM16ER72xP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 W Ambient temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55°C to 125°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to VSS. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ recommended operating conditions MIN NOM MAX 3 3.3 3.6 Supply voltage VIH VIL High-level input voltage 2 Low-level input voltage TA Ambient temperature Supply voltage 0 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 UNIT V V V −0.3 VDD + 0.3 0.8 0 70 °C V 5 PRODUCT PREVIEW VDD VSS SMMS694 − AUGUST 1997 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) TM16ER72HP PRODUCT PREVIEW PARAMETER ’16ER72HP-40 TEST CONDITIONS† IOH = − 2 mA IOH = − 100 µA IOL = 2 mA MIN LVTTL High-level output voltage VOL Low-level output voltage II Input current (leakage) IOL = 100 µA LVCMOS VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VCC IO Output current (leakage) VDD = 3.6 V, CASx high ICC1‡§ Average read- or write-cycle current VDD = 3.6 V, ICC2 MAX MIN 2.4 VOH Average standby current ’16ER72HP-50 LVCMOS LVTTL ’16ER72HP-60 MAX 2.4 VDD −0.2 MIN MAX UNIT 2.4 VDD −0.2 V VDD −0.2 0.4 0.4 0.4 0.2 0.2 0.2 ± 20 ± 20 ± 20 µA VO = 0 V to VDD, ± 20 ± 20 ± 20 µA Minimum cycle 2 880 2 340 1 980 mA 18 18 18 mA 9 9 9 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high V ICC3‡§ Average refresh current (RAS-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RASx-only refresh), RASx low after CASx low (CBR) 2 880 2 340 1 980 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 2 700 2 160 1 800 mA ICC5 Average CBR refresh current VDD = 3.6 V, Minimum cycle, RASx low after CASx low 2 880 2 340 1 980 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC 6 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 SMMS694 − AUGUST 1997 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (continued) TM16ER72LP IOH = − 2 mA IOH = − 100 µA IOL = 2 mA High-level output voltage VOL Low-level output voltage II Input current (leakage) IOL = 100 µA LVCMOS VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VCC IO Output current (leakage) VDD = 3.6 V, CASx high ICC1‡§ Average read- or write-cycle current VDD = 3.6 V, ICC2 MIN LVTTL VOH Average standby current ’16ER72LP-40 TEST CONDITIONS† ’16ER72LP-50 MAX MIN 2.4 LVCMOS MAX 2.4 VDD −0.2 LVTTL ’16ER72LP-60 MIN MAX UNIT 2.4 VDD −0.2 V VDD −0.2 0.4 0.4 0.4 0.2 0.2 0.2 ± 20 ± 20 ± 20 µA VO = 0 V to VDD, ± 20 ± 20 ± 20 µA Minimum cycle 2 250 1 800 1 620 mA 18 18 18 mA 9 9 9 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high V ICC3‡§ Average refresh current (RAS-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RASx-only refresh), RASx low after CASx low (CBR) 2 250 1 800 2 250 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 2 520 1 980 1 620 mA ICC5 Average CBR refresh current VDD = 3.6 V, Minimum cycle, RASx low after CASx low 2 880 2 340 1 980 mA tHPC = MIN, CASx cycling PRODUCT PREVIEW PARAMETER † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 7 SMMS694 − AUGUST 1997 capacitance over recommended ranges of supply voltage and ambient temperature, f = 1 MHz (see Note 2) ’16ER72xP PARAMETER MIN MAX UNIT Ci(A) Input capacitance, A0 −A10 6 pF Ci(OE) Input capacitance, OEx 6 pF Ci(CAS) Input capacitance, CASx 6 pF Ci(RAS) Input capacitance, RASx 65 pF Ci(W) Input capacitance, WEx 6 pF 9 pF Co Output capacitance NOTE 2: VDD = NOM supply voltage ± 10%, and the bias on pins under test is 0 V. switching characteristics over recommended ranges of supply voltage and ambient temperature (see Note 3) ’16ER72xP-40 PRODUCT PREVIEW PARAMETER MIN MAX ’16ER72xP-50 MIN MAX ’16ER72xP-60 MIN MAX UNIT tAA tCAC Access time from column address (see Note 4) 25 30 35 ns Access time from CASx (see Note 4) 16 18 20 ns tCPA tRAC Access time from CASx precharge (see Note 4) 27 33 40 ns Access time from RASx (see Note 4) 45 50 60 ns tOEA tCLZ Access time from OEx (see Note 4) 16 18 20 ns Delay time, CASx to output in low impedance 2 tREZ tCEZ Output buffer turn off delay from RASx (see Note 5) 3 11 3 13 3 15 ns Output buffer turn off delay from CASx (see Note 5) 5 16 5 18 5 20 ns tOEZ tWEZ Output buffer turn off delay from OEx (see Note 5) 5 16 5 18 5 20 ns Output buffer turn off delay from WEx (see Note 5) 3 11 3 13 3 15 ns 2 2 ns NOTES: 3. With ac parameters, it is assumed that tT = 2 ns. 4. Access times are measured with output reference levels of VOH = 2 V and VOL = 0.8 V. 5. The maximum values of tREZ, tCEZ, tOEZ, and tWEZ are specified when the outputs are no longer driven. Data-in must not be driven until one of the applicable maximum values is satisfied. EDO timing requirements ’16ER72xP-40 MIN MAX ’16ER72xP-50 MIN MAX ’16ER72xP-60 MIN MAX UNIT tHPC tPRWC Cycle time, EDO page mode, read-write 16 20 25 ns Cycle time, EDO read-write 45 55 64 ns tCSH tCHO Delay time, RASx active to CASx precharge 34 38 46 ns Hold time, OEx from CASx 5 7 10 ns tDOH tCAS Hold time, output from CASx 5 5 5 ns Pulse duration, CASx active 6 tWPE tOCH Pulse duration, WEx active (output disable only) 5 5 Setup time, OEx before CASx 5 tCP tOEP Pulse duration, CASx precharge 6 Precharge time, OEx 5 8 POST OFFICE BOX 1443 10 000 • HOUSTON, TEXAS 77251−1443 8 10 000 10 10 000 ns 5 ns 5 5 ns 8 10 ns 5 5 ns SMMS694 − AUGUST 1997 ac timing requirements (see Note 3) MIN MAX ’16ER72xP-50 MIN MAX ’16ER72xP-60 MIN MAX UNIT tRC tRWC Cycle time, random read or write 69 84 104 ns Cycle time, read-write 97 116 140 ns tRASP tRAS Pulse duration, RASx active, fast page mode (see Note 6) 40 100 000 50 100 000 60 100 000 ns Pulse duration, RASx active, non-page mode (see Note 6) 40 50 60 ns tRP tWP Pulse duration, RASx precharge 25 30 40 ns Pulse duration, write command 7 9 11 ns tRASS tRPS Pulse duration, RASx active, self-refresh (see Note 9) 7 9 11 ns Pulse duration, RASx precharge after self-refresh 7 9 11 ns tASC tASR Setup time, column address 0 0 0 ns Setup time, row address 5 5 5 ns tDS tRCS Setup time, data in (see Note 7) 5 5 5 ns Setup time, read command 0 0 0 ns tCWL tRWL Setup time, write command before CASx precharge 7 9 11 ns Setup time, write command before RASx precharge 8 10 12 ns Setup time, write command before CASx active (early-write only) 0 0 0 ns tWRP tWTS Setup time, WEx high before RAS low (CBR refresh only) 7 7 7 ns Setup time, WEx low before RAS low (test mode only) 7 7 7 ns tCSR tCAH Setup time, CASx referenced to RASx ( CBR refresh only ) 3 3 3 ns Hold time, column address 12 8 10 ns tDH tRAH Hold time, data in (see Note 7) 11 13 15 ns 4 6 8 ns tRCH tRRH Hold time, read command referenced to CASx (see Note 8) 0 0 0 ns Hold time, read command referenced to RASx (see Note 8) −2 −2 −2 ns tWCH tROH Hold time, write command during CASx active ( early-write only ) 7 9 11 ns Hold time, RASx referenced to OEx 6 8 10 ns tWRH tWTH Hold time, WEx high after RAS low (CBR refresh) 8 10 12 ns Hold time, WEx low after RAS low (test mode only) 8 10 12 ns tCHR tOEH Hold time, CASx referenced to RASx ( CBR refresh only ) 4 6 8 ns Hold time, OEx command 12 14 16 ns tCHS tRHCP Hold time, CASx active after RASx precharge (self-refresh) 12 14 16 ns Hold time, RASx active from CASx precharge 27 33 40 ns tAWD tCPW Delay time, column address to write command ( read-write only ) 34 41 48 ns Delay time, WEx low after CASx precharge (read-write only) 37 45 54 ns tCRP tCWD Delay time, CASx precharge to RASx 3 3 3 ns Delay time, CASx to write command ( read-write only ) 31 35 39 ns tOED tRAD Delay time, OEx to data in 13 15 17 ns Delay time, RASx to column address (see Note 9) 12 tWCS Hold time, row address NOTES: 3. 6. 7. 8. 9. 10 000 30 8 10 000 20 10 10 000 25 PRODUCT PREVIEW ’16ER72xP-40 ns With ac parameters, it is assumed that tT = 2 ns. In a read-write cycle, tRWD and tRWL must be observed. Referenced to the later of CASx or WEx in write operations Either tRCH or tRRH must be satisfied for a read cycle. The maximum value is specified only to ensure access time. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 9 SMMS694 − AUGUST 1997 ac timing requirements (see Note 3) (continued) ’16ER72xP-40 MIN MAX ’16ER72xP-50 MIN MAX ’16ER72xP-60 MIN MAX UNIT tRAL tCAL Delay time, column address to RASx precharge 25 30 35 Delay time, column address to CASx precharge 14 17 23 20 ns tRCD tRPC Delay time, RASx to CASx ( see Note 9) 12 12 47 ns tRSH tRWD Delay time, RASx precharge to CASx 31 10 39 ns 3 3 3 ns Delay time, CASx active to RASx precharge 16 18 20 ns Delay time, RASx to write command (read-write only) 92 67 79 ns tTAA tTCPA Access time from address (test mode) 30 35 40 ns Access time from column precharge (test mode) 35 40 45 ns tTRAC tREF Access time from RASx (test mode) 17 55 65 ns Refresh time interval 32 2 PRODUCT PREVIEW tT Transition time NOTES: 3. With ac parameters, it is assumed that tT = 2 ns. 9. The maximum value is specified only to ensure access time. 10 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 30 32 2 30 2 32 ms 30 ns SMMS694 − AUGUST 1997 device symbolization (TM16ER72HP illustrated) TM16ER72HP -SS Buffered Key Position YYMMT 3.3-V Voltage Key Position YY MM T -SS = = = = Year Code Month Code Assembly Site Code Speed Code PRODUCT PREVIEW NOTE A: Location of symbolization may vary. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 11 SMMS694 − AUGUST 1997 MECHANICAL DATA BU (R-PDIM-N168) DUAL IN-LINE MEMORY MODULE 5.255 (133,48) 5.245 (133,22) (Note D) Notch 0.157 (4,00) x 0.122 (3,10) Deep 2 Places 0.050 (1,27) PRODUCT PREVIEW 0.039 (1,00) TYP 0.125 (3,18) 0.054 (1,37) 0.046 (1,17) Notch 0.079 (2,00) x 0.122 (3,10) Deep 2 Places 0.014 (0,35) MAX 0.118 (3,00) TYP 0.125 (3,18) 0.700 (17,78) TYP 0.118 (3,00) DIA 2 Places 1.255 (31,88) 1.245 (31,62) 0.106 (2,70) MAX 0.157 (4,00) MAX (For Double Sided DIMM Only) 4088183/A 07/97 NOTES: A. B. C. D. E. 12 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Falls within JEDEC MO-161 Dimension includes de-panelization variations; applies between notch and tab edge. Outline may vary above notches to allow router/panelization irregularities. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 PRODUCT PREVIEW SMMS694 − AUGUST 1997 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 13 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated