TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 O High-Performance Static CMOS Technology TMS470R1x 16/32-Bit RISC Core (ARM7TDMI™) – 24-MHz System Clock (48-MHz Pipeline) – Independent 16/32-Bit Instruction Set – Open Architecture With Third-Party Support – Built-In Debug Module – Three Inter-Integrated Circuit (I2C) Modules – Multi-Master and Slave Interfaces – Up to 400 Kbps (Fast Mode) – 7- and 10-Bit Address Capability O High-End Timer Lite (HET) – 12 Programmable I/O Channels: – 12 High-Resolution Pins – High-Resolution Share Feature (XOR) – High-End Timer RAM – 64-Instruction Capacity O Operating Features – Low-Power Modes: STANDBY and HALT – Industrial/Automotive Temperature Ranges External Clock Prescale (ECP) Module – Programmable Low-Frequency External Clock (CLK) O 470+ System Module – 32-Bit Address Space Decoding – Bus Supervision for Memory/Peripherals – Digital Watchdog (DWD) Timer – Analog Watchdog (AWD) Timer – Enhanced Real-Time Interrupt (RTI) – Interrupt Expansion Module (IEM) – System Integrity and Failure Detection – ICE Breaker 12-Channel 10-Bit Multi-Buffered ADC (MibADC) – 64-Word FIFO Buffer – Single- or Continuous-Conversion Modes – 1.55 μs Minimum Sample/Conversion Time – Calibration Mode and Self-Test Features O Flexible Interrupt Handling Expansion Bus Module (EBM) (PGE only) – Supports 8- and 16-Bit Expansion Bus Memory Interface Mappings – 42 I/O Expansion Bus Pins O Direct Memory Access (DMA) Controller – 32 Control Packets and 16 Channels O 50 Dedicated General-Purpose I/O (GIO) Pins and 43 Additional Peripheral I/Os (PGE) O Frequency-Modulated Zero-Pin Phase-Locked Loop (FMZPLL)-Based Clock Module With Prescaler – Multiply-by-8 Internal FMZPLL Option – ZPLL Bypass Mode O 14 Dedicated General-Purpose I/O (GIO) Pins and 43 Additional Peripheral I/Os (PZ) O Sixteen External Interrupts Compatible ROM Device (Planned) On-Chip Scan-Base Emulation Logic, IEEE Standard 1149.1(1) (JTAG) Test-Access Port O O O O Integrated Memory – 288K-Byte Program Flash – Two Banks With 8 Contiguous Sectors – 16K-Byte Static RAM (SRAM) – Memory Security Module (MSM) – JTAG Security Module O O Ten Communication Interfaces: – Two Serial Peripheral Interfaces (SPIs) – 255 Programmable Baud Rates – Two Serial Communication Interfaces (SCIs) – 224 Selectable Baud Rates – Asynchronous/Isosynchronous Modes – Two Standard CAN Controllers (SCC) – 16-Mailbox Capacity – Fully Compliant With CAN Protocol, Version 2.0B – Class II Serial Interface B (C2SIb) – Normal 10.4 Kbps and 4X Mode 41.6 Kbps O PRODUCT PREVIEW O O 144-Pin Plastic Low-Profile Quad Flatpack (PGE Suffix) O 100-Pin Plastic Low-Profile Quad Flatpack (PZ Suffix) O Development System Support Tools Available – Code Composer Studio™ Integrated Development Environment (IDE) – HET Assembler and Simulator – Real-Time In-Circuit Emulation – Flash Programming Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Code Composer Studio is a trademark of Texas Instruments. ARM7TDMI is a trademark of Advanced RISC Machines Limited (ARM). All trademarks are the property of their respective owners. 1 The test-access port is compatible with the IEEE Standard 1149.1-1990, IEEE Standard Test-Access Port and Boundary Scan Architecture specification. Boundary scan is not supported on this device. Copyright © 2005, Texas Instruments Incorporated PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 1 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 74 73 75 78 77 76 82 81 80 79 85 84 83 86 94 93 92 91 90 89 88 87 95 97 96 99 98 100 102 101 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 57 56 55 54 53 52 51 50 131 49 48 47 46 45 44 43 42 41 40 39 38 37 132 133 134 135 136 137 138 139 140 141 142 36 34 35 32 33 30 31 24 25 26 27 28 29 22 23 21 SPI1SCS SPI1ENA GIOG[4] SPI1CLK SPI1SIMO GIOG[3] SPI1SOMI GIOG[2] HET[6] GIOG[1] HET[7] HET[8] VCC VSS HET[18] TMS2 TMS HET[20] HET[22] GIOG[0] C2SILPN C2SIRX GIOD[5] C2SITX VCCIO VSSIO GIOD[4] I2C3SCL I2C3SDA GIOD[3] VCC OSCOUT OSCIN VSS GIOD[2] AWD 18 19 20 143 144 1 PRODUCT PREVIEW ADIN[2] ADIN[1] ADIN[0] PORRST GIOC[4] GIOC[3] RST VSS VCC TEST GIOH[5]/INT[13] GIOC[2] GIOA[4]/INT[4] GIOC[1] VSS VCC VCCP FLTP2 GIOA[3]/INT[3] GIOA[2]/INT[2] GIOC[0] GIOA[0]/INT[1]/ECLK VCCIO VSSIO GIOH[0]/INT[8] GIOG[7] GIOA[0]/INT0 GIOG[6] GIOG[5] TRST 71 70 69 68 67 66 65 64 63 62 61 60 59 58 16 17 ADIN[3] 72 109 110 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ADREFHI ADREFLO VCCAD VSSAD ADIN[4] 106 105 104 103 108 107 ADIN[5] ADIN[6] ADIN[7] ADIN[8] ADIN[9] ADIN[10] ADIN[11] ADEVT GIOF[7] GIOF[6] GIOA[5]/INT[5] PLLDIS GIOF[5] I2C2SCL I2C2SDA GIOF[4] VCC VSS GIOF[3] GIOF[2] I2C1SCL I2C1SDA VCCIO VSSIO CAN1STX CAN1SRX GIOF[1] CLKOUT GIOF[0] GIOA[7]/INT[7] GIOA[6]/INT[6] GIOE[7] TCK TDO TDI HET[0] TMS470R1VF288 144-PIN PGE PACKAGE (TOP VIEW) (without Expansion Bus) 2 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 HET[1] HET[2] GIOE[6] VCCIO VSSIO GIOE[5] HET[3] HET[4] GIOE[4] HET[5] SPI2SCS GIOE[3] SPI2ENA SPI2SIMO GIOE[2] SPI2SOMI SPI2CLK CAN2STX CAN2SRX VCC VSS SCI2CLK SCI2RX SCI2TX SCI1CLK GIOE[1] SCI1RX SCI1TX GIOE[0] GIOB[0] GIOD[0] GIOH[1]/INT[9] GIOH[2]/INT[10] GIOD[1] GIOH[3]/INT[11] GIOH[4]/INT[12] TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 109 110 EBADDR[22]/EBADDR[14] GIOA[0]/INT[0] 139 140 141 EBADDR[20]/EBADDR[12] 142 EBADDR[19]/EBADDR[11] 143 144 74 73 75 78 77 76 82 81 80 79 85 84 83 86 94 93 92 91 90 89 88 87 95 97 96 99 98 100 102 101 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 57 56 55 54 53 52 51 50 131 49 48 47 46 45 44 43 42 41 40 39 38 37 132 133 134 HET[1] HET[2] EBDATA[6] VCCIO VSSIO EBDATA[5] HET[3] HET[4] EBDATA[4] HET[5] SPI2SCS EBDATA[3] SPI2ENA SPI2SIMO EBDATA[2] SPI2SOMI SPI2CLK CAN2STX CAN2SRX VCC VSS SCI2CLK SCI2RX SCI2TX SCI1CLK EBDATA[1] SCI1RX SCI1TX EBDATA[0] DMAREQ[0] EBADDR[0] EBADDR[23]/EBADDR[15] EBADDR[24]/EBADDR[16] EBADDR[1] EBADDR[25]/EBADDR[17] EBADDR[26]/EBADDR[18] 36 34 35 32 33 30 31 26 27 28 29 24 25 22 23 21 18 19 20 16 17 8 9 10 11 12 13 14 15 2 3 4 5 6 7 135 136 137 138 1 TRST 71 70 69 68 67 66 65 64 63 62 61 60 59 58 SPI1SCS SPI1ENA EBADDR[18]/EBADDR[10] SPI1CLK SPI1SIMO EBADDR[17]/EBADDR[9] SPI1SOMI EBADDR[16]/EBADDR[8] HET[6] EBADDR[15]/EBADDR[7] HET[7] HET[8] VCC VSS HET[18] TMS2 TMS HET[20] HET[22] EBADDR[14]/EBADDR[6] C2SILPN C2SIRX EBADDR[5] C2SITX VCCIO VSSIO EBADDR[4] I2C3SCL I2C3SDA EBADDR[3] VCC OSCOUT OSCIN VSS EBADDR[2] AWD EBADDR[21]/EBADDR[13] 72 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 3 PRODUCT PREVIEW ADREFHI ADREFLO VCCAD VSSAD ADIN[4] ADIN[3] ADIN[2] ADIN[1] ADIN[0] PORRST EBCS[6] EBCS[5] RST VSS VCC TEST EBHOLD EBWR[1] GIOA[4]/INT[4] EBWR[0] VSS VCC VCCP FLTP2 GIOA[3]/INT[3] GIOA[2]/INT[2] EBOE GIOA[0]/INT1/ECLK VCCIO VSSIO 106 105 104 103 108 107 ADIN[5] ADIN[6] ADIN[7] ADIN[8] ADIN[9] ADIN[10] ADIN[11] ADEVT EBDAAR[13]/EBDATA[15] EBADDR[12]/EBDATA[14] GIOA[5]/INT[5] PLLDIS EBADDR[11]/EBDATA[13] I2C2SCL I2C2SDA EBADDR[10]/EBDATA[12] VCC VSS EBADDR[9]/EBDATA[11] EBADDR[8]/EBDATA[10] I2C1SCL I2C1SDA VCCIO VSSIO CAN1STX CAN1SRX EBADDR[7]/EBDATA[9] CLKOUT EBADDR[6]/EBDATA[8] GIOA[7]/INT[7] GIOA[6]/INT[6] EBDATA[7] TCK TDO TDI HET[0] TMS470R1VF288 144-PIN PGE PACKAGE (TOP VIEW) (with Expansion Bus) TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 TDI HET[0] TDO TCK GIOA[6]/INT[6] CLKOUT GIOA[7]/INT[7] CAN1SRX I2C1SDA CAN1STX VSS I2C1SCL I2C2SDA VCC I2C2SCL PLLDIS ADEVT GIOA[5]/INT[5] ADIN[11] ADIN[10] ADIN[9] ADIN[8] ADIN[7] ADIN[6] ADIN[5] TMS470R1VF288 100-PIN PZ PACKAGE (TOP VIEW) VCCIO VSSAD 79 47 VSSIO ADIN[4] 80 46 HET[3] ADIN[3] ADIN[2] 81 45 HET[4] 82 44 HET[5] ADIN[1] 83 43 SPI2SCS ADIN[0] 84 42 SPI2ENA PORRST 85 41 SPI2SIMO RST 86 40 SPI2SOMI TEST 87 39 SPI2CLK GIOH[5]/INT[13] 88 38 CAN2STX GIOA[4]/INT[4] 89 37 CAN2SRX VSS 90 36 SCI2CLK VCC 91 35 SCI2RX VCCP 92 34 SCI2TX FLTP2 93 33 SCI1CLK GIOA[3]/INT[3] 94 32 SCI1RX GIOA[2]/INT[2] 95 31 SCI1TX GIOA[1]/INT[1]/ECLK 96 30 GIOB[0] VCCIO 97 29 GIOH[1]/INT[9] VSSIO 98 28 GIOH[2]/INT[10] GIOA[0]/INT[0] 99 27 GIOH[3]/INT[11] 100 26 GIOH[4]/INT[12] 4 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 AWD VSS OSCIN VCC OSCOUT I2C3SDA 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 VSSIO 9 I2C3SCL 8 VCCIO 7 C2SITX 6 C2SIRX 5 C2SILPN 4 HET[22] 3 HET[20] 2 TMS 1 TMS2 TRST HET[18] 48 HET[8] 78 HET[7] HET[2] VCCAD HET[6] ADREFLO SPI1SOMI HET[1] 49 SPI1SIMO 50 77 SPI1CKL 76 SPI1SCS ADREFHI SPI1ENA PRODUCT PREVIEW 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 description The TMS470R1VF288(1) devices are members of the Texas Instruments TMS470R1x family of generalpurpose16/32-bit reduced instruction set computer (RISC) microcontrollers. The VF288 microcontroller offers high performance utilizing the high-speed ARM7TDMI 16/32-bit RISC central processing unit (CPU), resulting in a high instruction throughput while maintaining greater code efficiency. The ARM7TDMI 16/32-bit RISC CPU views memory as a linear collection of bytes numbered upwards from zero. The TMS470R1VF288 utilizes the big-endian format where the most significant byte of a word is stored at the lowest numbered byte and the least significant byte at the highest numbered byte. High-end embedded control applications demand more performance from their controllers while maintaining low costs. The VF288 RISC core architecture offers solutions to these performance and cost demands while maintaining low power consumption. The VF288 devices contain the following: O O O O O O O O O O O O O O O O O O O O ARM7TDMI 16/32-Bit RISC CPU TMS470R1x system module (SYS) with 470+ enhancements 288K-byte flash 16K-byte SRAM Frequency-modulated zero-pin phase-locked loop (FMZPLL) clock module Digital watchdog (DWD) timer Analog watchdog (AWD) timer Enhanced real-time interrupt (RTI) module Interrupt expansion module (IEM) Memory security module (MSM) JTAG security module Two serial peripheral interface (SPI) modules Two serial communications interface (SCI) modules Two standard CAN controllers (SCC) Three inter-integrated circuit (I2C) modules Class II Serial Interface B (C2SIb) module 10-bit multi-buffered analog-to-digital converter (MibADC), with 12 input channels High-end timer lite (HET) controlling 12 I/Os External Clock Prescale (ECP) Expansion Bus Module (EBM) Up to 93 I/O pins (PGE only), up to 57 I/O (PZ only) PRODUCT PREVIEW O The functions performed by the 470+ system module (SYS) include: Address decoding O Memory protection O Memory and peripherals bus supervision O Reset and abort exception management O Prioritization for all internal interrupt sources O Device clock control O Parallel signature analysis (PSA) O The enhanced real-time interrupt (RTI) module on the VF288 has the option to be driven by the oscillator clock. The digital watchdog (DWD) is a 25-bit resettable decrementing counter that provides a system reset when the watchdog counter expires. This data sheet includes device-specific information such as memory and peripheral select assignment, interrupt priority, and a device memory map. For a more detailed functional description of the SYS module, see the TMS470R1x System Module Reference Guide (literature number SPNU189). 1 Throughout the remainder of this document, the TMS470R1VF288 shall be referred to as either the full device name or VF288. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 5 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 description (continued) The VF288 memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte, half-word, and word modes. The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented with a 32-bit-wide data bus interface.The flash operates with a system clock frequency of up to 24 MHz. When in pipeline mode, the flash operates with a system clock frequency of up to 48 MHz. For more detailed information on the flash, see the flash section of this data sheet and the TMS470R1x F05 Flash Reference Guide (literature number SPNU213). The memory security module (MSM) and JTAG security module prevent unauthorized access and visibility to on-chip memory, thereby preventing reverse engineering or manipulation of proprietary code. For more information, see the TMS470R1x Memory Security Module Reference Guide (literature number SPNU246) and the TMS470R1x JTAG Security Module Reference Guide (literature number SPNU245). PRODUCT PREVIEW The VF288 device has ten communication interfaces: two SPIs, two SCIs, two SCCs, a C2SI, and three I2Cs. The SPI provides a convenient method of serial interaction for high-speed communications between similar shift-register type devices. The SCI is a full-duplex, serial I/O interface intended for asynchronous communication between the CPU and other peripherals using the standard non-return-to-zero (NRZ) format. The SCC uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 megabit per second (Mbps). The SCC is ideal for applications operating in noisy and harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or multiplexed wiring. The C2SIb allows the VF68x to transmit and receive messages on a class II network following an SAE Standard J1850 Class B Data Communication Network Interface standard. The I2C module is a multi-master communication module providing an interface between the VF288 microcontroller and an I2Ccompatible device via the I2C serial bus. The I2C supports both 100 Kbps and 400 Kbps speeds. For more detailed functional information on the SPI, SCI, and CAN peripherals, see the specific reference guides (literature numbers SPNU195, SPNU196, and SPNU197). For more detailed functional information on the I2C, see the TMS470R1x Inter-Integrated Circuit (I2C) Reference Guide (literature number SPNU223). For more detailed functional information on the C2SI, see the TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide (literature number SPNU214). The HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The HET can be used for compare, capture, or general-purpose I/O. It is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. The HET used in this device is the high-end timer lite. It has fewer I/Os than the usual 32 in a standard HET. For more detailed functional information on the HET, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). The VF288 HET peripheral contains the XOR-share feature. This feature allows two adjacent HET high- resolution channels to be XORed together, making it possible to output smaller pulses than a standard HET. For more detailed information on the HET XOR-share feature, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). The VF288 device has one 10-bit-resolution, sample-and-hold MibADC. Each of the MibADC channels can be converted individually or can be grouped by software for sequential conversion sequences. There are three separate groupings, two of which can be triggered by an external event. Each sequence can be converted once when triggered or configured for continuous conversion mode. For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). 6 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 description (continued) The frequency-modulated zero-pin phase-locked loop (FMZPLL) clock module contains a phase-locked loop, a clock-monitor circuit, a clock-enable circuit, and a prescaler (with prescale values of 1–8). The function of the FMZPLL is to multiply the external frequency reference to a higher frequency for internal use. The FMZPLL provides ACLK to the system (SYS) module. The SYS module subsequently provides system clock (SYSCLK), real-time interrupt clock (RTICLK), CPU clock (MCLK), and peripheral interface clock (ICLK) to all other VF288 device modules. For more detailed functional information on the FMZPLL, see the TMS470R1x FrequencyModulated Phase-Locked Loop (FMPLL) Clock Module Reference Guide (literature number SPNU221). NOTE ACLK should not be confused with the MibADC internal clock, ADCLK. ACLK is the continuous system clock from an external resonator/crystal reference. The VF288 device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous external clock (ECLK) on a specified GIO pin. The ECLK frequency is a user-programmable ratio of the peripheral interface clock (ICLK) frequency. For more detailed functional information on the ECP, see the TMS470R1x External Clock Prescaler (ECP) Reference Guide (literature number SPNU202). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 7 PRODUCT PREVIEW The expansion bus module (EBM) is a standalone module that supports the multiplexing of the GIO functions and the expansion bus interface. For more information on the EBM, see the TMS470R1x Expansion Bus Module (EBM) Reference Guide (literature number SPNU222). TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 device characteristics The VF288 device is a derivative of the F05 system emulation device SE470R1VB8AD. Table 1 identifies all the characteristics of the VF288 device except the SYSTEM and CPU, which are generic. Table 1. Device Characteristics CHARACTERISTICS DEVICE DESCRIPTION TMS470R1VF288 COMMENTS FOR VF288 MEMORY For the number of memory selects on this device, see the TMS470VF288 Memory Selection Assignment table (Table 2). Pipeline/Non-Pipeline Flash is pipeline-capable INTERNAL MEMORY 288K-Byte Flash 16K-Byte SRAM Memory Security Module (MSM) JTAG Security Module The VF288 RAM is implemented in one 16K array selected by two memory-select signals (see the TMS470R1VF288 Memory Selection Assignment table, Table 2). PERIPHERALS PRODUCT PREVIEW For the device-specific interrupt priority configurations, see the Interrupt Priority Table (Table 5). And for the 1K peripheral address ranges and their peripheral selects, see the VF288 Peripherals, System Module, and Flash Base Addresses table (Table 3). CLOCK FMZPLL Expansion Bus EBM GENERAL-PURPOSE I/Os 50 I/O (PGE Suffix) 14 I/O (PZ Suffix) Frequency-modulated zero-pin PLL has no external loop filter pins. Expansion bus module with 42 pins. Supports 8- and 16-bit memories. See Table 6 for details. In the PGE package, Port A has eight (8) external pins, Port B has only one (1) external pin, Port C has five (5) external pins, Port D has six (6) external pins, Ports E, F, and G each have eight (8) external pins, and Port H has six (6) external pins. In the PZ package, Port A has eight (8) external pins, Port B has only one (1) external pin, and Port H has five (5) external pins. 8 ECP YES SCI 2 (3-pin) CAN (HECC and/or SCC) 2 SCC SPI (5-pin, 4-pin or 3-pin) 2 (5-pin) C2SIb 1 I2C 3 HET with XOR Share 12 I/O HET RAM 64-Instruction Capacity MibADC 10-bit, 12-channel 64-word FIFO CORE VOLTAGE 1.8 V I/O VOLTAGE 3.3 V PINS 144 100 PACKAGES PGE PZ POST OFFICE BOX 1443 Two standard CAN controllers The high-resolution (HR) SHARE feature allows even-numbered HR pins to share the next higher odd-numbered HR pin structures. This HR sharing is independent of whether or not the odd pin is available externally. If an odd pin is available externally and shared, then the odd pin can only be used as a general-purpose I/O. For more information on HR SHARE, see theTMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). Both the logic and registers for a full 16-channel MibADC are present. • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 functional block diagram External Pins FLTP2 FLASH (288K Bytes) 2 Banks 8 Sectors OSCIN Memory Security Module (MSM) RAM (16K Bytes) FMZPLL OSCOUT Crystal VCCP External Pins PLLDIS ADIN[11:0] CPU Address/Data Bus MibADC 64-Word FIFO TMS470R1x CPU TCK VSSAD TDI TDO TMS2 DMA Controller 16 Channels AWD Interrupt Expansion Module (IEM) TEST Digital Watchdog (DWD) PORRST CLKOUT Analog Watchdog (AWD) HET 64 Words Expansion Address/Data Bus TMS470R1x SYSTEM MODULE with Enhanced RTI Module(A) RST ADREFLO VCCAD ICE Breaker TMS ADREFHI SCC1 HET [0:8;18,20,22] CAN1TX PRODUCT PREVIEW TRST ADEVT CAN1RX SCC2 CAN2TX CAN2RX SCI1CLK SCI1 SCI1TX SCI1RX SCI2CLK SCI2 SCI2TX SCI2RX HECC I2C3 I2C3SDA I2C3SCL I2C2 I2C2SDA I2C2SCL C2SI SPI2 SPI1 ECP GIO/EBM(B) I2C1 I2C1SDA A. B. GIOA[0]/INT[0] GIOA[7:2]/INT[7:2] GIOB[0] GIOC[4:0](B) GIOD[5:0](B) GIOE[7:0](B) GIOF[7:0](B) GIOG[7:0](B) GIOH[5:0/INT[13:8](B) GIOA[1]/INT[1]/ECLK C2SITX C2SIRX C2SILPN SPI2SCS SPI2ENA SPI2SIMO SPI2SOMI SPI2CLK SPI1SCS SPI1ENA SPI1SIMO SPI1SOMI SPI1CLK I2C1SCL The Enhanced RTI module is the System Module with two extra bits to disable the FMZPLL while in STANDBY mode. GIOC[4:0], GIOD[5:0], GIOE[5:0], GIOF[7:0], and GIOH[0], which are muxed with EBM, are not available on the PZ package. See Table 6 for EBM to GIO mapping. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 9 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 Terminal Functions TERMINAL NAME PZ PGE HET[0] 51 73 HET[1] 50 72 HET[2] 49 71 HET[3] 46 66 HET[4] 45 65 HET[5] 44 63 HET[6] 6 9 HET[7] 7 11 INPUT VOLT- OUTPUT CUR- AGE(1)(2) RENT(1)(2) INTERNAL PULLUP/ PULLDOWN(3) DESCRIPTION PRODUCT PREVIEW HIGH-END TIMER (HET) Timer input capture or output compare. The HET[8:0,18,20,22] applicable pins can be programmed as general-purpose input/ output (GIO) pins. All are high-resolution pins. 3.3-V The high-resolution (HR) SHARE feature allows even HR pins to share the next higher odd HR pin structures. This HR sharing is independent of whether or not the odd pin is available externally. If an odd pin is available externally and shared, then the odd pin can only be used as a general-purpose I/O. For more information on HR SHARE, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). 2mA -z HET[8] 8 12 HET[18] 9 15 HET[20] 12 18 HET[22] 13 19 CAN1SRX 58 83 5V tolerant 4mA CAN1STX 59 84 3.3-V 2mA -z SCC1 transmit pin or GIO pin CAN2SRX 37 54 5V tolerant 4mA SCC2 receive pin or GIO pin CAN2STX 38 55 3.3-V STANDARD CAN CONTROLLER (SCC) SCC1 receive pin or GIO pin 2mA -z SCC 2 transmit pin or GIO pin CLASS II SERIAL INTERFACE (C2SIB) C2SIbLPN 14 21 3.3-V 2mA -z C2SIb module loopback enable pin or GIO pin C2SIbRX 15 22 5V tolerant 4mA C2SIb module receive data input pin or GIO pin C2SIbTX 16 24 3.3-V 2mA -z C2SIb module transmit data output pin or GIO pin GENERAL-PURPOSE I/O (GIO) GIOA[0]/INT[0] 99 141 GIOA[1]/INT[1]/ ECLK 96 136 GIOA[2]/INT[2] 95 134 GIOA[3]/INT[3] 94 133 GIOA[4]/INT[4] 89 127 GIOA[5]/INT[5] 67 98 GIOA[6]/INT[6] 55 78 GIOA[7]/INT[7] 56 79 GIOB[0]/ EBDMAREQ[0] 30 43 GIOC[0]/EBOE – 135 GIOC[1]/EBWR[0] – 128 GIOC[2]/EBWR[1] – 126 GIOC[3]/EBCS[5] – 120 GIOC[4]/EBCS[6] – 119 General-purpose input/output pins. GIOA[7:0]/INT[7:0] are interrupt-capable pins. 5V tolerant 3.3-V 4mA 2mA -z GIOA[1]/INT[1]/ECLK pin is multiplexed with the external clockout function of the external clock prescale (ECP) module. GIOB[0], GIOC[4:0], GIOD[5:0], GIOE[7:0:], GIOF[7:0], GIOG[7:0], AND GIOH[5:0] are multiplexed with the expansion IPD (20 μA) bus module. See Table 6. 1 PWR = power, GND = ground, REF = reference voltage, NC = no connect 2 All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. 3 IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) 10 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 Terminal Functions (Continued) TERMINAL NAME PZ PGE GIOD[0]/EBADDR[0] – 42 GIOD[1]/EBADDR[1] – 39 GIOD[2]/EBADDR[2] – 35 GIOD[3]/EBADDR[3] – 30 GIOD[4]/EBADDR[4] – 27 GIOD[5]/EBADDR[5] – 23 GIOE[0]/EBDATA[0] – 44 GIOE[1]/EBDATA[1] – 47 GIOE[2]/EBDATA[2] – 58 GIOE[3]/EBDATA[3] – 61 GIOE[4]/EBDATA[4] – 64 GIOE[5]/EBDATA[5] – 67 GIOE[6]/EBDATA[6] – 70 GIOE[7]/EBDATA[7] – 77 GIOF[0]/EBADDR[6]/ EBDATA[8] – 80 GIOF[1]/EBADDR[7]/ EBDATA[9] – 82 GIOF[2]/EBADDR[8]/ EBDATA[10] – 89 GIOF[3]/EBADDR[9]/ EBDATA[11] – 90 GIOF[4]/EBADDR[10]/ EBDATA[12] – 93 GIOF[5]/EBADDR[11]/ EBDATA[13] – 96 GIOF[6]/EBADDR[12]/ EBDATA[14] – 99 GIOF[7]/EBADDR[13]/ EBDATA[15] – 100 GIOG[0]/EBADDR[14]/ EBADDR[6] – 20 GIOG[1]/EBADDR[15]/ EBADDR[7] – 10 GIOG[2]/EBADDR[16]/ EBADDR[8] – 8 GIOG[3]/EBADDR[17]/ EBADDR[9] – 6 GIOG[4]/EBADDR[18]/ EBADDR[10] – 3 GIOG[5]/EBADDR[19]/ EBADDR[11] – 143 GIOG[6]/EBADDR[20]/ EBADDR[12] – 142 INPUT VOLT- OUTPUT CUR- AGE(1)(2) RENT(1)(2) INTERNAL PULLUP/ PULLDOWN(3) DESCRIPTION 3.3-V 2mA -z GIOB[0], GIOC[4:0], GIOD[5:0], GIOE[7:0:], GIOF[7:0], GIOG[7:0], AND GIOH[5:0] are multiplexed with the expansion IPD (20 μA) bus module. See Table 6. GIOG[7]/EBADDR[21]/ – 140 EBADDR[13] 1 PWR = power, GND = ground, REF = reference voltage, NC = no connect 2 All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. 3 IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 11 PRODUCT PREVIEW GENERAL-PURPOSE I/O (GIO) (CONTINUED) TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 Terminal Functions (Continued) TERMINAL NAME PZ PGE INPUT VOLT- OUTPUT CUR- AGE(1)(2) RENT(1)(2) INTERNAL PULLUP/ PULLDOWN(3) DESCRIPTION GENERAL-PURPOSE I/O (GIO) (CONTINUED) GIOH[0]/EBADDR[22]/ EBADDR[14]/INT[8] – 139 GIOH[1]/EBADDR[23]/ EBADDR[15]/INT[9] 29 41 GIOH[2]/EBADDR[24]/ EBADDR[16]/INT[10] 28 40 GIOH[3]/EBADDR[25]/ EBADDR[17]/INT[11] 27 38 GIOH[4]/EBADDR[26]/ EBADDR[18]/INT[12] 26 37 GIOH[5]/EBHOLD/INT[13] 88 3.3-V 2mA IPD GIOB[0], GIOC[4:0], GIOD[5:0], GIOE[7:0:], GIOF[7:0], GIOG[7:0], AND GIOH[5:0] are multiplexed with the expansion bus module. GIOH[5:0]/INT[13:8] are interrupt-capable pins. 125 PRODUCT PREVIEW MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MibADC) ADEVT 68 101 ADIN[0] 84 117 ADIN[1] 83 116 ADIN[2] 82 115 ADIN[3] 81 114 ADIN[4] 80 113 ADIN[5] 75 108 ADIN[6] 74 107 ADIN[7] 73 106 ADIN[8] 72 105 ADIN[9] 71 104 ADIN[10] 70 103 3.3-V 2mA -z 3.3-V MibADC event input. Can be programmed as a GIO pin. MibADC analog input pins ADIN[11] 69 102 ADREFHI 76 109 ADREFLO 77 110 GND REF MibADC module low-voltage reference input VCCAD 78 111 3.3-V PWR MibADC analog supply voltage VSSAD 79 112 GND 3.3-V REF MibADC module high-voltage reference input MibADC analog ground reference SERIAL PERIPHERAL INTERFACE 1 (SPI1) SPI1CLK 3 4 SPI1 clock. SPI1CLK can be programmed as a GIO pin. SPI1ENA 2 2 SPI1 chip enable. Can be programmed as a GIO pin. SPI1SCS 1 1 SPI1 slave chip select. Can be programmed as a GIO pin. 5V tolerant 4mA SPI1SIMO 4 5 SPI1 data stream. Slave in/master out. Can be programmed as a GIO pin. SPI1SOMI 5 7 SPI1 data stream. Slave out/master in. Can be programmed as a GIO pin. SPI2CLK 39 56 SPI2ENA 42 60 SPI2SCS 43 62 SERIAL PERIPHERAL INTERFACE 2 (SPI2) SPI2 clock. Can be programmed as a GIO pin. 5V tolerant 4mA SPI2 chip enable. Can be programmed as a GIO pin. SPI2 slave chip select. Can be programmed as a GIO pin. 1 PWR = power, GND = ground, REF = reference voltage, NC = no connect 2 All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. 3 IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) 12 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 Terminal Functions (Continued) TERMINAL NAME PZ PGE INPUT VOLT- OUTPUT CUR- AGE(1)(2) RENT(1)(2) INTERNAL PULLUP/ PULLDOWN(3) DESCRIPTION SERIAL PERIPHERAL INTERFACE 2 (SPI2) (CONTINUED) SPI2SIMO 41 59 SPI2SOMI 40 57 I2C1SDA 60 87 I2C1 serial data pin or GIO pin I2C1SCL 61 88 I2C1 serial clock pin or GIO pin 5V tolerant SPI2 data stream. Slave in/master out. Can be programmed as a GIO pin. 4mA SPI2 data stream. Slave out/master in. Can be programmed as a GIO pin. INTER-INTEGRATED CIRCUIT (I2C) I2C2SDA 64 94 I2C2SCL 65 95 5V tolerant I2C2 serial data pin or GIO pin 4mA I2C2 serial clock pin or GIO pin I2C3SDA 20 29 I2C3 serial data pin or GIO pin I2C3SCL 19 28 I2C3 serial clock pin or GIO pin OSCIN 23 33 OSCOUT 22 32 PLLDIS 66 97 3.3-V SCI1CLK 33 48 3.3-V SCI1RX 32 46 5V tolerant 4mA SCI1 data receive. SCI1RX can be programmed as a GIO pin. SCI1TX 31 45 3.3-V 2mA -z SCI1 data transmit. SCI1TX can be programmed as a GIO pin. FREQUENCY-MODULATED ZERO-PIN PHASE-LOCKED LOOP (FMZPLL) 1.8-V Crystal connection pin or external clock input External crystal connection pin IPD (20 μA) Enable/disable the FMZPLL. The FMZPLL can be bypassed and the oscillator becomes the system clock. SERIAL COMMUNICATIONS INTERFACE 1 (SCI1) 2mA -z SCI1 clock. SCI1CLK can be programmed as a GIO pin. SERIAL COMMUNICATIONS INTERFACE 2 (SCI2) SCI2CLK 36 51 3.3-V 2mA -z SCI2RX 35 50 5V tolerant 4mA SCI2 clock. SCI2CLK can be programmed as a GIO pin. SCI2 data receive. SCI2RX can be programmed as a GIO pin. SCI2TX 34 49 3.3-V 2mA -z SCI2 data transmit. SCI2TX can be programmed as a GIO pin. SYSTEM MODULE (SYS) CLKOUT 57 81 3.3-V PORRST 85 118 3.3-V RST 86 121 3.3-V Bidirectional pin. CLKOUT can be programmed as a GIO pin or the output of SYSCLK, ICLK, or MCLK. 8mA 4mA IPD (20 μA) Input master chip power-up reset. External VCC monitor circuitry must assert a power-on reset. IPU (20 μA) Bidirectional reset. The internal circuitry can assert a reset, and an external system reset can assert a device reset. On this pin, the output buffer is implemented as an open drain (drives low only). To ensure an external reset is not arbitrarily generated, TI recommends that an external pullup resistor be connected to this pin. WATCHDOG/REAL-TIME INTERRUPT (WD/RTI) AWD 25 36 3.3-V 8mA Analog watchdog reset. The AWD pin provides a system reset if the WD KEY is not written in time by the system, providing an external RC network circuit is connected. If the user is not using AWD, TI recommends that this pin be connected to ground or pulled down to ground by an external resistor. For more details on the external RC network circuit, see the TMS470R1x System Module Reference Guide (literature number SPNU189) and the application note Analog Watchdog Resistor, Capacitor and Discharge Interval Selection Constraints (literature number SPNA005). 1 PWR = power, GND = ground, REF = reference voltage, NC = no connect 2 All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. 3 IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 13 PRODUCT PREVIEW 2mA TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 Terminal Functions (Continued) TERMINAL NAME PZ PGE INPUT VOLT- OUTPUT CUR- AGE(1)(2) RENT(1)(2) INTERNAL PULLUP/ PULLDOWN(3) DESCRIPTION PRODUCT PREVIEW TEST/DEBUG (T/D) IPD (20 μA) Test clock. TCK controls the test hardware (JTAG). TCK 54 76 TDI 52 74 8mA IPU (20 μA) TDO 53 75 8mA Test data out. TDO outputs serial data from the test instruction register, IPD (20 μA) test data register, identification register, and programmable test address (JTAG). TEST 87 124 TMS 11 17 TMS2 10 16 TRST 100 144 Test data in. TDI inputs serial data to the test instruction register, test data register, and programmable test address (JTAG). IPD (20 μA) Test enable. Reserved for internal use only. TI recommends that this pin be connected to ground or pulled down to ground by an external resistor. 8mA IPU (20 μA) Serial input for controlling the state of the CPU test access port (TAP) controller (JTAG). 8mA IPU (20 μA) Serial input for controlling the second TAP. TI recommends that this pin be connected to VCCIO or pulled up to VCCIO by an external resistor. 3.3-V Test hardware reset to TAP1 and TAP2. IEEE Standard 1149-1 (JTAG) IPD (20 μA) Boundary-Scan Logic. TI recommends that this pin be pulled down to ground by an external resistor. FLASH FLTP2 93 132 NC VCCP 92 131 3.3-V PWR 21 13 63 31 91 53 – 92 – 123 – 130 17 25 48 69 – 86 97 137 90 14 – 34 – 52 – 91 62 122 24 129 18 26 47 68 – 85 98 138 Flash test pad 2. For proper operation, this pin must not be connected [no connect (NC)]. NC Flash external pump voltage (3.3 V) SUPPLY VOLTAGE CORE (1.8 V) VCC 1.8-V PWR Core logic supply voltage SUPPLY VOLTAGE DIGITAL I/O (3.3 V) VCCIO 3.3-V PWR Digital I/O supply voltage SUPPLY GROUND CORE VSS GND Core supply ground reference SUPPLY GROUND DIGITAL I/O VSSIO GND Digital I/O supply ground reference 1 PWR = power, GND = ground, REF = reference voltage, NC = no connect 2 All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. 3 IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) 14 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 VF288 DEVICE-SPECIFIC INFORMATION memory Figure 1 shows the memory map of the VF288 device. 0xFFFF_FFFF System Module Control Registers (512K Bytes) 0xFFF8_0000 0xFFF7_FFFF Reserved HET Reserved SPI1 Reserved Peripheral Control Registers (512K Bytes) 0xFFF0_0000 0xFFEF_FFFF 0xFFE8_C000 0xFFE8_BFFF 0xFFE8_8000 0xFFE8_7FFF 0xFFE8_4021 0xFFE8_4020 0xFFE8_4000 SCI2 Reserved Flash Control Registers SCI1 Reserved MibADC Reserved ECP MPU Control Registers Reserved EBM Reserved (1 MByte) GIO HECC HECC RAM 0xFFE0_0000 0x7FFF_FFFF RAM (16K Bytes) Program and Data Area 0xFFFF_FD00 0xFFFF_FC00 0xFFFF_F700 0xFFF8_0000 0xFFF7_FC00 0xFFF7_F800 0xFFF7_F500 0xFFF7_F400 0xFFF7_F000 0xFFF7_EF00 0xFFF7_ED00 0xFFF7_EC00 0xFFF7_E200 SCC2 SCC1 Reserved 0xFFF7_E000 SCC2 RAM 0xFFF7_DE00 Reserved SCC1 RAM 0xFFF7_DC00 Reserved I2C3 0xFFF7_DA00 I2C2 0xFFF7_D900 I2C1 0xFFF7_D800 Reserved FLASH (288K Bytes) 2 Banks SPI2 0xFFF7_D400 Reserved C2SIb Reserved Reserved FIQ IRQ HET RAM (1K Byte) 0x0000_0024 0x0000_0023 0x0000_0000 0xFFFF_FFFF Reserved Data Abort Exception, Interrupt, and Reset Vectors Prefetch Abort Software Interrupt Undefined Instruction 0xFFF7_C800 0xFFF0_0000 0x0000_0023 0x0000_0020 0x0000_001C 0x0000_0018 0x0000_0014 0x0000_0010 0x0000_000C 0x0000_0008 0x0000_0004 Reset 0x0000_0000 A. Memory addresses are configurable by the system (SYS) module within the range of 0x0000_0000 to 0xFFE0_0000. B. The CPU registers are not a part of the memory map. Figure 1. TMS470R1VF288 Memory Map POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 15 PRODUCT PREVIEW SYSTEM with PSA, CIM, RTI, DEC, DMA, MMC, DWD IEM MSM Reserved Memory (4G Bytes) TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 memory selects Memory selects allow the user to address memory arrays (i.e., flash, RAM, and HET RAM) at user-defined addresses. Each memory select has its own set (low and high) of memory base address registers (MFBAHRx and MFBALRx) that, together, define the array’s starting (base) address, size, and protection. The base address of each memory select is configurable to any memory address boundary that is a multiple of the decoded block size. The decoded block size for the flash memory on this device is 0x00200000. For more information on how to control and configure these memory select registers, see the bus structure and memory sections of the TMS470R1x System Module Reference Guide (literature number SPNU189). For the memory selection assignments and the memory selected, see Table 2. PRODUCT PREVIEW Table 2. TMS470R1VF288 Memory Selection Assignment MEMORY SELECT MEMORY SELECTED (ALL INTERNAL) 0 (fine) FLASH/ROM 1 (fine) FLASH/ROM 2 (fine) RAM 3 (fine) RAM 4 (fine) HET RAM 5 (coarse) 6 (coarse) MEMORY STATIC MEM CTL REGISTER MPU MSM MEMORY BASE ADDRESS REGISTER NO YES MFBAHR0 and MFBALR0 NO YES MFBAHR1 and MFBALR1 YES YES MFBAHR2 and MFBALR2 YES YES MFBAHR3 and MFBALR3 1K NO NO MFBAHR4 and MFBALR4 SMCR1 CS[5]/GIOC[3] 128MB (x8) 1MB (x16) NO NO MCBAHR2 and MCBALR2 SMCR5 CS[6]/GIOC[4] 128MB (x8) 1MB (x16) NO NO MCBAHR3 and MCBALR3 SMCR6 SIZE(1) 288K 16K(2) 1 x8 refers to size of memory in 8-bits; x16 refers to size of memory in 16-bits. 2 The starting addresses for both RAM memory-select signals cannot be offset from each other by a multiple of the user-defined block size in the memory-base address register. JTAG security module The VF288 device includes a JTAG security module to provide maximum security to the memory contents. The visible unlock code can be chosen to be in the OTP sector or in the first bank of the user-programmable memory. For the VF288, the visible unlock code is in the OTP sector at address 0x0000_01F8. memory security module The VF288 device also includes a memory security module (MSM) to provide additional security and flexibility to the memory contents’ protection. The password for unlocking the MSM is located in the four words just before the flash protection keys (see page 17). RAM The VF288 device contains 16K-bytes of internal static RAM configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. This VF288 RAM is implemented in one 16K array selected by two memory-select signals. This VF288 configuration imposes an additional constraint on the memory map for RAM; the starting addresses for both RAM memory selects cannot be offset from each other by the multiples of the size of the physical RAM (i.e., 16K for the VF288 device). The VF288 RAM is addressed through memory selects 2 and 3. The RAM can be protected by the memory protection unit (MPU) portion of the SYS module, allowing the user finer blocks of memory protection than is allowed by the memory selects. The MPU is ideal for protecting an operating system while allowing access to the current task. For more detailed information on the MPU portion of the SYS module and memory protection, see the memory section of the TMS470R1x System Module Reference Guide (literature number SPNU189). 16 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 F05 Flash The F05 flash memory is a nonvolatile electrically erasable and programmable memory implemented with a 32-bit-wide data bus interface. The F05 flash has an external state machine for programming and erase functions. See the flash read and flash program and erase sections following. flash protection keys The VF288 device provides flash protection keys. These four 32-bit protection keys prevent program/erase/ compaction operations from occurring until after the four protection keys have been matched by the CPU loading the correct user keys into the FMPKEY control register. The protection keys on the VF288 are located in the last 4 words of the first 8K sector. For more detailed information on the flash protection keys and the FMPKEY control register, see the Optional Quadruple Protection Keys and Programming the Protection Keys portions of the TMS470R1x F05 Flash Reference Guide (literature number SPNU213). flash read NOTE The flash external pump voltage (VCCP) is required for all operations (program, erase, and read). flash pipeline mode When in pipeline mode, the flash operates with a system clock frequency of up to 48 MHz (versus a system clock frequency of 24 MHz in normal mode). Flash in pipeline mode is capable of accessing 64-bit words and provides two 32-bit pipelined words to the CPU. Also, in pipeline mode the Flash can be read with no wait states when memory addresses are contiguous (after the initial 1- or 2-wait-state reads). NOTE After a system reset, pipeline mode is disabled (ENPIPE bit [FMREGOPT.0] is a "0"). In other words, the VF288 device powers up and comes out of reset in non-pipeline mode. Furthermore, setting the Flash configuration mode bit (GBLCTRL.4) will override pipeline mode. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 17 PRODUCT PREVIEW The VF288 flash memory is configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The Flash is addressed through memory selects 0 and 1. TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 flash program and erase PRODUCT PREVIEW The VF288 device Flash contains one 32K-byte memory array (or bank) and one 256K-byte bank, for a total of 288K-bytes of Flash, and consists of eight sectors. These eight sectors are sized as follows: SECTOR NO. SEGMENT LOW ADDRESS OTP 2K Bytes 0x0000_0000 0x0000_07FF 0 8K Bytes 0x0000_0000 0x0000_1FFF 1 8K Bytes 0x0000_2000 0x0000_3FFF 2 8K Bytes 0x0000_4000 0x0000_5FFF 3 8K Bytes 0x0000_6000 0x0000_7FFF 0 64K Bytes 0x0004_0000 0x0004_FFFF 1 64K Bytes 0x0005_0000 0x0005_FFFF 2 64K Bytes 0x0006_0000 0x0006_FFFF 3 64K Bytes 0x0007_0000 0x0007_FFFF HIGH ADDRESS MEMORY ARRAYS (OR BANKS) BANK0 (32K Bytes) BANK1 (256K Bytes) The minimum size for an erase operation is one sector. The maximum size for a program operation is one 16-bit word. NOTE The flash external pump voltage (VCCP) is required for all operations (program, erase, and read). Execution can occur from one bank while programming/erasing any or all sectors of another bank. However, execution can not occur from any sector within a bank that is being programmed or erased. NOTE When the OTP sector is enabled, the rest of the flash memory is disabled. The OTP memory can only be read or programmed from code executed out of RAM. For more detailed information on Flash program and erase operations, see the TMS470R1x F05 Flash Reference Guide (literature number SPNU213). HET RAM The VF288 device contains HET RAM. The HET RAM has a 64-instruction capability. The HET RAM is configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The HET RAM is addressed through memory select 4. 18 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 peripheral selects and base addresses The VF288 device uses ten of the sixteen peripheral selects to decode the base addresses of the peripherals. These peripheral selects are fixed and transparent to the user since they are part of the decoding scheme used by the SYS module. Control registers for the peripherals, SYS module, and flash begin at the base addresses shown in Table 3. Table 3. VF288 Peripherals, System Module, and Flash Base Addresses ADDRESS RANGE BASE ADDRESS ENDING ADDRESS PERIPHERAL SELECTS SYSTEM 0xFFFF_FFCC 0xFFFF_FFFF N/A RESERVED 0xFFFF_FF70 0xFFFF_FFCB N/A DWD 0xFFFF_FF60 0xFFFF_FF6F N/A PSA 0xFFFF_FF40 0xFFFF_FF5F N/A CIM 0xFFFF_FF20 0xFFFF_FF3F N/A RTI 0xFFFF_FF00 0xFFFF_FF1F N/A DMA 0xFFFF_FE80 0xFFFF_FEFF N/A DEC 0xFFFF_FE00 0xFFFF_FE7F N/A RESERVED 0xFFFF_FD80 0xFFFF_FDFF N/A MMC 0xFFFF_FD00 0xFFFF_FD7F N/A IEM 0xFFFF_FC00 0xFFFF_FCFF N/A RESERVED 0xFFFF_FB00 0xFFFF_FBFF N/A RESERVED 0xFFFF_FA00 0xFFFF_FAFF N/A DMA CMD BUFFER 0xFFFF_F800 0xFFFF_F9FF N/A MSM 0xFFFF_F700 0xFFFF_F7FF N/A RESERVED 0xFFF8_0000 0xFFFF_F6FF N/A RESERVED 0xFFF7_FD00 0xFFF7_FFFF HET 0xFFF7_FC00 0xFFF7_FCFF RESERVED 0xFFF7_F900 0xFFF7_FBFF SPI1 0xFFF7_F800 0xFFF7_F8FF RESERVED 0xFFF7_F600 0xFFF7_F7FF SCI2 0XFFF7_F500 0XFFF7_F5FF SCI1 0xFFF7_F400 0xFFF7_F4FF RESERVED 0xFFF7_F100 0xFFF7_F3FF MibADC 0xFFF7_F000 0xFFF7_F0FF ECP 0xFFF7_EF00 0xFFF7_EFFF RESERVED 0xFFF7_EE00 0xFFF7_EEFF EBM 0xFFF7_ED00 0xFFF7_EDFF GIO 0xFFF7_EC00 0xFFF7_ECFF POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 PRODUCT PREVIEW CONNECTING MODULE PS[0] PS[1] PS[2] PS[3] PS[4] 19 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 Table 3. VF288 Peripherals, System Module, and Flash Base Addresses (Continued) PRODUCT PREVIEW CONNECTING MODULE 20 ADDRESS RANGE BASE ADDRESS ENDING ADDRESS HECC 0xFFF7_EA00 0xFFF7_EBFF RESERVED 0xFFF7_E800 0xFFF7_E9FF HECC RAM 0xFFF7_E600 0xFFF7_E7FF RESERVED 0xFFF7_E400 0xFFF7_E5FF RESERVED 0xFFF7_E300 0xFFF7_E3FF SCC2 0xFFF7_E200 0xFFF7_E2FF RESERVED 0xFFF7_E100 0xFFF7_E1FF SCC1 0xFFF7_E000 0xFFF7_E0FF RESERVED 0xFFF7_DF00 0xFFF7_DFFF SCC2 RAM 0xFFF7_DE00 0xFFF7_DEFF RESERVED 0xFFF7_DD00 0xFFF7_DDFF PERIPHERAL SELECTS PS[5] PS[6] PS[7] PS[8] SCC1 RAM 0xFFF7_DC00 0xFFF7_DCFF RESERVED 0xFFF7_DB00 0xFFF7_DBFF I2C3 0xFFF7_DA00 0xFFF7_DAFF I2C2 0xFFF7_D900 0xFFF7_D9FF I2C1 0xFFF7_D800 0xFFF7_D8FF RESERVED 0xFFF7_D500 0xFFF7_D7FF SPI2 0xFFF7_D400 0xFFF7_D4FF RESERVED 0xFFF7_CC00 0xFFF7_D3FF RESERVED 0xFFF7_C900 0xFFF7_CBFF C2SIb 0xFFF7_C800 0xFFF7_C8FF RESERVED 0xFFF7_C000 0xFFF7_C7FF PS[14] - PS[15] RESERVED 0xFFF0_0000 0xFFF7_BFFF N/A Flash Control Registers 0xFFE8_8000 0xFFE8_BFFF N/A PS[9] PS[10] PS[11] - PS[12] PS[13] RESERVED 0xFFF8_4024 0xFFF8_7FFF N/A MPU CONTROL REGISTERS 0xFFE8_4000 0xFFE8_4023 N/A RESERVED 0xFFF8_0000 0xFFF8_3FFF N/A POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 direct-memory access (DMA) The direct-memory access (DMA) controller transfers data to and from any specified location in the VF288 memory map (except for restricted memory locations like the system control registers area). The DMA manages up to 16 channels, and supports data transfer for both on-chip and off-chip memories and peripherals. The DMA controller is connected to both the CPU and peripheral busses, enabling these data transfers to occur in parallel with CPU activity and thus maximizing overall system performance. Although the DMA controller has two possible configurations, for the VF288 device, the DMA controller configuration is 32 control packets and 16 channels. For the VF288 DMA request hardwired configuration, see Table 4. Table 4. DMA Request Lines Connections(1) DMA REQUEST INTERRUPT SOURCES DMA CHANNEL EBM Expansion Bus DMA request EBDMAREQ0 DMAREQ[0] SPI1 SPI1 end-receive SPI1DMA0 DMAREQ[1] DMAREQ[2] SPI1 SPI1 end-transmit SPI1DMA1 MibADC/I2C1 ADC EV/I2C1 read MibADCDMA0/I2C1DMA0 DMAREQ[3] MibADC/SCI1 ADC G1/SCI1 end-receive MibADCDMA1/SCI1DMA0 DMAREQ[4] MibADC/SCI1 DMAREQ[5] ADC G2/SCI1 end-transmit MibADCDMA2/SCI1DMA1 I2C1 I2C1 write I2C1DMA1 DMAREQ[6] SPI2 SPI2 end-receive SPI2DMA0 DMAREQ[7] DMAREQ[8] SPI2 end-transmit SPI2DMA1 I2C2/C2SIb SPI2 I2C2 read end-receive/C2SIb end-receive I2C2DMA0/C2SIDMA0 DMAREQ[9] I2C2/C2SIb I2C2 write end-transmit/C2SIb end-transmit I2C2DMA1/C2SIDMA1 DMAREQ[10] I2C3 I2C3 read I2C3DMA0 DMAREQ[11] I2C3 I2C3 write I2C3DMA1 DMAREQ[12] SCI2 SCI2 end-receive SCI2DMA0 DMAREQ[14] SCI2 SCI2 end-transmit SCI2DMA1 DMAREQ[15] RESERVED DMAREQ[13] 1 For DMA channels with more than one assigned request source, only one of the sources listed can be the DMA request generator in a given application. The device has software control to ensure that there are no conflicts between requesting modules. Each channel has two control packets attached to it, allowing the DMA to continuously load RAM and generate periodic interrupts so that the data can be read by the CPU. The control packets allow for the interrupt enable, and the channels determine the priority level of the interrupt. DMA transfers occur in one of two modes: O Non-request mode (used when transferring from memory to memory) O Request mode (used when transferring from memory to peripheral) For more detailed functional information on the DMA controller, see the TMS470R1x Direct Memory Access (DMA) Controller Reference Guide (literature number SPNU194). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 21 PRODUCT PREVIEW MODULES TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 interrupt priority (IEM to CIM) Interrupt requests originating from the VF288 peripheral modules (i.e., SPI1 or SPI2; SCI1 or SCI2; RTI; etc.) are assigned to channels within the 48-channel interrupt expansion module (IEM) where, via programmable register mapping, these channels are then mapped to the 32-channel central interrupt manager (CIM) portion of the SYS module. Programming multiple interrupt sources in the IEM to the same CIM channel effectively shares the CIM channel between sources. The CIM request channels are maskable so that individual channels can be selectively disabled. All interrupt requests can be programmed in the CIM to be of either type: O Fast interrupt request (FIQ) O Normal interrupt request (IRQ) The CIM prioritizes interrupts. The precedences of request channels decrease with ascending channel order in the CIM (0 [highest] and 31 [lowest] priority). For IEM-to-CIM default mapping, channel priorities, and their associated modules, see Table 5. PRODUCT PREVIEW Table 5. Interrupt Priority (IEM and CIM) MODULES INTERRUPT SOURCES DEFAULT CIM INTERRUPT LEVEL/ CHANNEL IEM CHANNEL SPI1 SPI1 end-transfer/overrun 0 0 RTI COMP2 interrupt 1 1 RTI COMP1 interrupt 2 2 RTI TAP interrupt 3 3 SPI2 SPI2 end-transfer/overrun 4 4 GIO GIO interrupt A 5 5 RESERVED HET I2C1 HET interrupt 1 6 7 7 I2C1 interrupt 8 8 SCI1 or SCI2 error interrupt 9 9 SCI1 SCI1 receive interrupt 10 10 C2SIb SCI1/SCI2 C2SIb interrupt 11 11 I2C2 I2C2 interrupt 12 12 SCC2 SCC2 interrupt A 13 13 SCC1 SCC1 interrupt A 14 14 RESERVED MibADC MibADC end event conversion 15 15 16 16 SCI2 SCI2 receive interrupt 17 17 DMA DMA interrupt 0 18 18 I2C3 I2C3 interrupt 19 19 SCI1 SCI1 transmit interrupt 20 20 SW interrupt (SSI) 21 21 22 22 HET interrupt 2 23 23 SCC2 SCC2 interrupt B 24 24 SCC1 SCC1 interrupt B 25 25 System RESERVED HET 22 6 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 interrupt priority (IEM to CIM) (continued) Table 5. Interrupt Priority (IEM and CIM) (Continued) SCI2 INTERRUPT SOURCES DEFAULT CIM INTERRUPT LEVEL/ CHANNEL IEM CHANNEL SCI2 transmit interrupt 26 26 MibADC end Group 1 conversion 27 27 DMA DMA Interrupt 1 28 28 GIO GIO interrupt B 29 29 MibADC end Group 2 conversion 30 30 31 31 MibADC MibADC RESERVED RESERVED 31 32-37 HECC HECC interrupt A 31 38 HECC HECC interrupt B 31 39 31 40-47 RESERVED For more detailed functional information on the IEM, see the TMS470R1x Interrupt Expansion Module (IEM) Reference Guide (literature number SPNU211). For more detailed functional information on the CIM, see the TMS470R1x System Module Reference Guide (literature number SPNU189). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 23 PRODUCT PREVIEW MODULES TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 expansion bus module (EBM) The expansion bus module (EBM) is a standalone module used to bond out both general-purpose input/output pins and expansion bus interface pins. This module supports the multiplexing of the GIO functions and the expansion bus interface functions. The module also supports 8- and 16- bit expansion bus memory interface mappings, as well as mapping of the following expansion bus signals: O 27-bit address bus (EBADDR[26:0]) for x8, 19-bit address bus (EBADDR[18:0]) for x16 O 8- or 16-bit data bus (EBDATA[7:0] or EBDATA[15:0]) O 2 write strobes (EBWR[1:0]) O 2 memory chip selects (EBCS[6:5]) O 1 output enable (EBOE) O 1 external hold signal for interfacing to slow memories (EBHOLD) O 1 DMA request line (EBDMAREQ[0]) PRODUCT PREVIEW Table 6 shows the multiplexing of I/O signals with the expansion bus interface signals. The mapping of these pins varies depending on the memory mode. Table 6. Expansion Bus Mux Mapping(1) EXPANSION BUS MODULE PINS(2) GIO X8 X16 GIOB[0] EBDMAREQ[0] EBDMAREQ[0] GIOC[0] EBOE EBOE GIOC[2:1] EBWR[1:0] EBWR[1:0] GIOC[4:3] EBCS[6:5] EBCS[6:5] GIOD[5:0] EBADDR[5:0] EBADDR[5:0] GIOE[7:0] EBDATA[7:0] EBDATA[7:0] GIOF[7:0] EBADDR[13:6] EBDATA[15:8] GIOG[7:0] EBADDR[21:14] EBADDR[13:6] GIOH[4:0] EBADDR[26:22] EBADDR[18:14] GIOH[5] EBHOLD EBHOLD 1 These mappings are controlled by the EBM mux control registers B-H (EBMXCRB - EBMXCRH) and the EBM control register 1 (EBMCR1). For GPIO functions, use GIODIRx, GIODINx, GIODOUTx, GIODSETx, and GIODCLRx. For more detailed information, see the TMS470R1x General-Purpose Input/Output (GIO) Reference Guide (literature number SPNU192) and the TMS470R1x Expansion Bus Module (EBM) Reference Guide (literature number SPNU222). 2 X8 refers to size of memory in 8-bits; X16 refers to size of memory in 16-bits. Table 7 lists the names of the expansion bus interface signals and their functions. Table 7. Expansion Bus Pins 24 PIN DESCRIPTION EBDMAREQ Expansion bus DMA request EBOE Expansion bus pin enable EBWR Expansion bus write strobe. EBWR[1] controls EBDATA[15:8] and EBWR[0] controls EBDATA[7:0] EBCS Expansion bus chip select EBADDR Expansion bus address pin EBDATA Expansion bus data pin EBHOLD Expansion bus hold. An external device may assert this signal to add wait states to an expansion bus transaction. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 MibADC The multi-buffered analog-to-digital converter (MibADC) accepts an analog signal and converts the signal to a 10-bit digital value. The VF288 MibADC module can function in two modes: compatibility mode, where its programmer’s model is compatible with the TMS470R1x ADC module and its digital results are stored in digital result registers; or in buffered mode, where the digital result registers are replaced with three FIFO buffers, one for each conversion group [event, group1 (G1), and group2 (G2)]. In buffered mode, the MibADC buffers can be serviced by interrupts or by the DMA. MibADC event trigger enhancements The MibADC includes two major enhancements over the event-triggering capability of the TMS470R1x ADC. O Both group 1 and the event group can be configured for event-triggered operation, providing up to two event-triggered groups. O The trigger source and polarity can be selected individually for both group 1 and the event group from the options identified in Table 8. SOURCE SELECT BITS FOR G1 OR EVENT (G1SRC[1:0] or EVSRC[1:0]) SIGNAL PIN NAME EVENT1 00 ADEVT EVENT2 01 HET18 EVENT3 10 Reserved EVENT4 11 Reserved EVENT # For group 1, these event-triggered selections are configured via the group 1 source select bits (G1SRC[1:0]) in the AD event source register (ADEVTSRC.[5:4]). For the event group, these event-triggered selections are configured via the event group source select bits (EVSRC[1:0]) in the AD event source register (ADEVTSRC.[1:0]). For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 25 PRODUCT PREVIEW Table 8. MibADC Event Hookup Configuration TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 JTAG interface There are two main test access ports (TAPs) on the VF748C device: O TMS470R1x CPU TAP O Device TAP for factory test Some of the JTAG pins are shared among these two TAPs. The hookup is illustrated in Figure 2. PRODUCT PREVIEW TSM470R1x CPU TCK TCK TRST TRST TMS TMS TDI TDI TDO Factory TEST TCK TRST TMS2 TMS TDI TDO Figure 2. JTAG Interface 26 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TDO TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 development system support Texas Instruments provides extensive hardware and software development support tools for the TMS470R1x family. These support tools include: Code Composer Studio™ Integrated Development Environment (IDE) – – – O Optimizing C compiler – – – – – – – O Provides extensive macro capability Allows high-speed operation Allows extensive control of the assembly process using assembler directives Automatically resolves memory references as C and assembly modules are combined TMS470R1x CPU Simulator – – – O Supports high-level language programming Full implementation of the standard ANSI C language Powerful optimizer that improves code-execution speed and reduces code size Extensive run-time support library included TMS470R1x control registers easily accessible from the C program Interfaces C functions and assembly functions easily Establishes comprehensive, easy-to-use tool set for the development of high-performance microcontroller applications in C/C++ Assembly language tools (assembler and linker) – – – – O Fully integrated suite of software development tools Includes Compiler/Assembler/Linker, Debugger, and Simulator Supports Real-Time analysis, data visualization, and open API Provides capability to simulate CPU operation without emulation hardware Allows inspection and modifications of memory locations Allows debugging programs in C or assembly language XDS emulation communication kits – Allows high-speed JTAG communication to the TMS470R1x emulator or target board For more information on pricing and availability, contact the nearest TI field sales office or authorized distributor. Code Composer Studio is a trademark of Texas Instruments. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 27 PRODUCT PREVIEW O TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 documentation support Extensive documentation supports all of the TMS470 microcontroller family generation of devices. The types of documentation available include: data sheets with design specifications; complete user’s guides for all devices and development support tools; and hardware and software applications. Useful reference documentation includes: PRODUCT PREVIEW O O 28 User’s Guides – TMS470R1x 32-Bit RISC Microcontroller Family User’s Guide (literature number SPNU134) – TMS470R1x C/C++ Compiler User’s Guide (literature number SPNU151) – TMS470R1x Code Generation Tools Getting Started Guide (literature number SPNU117) – TMS470R1x C Source Debugger User’s Guide (literature number SPNU124) – TMS470R1x Assembly Language Tools User’s Guide (literature number SPNU118) – TMS470R1x System Module Reference Guide (literature number SPNU189) – TMS470R1x Direct Memory Access (DMA) Controller Reference Guide (literature number SPNU194) – TMS470R1x Serial Peripheral Interface (SPI) Reference Guide (literature number SPNU195) – TMS470R1x Serial Communication Interface (SCI) Reference Guide (literature number SPNU196) – TMS470R1x Controller Area Network (CAN) Reference Guide (literature number SPNU197) – TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199) – TMS470R1x External Clock Prescale (ECP) Reference Guide (literature number SPNU202) – TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206) – TMS470R1x F05 Flash Reference Guide (literature number SPNU213) – TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide (literature number SPNU214) – TMS470R1x Frequency-Modulated Phase-Locked Loop (FMPLL) Clock Module Reference Guide (literature number SPNU221) – TMS470R1x Expansion Bus Module (EBM) Reference Guide (literature number SPNU222) – TMS470R1x Inter-Integrated Circuit (I2C) Reference Guide (literature number SPNU223) Application Reports: – Analog Watchdog Resistor, Capacitor and Discharge Interval Selection Constraints (literature number SPNA005) – F05/C05 Power Up Reset and Power Sequencing Requirements (literature number SPNA009) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 device numbering conventions Figure 3 illustrates the numbering and symbol nomenclature for the TMS470R1x family. TMS 470 R1 V F 28 8 PGE A Prefix: TMS = Standard Prefix for Fully Qualified Devices Family: 470 = TMS470 RISC-Embedded Microcontroller Family V = 1.8-V Core Voltage CPU Type: Device Type: Program Memory Size C F L B R = = = = = Masked ROM Flash ROM-less System Emulator for Development Tools RAM R1 = ARM7TDMI CPU 28 = ’28 Devices Containing the Following Modules: – FMZPLL Clock – 16K-Byte Static RAM – 1K-Byte HET RAM (64 Instructions) – Digital Watchdog (DWD) – Interrupt Expansion Module (IEM) – Memory Security Module (MSM) – High-End Lite (HET) – Real-Time Interrupt (RTI) – 10-Bit, 12-Input Multi-buffered Analog-to-Digital Converter (MibADC) – Two Serial Peripheral Interface (SPI) Modules – Two Serial Communications Interface (SCI) Modules – Three Inter-Integrated Circuit (I2C) Modules – Class II Serial Interface B (C2SIb) Module – Standard Controller Area Network (CAN) [SCC] – External Clock Prescaler (ECP) 8 = 0 PRODUCT PREVIEW Program Memory Types: – No on-chip program memory 1–5 – 1 to < 128K Bytes 6–B – 128K Bytes to < 1M Bytes C–F – > 1M Bytes Operating Free-Air Temperature Ranges: A = T = Q = –40°C to 85°C –40°C to 105°C –40°C to 125°C Package: PGE = 144-Pin Plastic Low-Profile Quad Flatpack (LQFP) PZ = 100-Pin Plastic Low-Profile Quad Flatpack (LQFP) Figure 3. TMS470R1x Family Nomenclature POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 29 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 device identification code register The device identification code register identifies the silicon version, the technology family (TF), a ROM or flash device, and an assigned device-specific part number (see Table 9). The VF288 device identification code register value is 0x095F. Table 9. TMS470 Device ID Bit Allocation Register BIT 31 30 29 28 27 26 25 23 22 21 20 19 18 17 BIT 16 6 5 4 3 2 1 BIT 0 Reserved FFFF_FFF0 BIT 15 LEGEND: For bits 3–15: For bits 0–2: PRODUCT PREVIEW 24 14 13 12 11 10 9 8 7 VERSION TF R/F PART NUMBER 1 1 1 R-K R-K R-K R-K R-1 R-1 R-1 R = Read only, -K = Value constant after RESET R = Read only, -1 = Value after RESET Transmission Request Reset Register (CANTRR) Field Descriptions Bit Name Value Description 31–16 Reserved Reads are undefined and writes have no effect. 15–12 VERSION Silicon version (revision) bits These bits identify the silicon version of the device. 11 TF Technology family bit This bit distinguishes the technology family core power supply: 10 0 3.3 V for F10/C10 devices 1 1.8 V for F05/C05 devices ROM/Flash bit This bit distinguishes between ROM and Flash devices: R/F 0 Flash device 1 ROM device 9–3 PART NUMBER Device-specific part number bits These bits identify the assigned device-specific part number. The assigned device-specific part number for the VF288 device is 0101011. 2–0 1 Mandatory High Bits 2, 1, and 0 are tied high by default. 30 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 device part numbers Table 10 lists all the available TMS470R1VF288 devices. Table 10. Device Part Number DEVICE PART NUMBER PROGRAM MEMORY ROM FLASH EEPROM PACKAGE TYPE 100-PIN LQFP TEMPERATURE RANGES 144-PIN LQFP −40°C TO 85°C X TMS470R1VF288PGEA X X TMS470R1VF288PGEQ X X TMS470R1VF288PZA X X TMS470R1VF288PZQ X X TMS470R1VF288PGEAR X TMS470R1VF288PGEQR X TMS470R1VF288PZAR X X TMS470R1VF288PZQR X X −40°C TO 105°C −40°C TO 125°C X X X X X X X X PRODUCT PREVIEW X POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 31 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 DEVICE ELECTRICAL SPECIFICATIONS AND TIMING PARAMETERS absolute maximum ratings over operating free-air temperature range(1) Supply voltage ranges: VCC (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 2.5 V Supply voltage ranges: VCCIO , VCCAD , VCCP (flash pump)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V Input voltage range: All 5 V tolerant input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6.0 V All other input pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V Input clamp current: All 5 V tolerant pins, PORRST, TRST, TEST and TCK (VI < 0) . . . . . . . . . . . . . −20mA(3) ADIN[0:11] IIK (VI < 0 or VI > VCCAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±10 mA All other pins IIK (VI < 0 or VI > VCCIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Operating free-air temperature ranges, TA: A version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C Q version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C PRODUCT PREVIEW Operating junction temperature range, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 150°C 1 Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2 All voltage values are with respect to their associated grounds. 3 These pins do not have an internal clamp diode to a positive supply voltage. device recommended operating conditions(4) MIN NOM MAX UNIT 1.71 2.05 V VCC Digital logic supply voltage (Core) VCCIO Digital logic supply voltage (I/O) 3 3.6 V VCCAD ADC supply voltage 3 3.6 V VCCP Flash pump supply voltage 3 3.6 V VSS Digital logic supply ground VSSAD ADC supply ground TA Operating free-air temperature TJ Operating junction temperature 0 A version Q version 4 All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD. 32 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 V − 0.1 0.1 V − 40 85 °C − 40 125 °C − 40 150 °C TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 electrical characteristics over recommended operating free-air temperature range(1) VIL TEST CONDITIONS Low-level input voltage All − 0.3 inputs(2) VIH High-level input voltage All inputs Vth Input threshold voltage AWD only(3) VOL Low-level output voltage(4) VOH High-level output voltage(4) IIC Input clamp current (I/O pins)(5) 2 1.35 IOL = IOL MAX IOH = IOH MIN IOH = 50 μA 0.8 VCCIO −1 1 VI = VCCIO 5 40 RST 2 –40 –5 VI = VCCIO −1 1 No pullup or pulldown −1 1 VI = VSS −1 1 VI = VCCIO −1 1 VI = 5 V 0.5 20 1 40 mA μA μA 8 4 VOL = VOL MAX (6) All other 3.3 V I/O 2 5 V tolerant 4 CLKOUT, TDI, TDO, TMS, TMS2 RST V V VCCIO − 0.2 IIH Pulldown VI = 5.5 V High-level output current V V 0.2 CLKOUT, AWD, TDI, TDO, TMS, TMS2 V 1.8 −2 Input current (5 V tolerant input pins) IOH 0.8 VCCIO + 0.3 VI < VSSIO − 0.3 or VI > VCCIO + 0.3 VI = VSS UNIT V VI = VSS All other pins Low-level output current MAX IIL Pulldown IIH Pullup IOL TYP 0.2 VCCIO IOL = 50 μA Input current (3.3 V input pins) IIL Pullup II MIN 0.15 Input hysteresis mA −8 VOH = VOH MIN −4 All other 3.3 V I/O −2 5 V tolerant −4 (6) mA 1 Source currents (out of the device) are negative while sink currents (into the device) are positive. 2 This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST timings section on page 40. 3 These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide (literature number SPNU189). 4 VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied. 5 Parameter does not apply to input-only or output-only pins. 6 Some of the 2 mA buffers on this device are zero-dominant buffers, as indicated by a -z in the Output Current column of the Terminal Functions table. If two of these buffers are shorted together and one is outputting a low level and the other is outputting a high level, the resulting value will always be low. 7 For Flash banks/pumps in sleep mode. 8 ICC in halt mode is linear between 30C and 85C. 9 I/O pins configured as inputs or outputs with no load. All pulldown inputs ≤ 0.2 V. All pullup inputs ≥ VCCIO − 0.2 V. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 33 PRODUCT PREVIEW PARAMETER Vhys TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 electrical characteristics over recommended operating free-air temperature range(1) (continued) PARAMETER TEST CONDITIONS VCC digital supply current (operating mode) ICC VCC digital supply current (standby mode)(7) MAX UNIT SYSCLK = 24 MHz, VCC = 2.05 V MIN 90 mA TYP SYSCLK = 48 MHz, VCC = 2.05 V 115 mA A version (85°C) OSCIN = 4 MHz, VCC = 2.05 V 750 μA Q version (125°C) OSCIN = 4 MHz, VCC = 2.05 V 1.25 mA 30 μA TA = 30°C, VCC = 2.05 V A version (85°C), VCC = 2.05 V 160 μA Q version (125°C), VCC = 2.05 V 550 μA No DC load, VCCIO = 3.6 V(9) 15 mA No DC load, VCCIO = 3.6 V (9) 10 μA VCCIO digital supply current (halt mode) No DC load, VCCIO = 3.6 V (9) 5 μA VCCAD supply current (operating mode) All frequencies, VCCAD = 3.6 V 25 mA VCC digital supply current (halt mode) (7)(8) VCCIO digital supply current (operating mode) PRODUCT PREVIEW ICCIO ICCAD ICCP VCCIO digital supply current (standby mode) VCCAD supply current (standby mode) No DC load, VCCAD = 3.6 V 10 μA VCCAD supply current (halt mode) VCCAD = 3.6 V 5 μA VCCP = 3.6 V read operation 60 mA VCCP = 3.6 V program and erase 70 mA 10 μA 5 μA VCCP pump supply current (9) VCCP = 3.6 V standby mode operation(7) VCCP = 3.6 V halt mode operation(7) CI Input capacitance 2 pF CO Output capacitance 3 pF 1 Source currents (out of the device) are negative while sink currents (into the device) are positive. 2 This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST timings section on page 40. 3 These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide (literature number SPNU189). 4 VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied. 5 Parameter does not apply to input-only or output-only pins. 6 Some of the 2 mA buffers on this device are zero-dominant buffers, as indicated by a -z in the Output Current column of the Terminal Functions table. If two of these buffers are shorted together and one is outputting a low level and the other is outputting a high level, the resulting value will always be low. 7 For Flash banks/pumps in sleep mode. 8 ICC in halt mode is linear between 30°C and 85°C. 9I/O pins configured as inputs or outputs with no load. All pulldown inputs ≤ 0.2 V. All pullup inputs ≥ VCCIO − 0.2 V. 34 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 PARAMETER MEASUREMENT INFORMATION IOL Tester Pin Electronics 50 Ω VLOAD Output Under Test CL IOH Where: IOL = IOL MAX for the respective pin(A) IOH = IOH MIN for the respective pin(A) VLOAD = 1.5 V PRODUCT PREVIEW CL = 150-pF typical load-circuit capacitance(B) NOTES: A. For these values, see the "electrical characteristics over recommended operating free-air temperature range" table. B. All timing parameters measured using an external load capacitance of 150 pF unless otherwise noted. Figure 4. Test Load Circuit POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 35 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 timing parameter symbology Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows: CM CO ER ICLK M OSC, OSCI OSCO P R R0 R1 Compaction, CMPCT CLKOUT Erase Interface clock Master mode OSCIN OSCOUT Program, PROG Ready Read margin 0, RDMRGN0 Read margin 1, RDMRGN1 RD RST RX S SCC SIMO SOMI SPC SYS TX Read Reset, RST SCInRX Slave mode SCInCLK SPInSIMO SPInSOMI SPInCLK System clock SCInTX r su t v w rise time setup time transition time valid time pulse duration (width) PRODUCT PREVIEW Lowercase subscripts and their meanings are: a c d f h access time cycle time (period) delay time fall time hold time The following additional letters are used with these meanings: 36 H High X L V Low Valid Z POST OFFICE BOX 1443 Unknown, changing, or don’t care level High impedance • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 external reference resonator/crystal oscillator clock option The oscillator is enabled by connecting the appropriate fundamental 4–10 MHz resonator/crystal and load capacitors across the external OSCIN and OSCOUT pins as shown in Figure 5a. The oscillator is a singlestage inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test measurement and HALT mode. TI strongly encourages each customer to submit samples of the device to the resonator/crystal vendors for validation. The vendors are equipped to determine what load capacitors will best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over temperature/voltage extremes. An external oscillator source can be used by connecting a 1.8 V clock signal to the OSCIN pin and leaving the OSCOUT pin unconnected (open) as shown in Figure 5b. C1(A) OSCOUT Crystal OSCIN C2(A) OSCOUT External Clock Signal (toggling 0–1.8 V) (a) PRODUCT PREVIEW OSCIN (b) A. The values of C1 and C2 should be provided by the resonator/crystal vendor. Figure 5. Crystal/Clock Connection POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 37 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 FMZPLL and clock specifications timing requirements for FMZPLL circuits enabled or disabled MIN f(OSC) Input clock frequency tc(OSC) Cycle time, OSCIN tw(OSCIL) tw(OSCIH) f(OSCRST) TYP 4 MAX UNIT 10 MHz 100 ns Pulse duration, OSCIN low 15 ns Pulse duration, OSCIN high 15 ns OSC FAIL frequency (1) 53 kHz 1 Causes a device reset (specifically a clock reset) by setting the RST OSC FAIL (GLBCTRL.15) and the OSC FAIL flag (GLBSTAT.1) bits equal to 1. For more detailed information on these bits and device resets, see the TMS470R1x System Module Reference Guide (literature number SPNU189). switching characteristics over recommended operating conditions for clocks(1)(2)(3) TEST CONDITIONS(3) PRODUCT PREVIEW PARAMETER f(SYS) System clock frequency(4) f(CONFIG) System clock frequency - Flash config mode f(ICLK) Interface clock frequency f(ECLK) External clock output frequency for ECP module Cycle time, system clock tc(CONFIG) Cycle time, system clock - flash config mode tc(ECLK) Cycle time, interface clock Cycle time, ECP module external clock output MAX UNIT 48 MHz 24 MHz 24 MHz Pipeline mode enabled 25 MHz Pipeline mode disabled tc(SYS) tc(ICLK) MIN Pipeline mode enabled Pipeline mode disabled 24 MHz Pipeline mode enabled 25 MHz Pipeline mode disabled 24 MHz Pipeline mode enabled 20.8 ns Pipeline mode disabled 41.6 ns 41.6 ns Pipeline mode enabled 40 ns Pipeline mode disabled 41.6 ns Pipeline mode enabled 40 ns Pipeline mode disabled 41.6 ns 1 f(SYS) = M × f(OSC) / R, where M = {8}, R = {1,2,3,4,5,6,7,8} when PLLDIS = 0. R is the system-clock divider determined by the CLKDIVPRE [2:0] bits in the global control register (GLBCTRL.[2:0]) and M is the PLL multiplier determined by the MULT4 bit also in the GLBCTRL register (GLBCTRL.3). f(SYS) = f(OSC) / R, where R = {1,2,3,4,5,6,7,8} when PLLDIS = 1. f(ICLK) = f(SYS) / X, where X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0.[4:1] bits in the SYS module. 2 f(ECLK) = f(ICLK) / N, where N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL.[7:0] register bits in the ECP module. 3 Pipeline mode enabled or disabled is determined by the ENPIPE bit (FMREGOPT.0). 4 Flash Vread must be set to 5V to achieve maximum system clock frequency. 38 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 FMZPLL and clock specifications (continued) switching characteristics over recommended operating conditions for external clocks (see Figure 6 and Figure 7)(1)(2)(3) PARAMETER TEST CONDITIONS MIN (4) SYSCLK or MCLK 1 tw(COL) Pulse duration, CLKOUT low ICLK: X is even or 1(5) ICLK: X is odd and not 0.5tc(ICLK) – tf 1(5) Pulse duration, CLKOUT high ICLK: X is even or 1(5) ICLK: X is odd and not 0.5tc(ICLK) – tr 1(5) 4 tw(EOL) tw(EOH) Pulse duration, ECLK low 0.5tc(ECLK) – tf 0.5tc(ECLK) – tf N is odd and X is even Pulse duration, ECLK high N is odd and X is odd and not 1 0.5tc(ECLK) + 0.5tc(SYS) – tf N is even and X is even or odd 0.5tc(ECLK) – tr N is odd and X is even 0.5tc(ECLK) – tr N is odd and X is odd and not 1 ns 0.5tc(ICLK) – 0.5tc(SYS) – tr N is even and X is even or odd 3 ns 0.5tc(SYS) – tr SYSCLK or MCLK tw(COH) UNIT 0.5tc(ICLK) + 0.5tc(SYS) – tf (4) 2 MAX 0.5tc(SYS) – tf ns ns PRODUCT PREVIEW NO. 0.5tc(ECLK) – 0.5tc(SYS) – tr 1 X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0.[4:1] bits in the SYS module. 2 N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL.[7:0] register bits in the ECP module. 3 CLKOUT/ECLK pulse durations (low/high) are a function of the OSCIN pulse durations when PLLDIS is active. 4 Clock source bits are selected as either SYSCLK (CLKCNTL.[6:5] = 11 binary) or MCLK (CLKCNTL.[6:5] = 10 binary). 5 Clock source bits are selected as ICLK (CLKCNTL.[6:5] = 01 binary). 2 CLKOUT 1 Figure 6. CLKOUT Timing Diagram 4 ECLK 3 Figure 7. ECLK Timing Diagram POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 39 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 RST and PORRST timings timing requirements for PORRST (see Figure 8) MIN PRODUCT PREVIEW NO. MAX UNIT VCCPORL VCC low supply level when PORRST must be active during power up VCCPORH VCC high supply level when PORRST must remain active during power up and become active during power down VCCIOPORL VCCIO low supply level when PORRST must be active during power up VCCIOPORH VCCIO high supply level when PORRST must remain active during power up and become active during power down VIL Low-level input voltage after VCCIO > VCCIOPORH VIL(PORRST) Low-level input voltage of PORRST before VCCIO > VCCIOPORL 3 tsu(PORRST)r Setup time, PORRST active before VCCIO > VCCIOPORL during power up 0 ms 5 tsu(VCCIO)r Setup time, VCCIO > VCCIOPORL before VCC > VCCPORL 0 ms 6 th(PORRST)r Hold time, PORRST active after VCC > VCCPORH 1 ms 0.6 1.5 V V 1.1 2.75 V V 0.2 VCCIO V 0.5 V 7 tsu(PORRST)f Setup time, PORRST active before VCC ≤ VCCPORH during power down 8 μs 8 th(PORRST)rio Hold time, PORRST active after VCCIO > VCCIOPORH 1 ms 9 th(PORRST)d Hold time, PORRST active after VCC < VCCPORL 0 ms 10 tsu(PORRST)fio Setup time, PORRST active before VCCIO ≤ VCCIOPORH during power down 0 ns 11 tsu(VCCIO)f Setup time, VCC < VCCPORL before VCCIO < VCCIOPORL 0 ns VCCP/VCCIO VCCIOPORH VCCIOPORH VCCIO 8 VCC VCC VCCPORH 6 VCCIOPORL VCC VCCP/VCCIO PORRST 11 VCCPORH 7 6 10 7 VCCPORL VCCPORL VCCIOPORL 5 3 VIL(PORRST) 9 VIL VIL VIL VIL(PORRST) VIL Figure 8. PORRST Timing Diagram switching characteristics over recommended operating conditions for RST(1) PARAMETER tv(RST) tfsu MIN 4112tc(OSC) Valid time, RST active after PORRST inactive 8tc(SYS) Valid time, RST active (all others) Flash start up time, from RST inactive to fetch of first instruction from Flash (Flash pump stabilization time) 670tc(OSC) MAX UNIT ns ns 1 Specified values do NOT include rise/fall times. For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. 40 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 JTAG scan interface timing (JTAG clock specification 10-MHz and 50-pF load on TDO output) MIN NO. MAX UNIT 1 tc(JTAG) Cycle time, JTAG low and high period 50 ns 2 tsu(TDI/TMS - TCKr) Setup time, TDI, TMS before TCK rise (TCKr) 15 ns 3 th(TCKr -TDI/TMS) Hold time, TDI, TMS after TCKr 15 ns 4 th(TCKf -TDO) Hold time, TDO after TCKf 10 ns 5 td(TCKf -TDO) Delay time, TDO valid after TCK fall (TCKf) 45 ns TCK 1 1 TMS TDI 2 PRODUCT PREVIEW 3 TDO 4 5 Figure 9. JTAG Scan Timings POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 41 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 output timings switching characteristics for output timings versus load capacitance (CL) (see Figure 10) MIN PARAMETER tr tf PRODUCT PREVIEW tr tf tr tf tr tf Rise time, AWD, CLKOUT, TDI, TDO, TMS, TMS2 Fall time, AWD, CLKOUT, TDI, TDO, TMS, TMS2 Rise time, RST Fall time, RST Rise time,4mA, 5 V tolerant pins Fall time, 4mA, 5 V tolerant pins 0.5 2.5 CL= 50 pF 1.5 5.0 CL = 100 pF 3.0 9.0 CL = 150 pF 4.5 12.5 CL = 15 pF 0.5 2.5 CL= 50 pF 1.5 5.0 CL = 100 pF 3.0 9.0 CL = 150 pF 4.5 12.5 CL = 15 pF 2.5 8 CL = 50 pF 5 14 CL = 100 pF 9 23 CL = 150 pF 13 32 CL = 15 pF 2.5 8 CL = 50 pF 5 14 CL = 100 pF 9 23 CL = 150 pF 13 32 CL = 15 pF 3 10 CL = 50 pF 3.5 12 CL = 100 pF 7 21 CL = 150 pF 9 28 CL = 15 pF 2 8 CL = 50 pF 2.5 9 8 25 CL = 150 pF 11 35 CL = 15 pF 2.5 10 CL = 100 pF Rise time, all other output pins Fall time, all other output pins CL = 50 pF 6.0 25 CL = 100 pF 12 45 CL = 150 pF 18 65 CL = 15 pF 3 10 CL = 50 pF 8.5 25 CL = 100 pF 16 45 CL = 150 pF 23 65 tr tf 80% Output 20% VCC 80% 20% Figure 10. CMOS-Level Outputs 42 POST OFFICE BOX 1443 MAX UNIT CL = 15 pF • HOUSTON, TEXAS 77251-1443 0 ns ns ns ns ns ns ns ns TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 input timings timing requirements for input timings(1) (see Figure 11) MIN tpw tc(ICLK) + 10 Input minimum pulse width MAX UNIT ns 1 tc(ICLK) = interface clock cycle time = 1/f(ICLK) tpw Input 80% 20% VCC 80% 20% 0 PRODUCT PREVIEW Figure 11. CMOS-Level Inputs POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 43 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 flash timings timing requirements for program flash(1)(2) tprog(16-bit) Half word (16-bit) programming time tprog(Total) 288K-byte programming terase(sector) Sector erase time twec Write/erase cycles MIN TYP MAX UNIT 4 16 200 μs 2 8 s 5 15 time(3) 1000 10000 s cycles tfp(RST) Flash pump settling time from RST to SLEEP 134tc(SYS) ns tfp(SLEEP) Initial flash pump settling time from SLEEP to STANDBY 134tc(SYS) ns tfp(STANDBY) Initial flash pump settling time from STANDBY to ACTIVE 67tc(SYS) ns 1 For more detailed information on the flash core sectors, see the flash program and erase section of this data sheet. PRODUCT PREVIEW 2 Flash program/erase is specified only at the temperature range of 25°C to 85°C (A version), or 25°C to 125°C (Q version). 3 The 288K-byte programming time includes overhead of state machine. 44 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SPIn master mode timing parameters SPIn master mode external timing parameters (CLOCK PHASE = 0, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(1)(2)(3)(see Figure 12) 1 2(5) 3(5) 4 MAX 100 256tc(ICLK) Cycle time, SPInCLK tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5 tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5 td(SPCH-SIMO)M Delay time, SPInCLK high to SPInSIMO valid (clock polarity = 0) 10 td(SPCL-SIMO)M Delay time, SPInCLK low to SPInSIMO valid (clock polarity = 1) 10 tv(SPCL-SIMO)M Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 0) tc(SPC)M – 5 – tf tv(SPCH-SIMO)M Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 1) tc(SPC)M – 5 – tr tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 0) 6 tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 1) 6 tv(SPCL-SOMI)M Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 0) 4 tv(SPCH-SOMI)M Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 1) 4 6(5) 7(5) MIN tc(SPC)M (5) 5(5) (4) UNIT ns PRODUCT PREVIEW NO. 1 The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is cleared. 2 tc(ICLK) = interface clock cycle time = 1/f(ICLK) 3 For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. 4 When the SPI is in Master mode, the following must be true: For PS values from 1 to 255:tc(SPC)M ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits. For PS values of 0:tc(SPC)M = 2tc(ICLK) ≥ 100 ns. 5 The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 45 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SPIn master mode timing parameters (continued) 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSIMO Master Out Data Is Valid 6 PRODUCT PREVIEW 7 SPInSOMI Master In Data Must Be Valid Figure 12. SPIn Master Mode External Timing (CLOCK PHASE = 0) 46 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SPIn master mode timing parameters (continued) SPIn master mode external timing parameters (CLOCK PHASE = 1, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(1)(2)(3) (see Figure 13) 1 2(5) tc(SPC)M Cycle time, SPInCLK tw(SPCH)M (4) MIN MAX 100 256tc(ICLK) Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5 tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5 tv(SIMO-SPCH)M Valid time, SPInCLK high after SPInSIMO data valid (clock polarity = 0) at 85°C 0.5tc(SPC)M – 10 4(5) t v(SIMO-SPCH)M Valid time, SPInCLK high after SPInSIMO data valid (clock polarity = 0) at 125°C 0.5tc(SPC)M – 12 tv(SIMO-SPCL)M Valid time, SPInCLK low after SPInSIMO data valid (clock polarity = 1) 0.5tc(SPC)M – 10 tv(SPCH-SIMO)M Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 0) 0.5tc(SPC)M – 5 – tr tv(SPCL-SIMO)M Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 1) 0.5tc(SPC)M – 5 – tf 3(5) 5(5) 6(5) 7(5) tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 0) 6 tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 1) 6 tv(SPCH-SOMI)M Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 0) 4 tv(SPCL-SOMI)M Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 1) 4 UNIT ns PRODUCT PREVIEW NO. 1 The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is set. 2 tc(ICLK) = interface clock cycle time = 1/f(ICLK) 3 For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. 4 When the SPI is in Master mode, the following must be true: For PS values from 1 to 255:tc(SPC)M ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits. For PS values of 0:tc(SPC)M = 2tc(ICLK) ≥ 100 ns. 5 The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 47 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SPIn master mode timing parameters (continued) 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSIMO Master Out Data Is Valid Data Valid 6 PRODUCT PREVIEW 7 SPInSOMI Master In Data Must Be Valid Figure 13. SPIn Master Mode External Timing (CLOCK PHASE = 1) 48 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SPIn slave mode timing parameters SPIn slave mode external timing parameters (CLOCK PHASE = 0, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4)(see Figure 14) 1 2(6) 3(6) (5) MIN MAX 100 256tc(ICLK) tc(SPC)S Cycle time, SPInCLK tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) td(SPCH-SOMI)S Delay time, SPInCLK high to SPInSOMI valid (clock polarity = 0) 6 + tr td(SPCL-SOMI)S Delay time, SPInCLK low to SPInSOMI valid (clock polarity = 1) 6 + tf tv(SPCH-SOMI)S Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 0) tc(SPC)S – 6 – tr tv(SPCL-SOMI)S Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 1) tc(SPC)S – 6 – tf tsu(SIMO-SPCL)S Setup time, SPInSIMO before SPInCLK low (clock polarity = 0) 6 tsu(SIMO-SPCH)S Setup time, SPInSIMO before SPInCLK high (clock polarity = 1) 6 tv(SPCL-SIMO)S Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 0) 6 tv(SPCH-SIMO)S Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 1) 6 4(6) 5(6) 6(6) 7(6) UNIT ns PRODUCT PREVIEW NO 1 The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is cleared. 2 If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1.[12:5]. 3 For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. 4 tc(ICLK) = interface clock cycle time = 1/f(ICLK) 5 When the SPIn is in Slave mode, the following must be true: For PS values from 1 to 255:tc(SPC)S ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits. For PS values of 0:tc(SPC)S = 2tc(ICLK) ≥ 100 ns. 6 The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 49 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SPIn slave mode timing parameters (continued) 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSOMI SPISOMI Data Is Valid 6 PRODUCT PREVIEW 7 SPInSIMO SPISIMO Data Must Be Valid Figure 14. SPIn Slave Mode External Timing (CLOCK PHASE = 0) 50 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SPIn slave mode timing parameters (continued) SPIn slave mode external timing parameters (CLOCK PHASE = 1, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4)(see Figure 15) 1 2(6) 3(6) tc(SPC)S Cycle time, SPInCLK tw(SPCH)S MIN MAX 100 256tc(ICLK) Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)S –0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)S –0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)S –0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)S –0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tv(SOMI-SPCH)S Valid time, SPInCLK high after SPInSOMI data valid (clock polarity = 0) 0.5tc(SPC)S – 6 – tr tv(SOMI-SPCL)S Valid time, SPInCLK low after SPInSOMI data valid (clock polarity = 1) 0.5tc(SPC)S – 6 – tf tv(SPCH-SOMI)S Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 0) 0.5tc(SPC)S – 6 – tr tv(SPCL-SOMI)S Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 1) 0.5tc(SPC)S – 6 – tf tsu(SIMO-SPCH)S Setup time, SPInSIMO before SPInCLK high (clock polarity = 0) 6 tsu(SIMO-SPCL)S Setup time, SPInSIMO before SPInCLK low (clock polarity = 1) 6 tv(SPCH-SIMO)S Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 0) 6 tv(SPCL-SIMO)S Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 1) 6 4(6) 5(6) 6(6) 7 (5) (6) UNIT ns PRODUCT PREVIEW NO 1 The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is set. 2 If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1.[12:5]. 3 For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. 4 tc(ICLK) = interface clock cycle time = 1/f(ICLK) 5 When the SPIn is in Slave mode, the following must be true: For PS values from 1 to 255:tc(SPC)S ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits. For PS values of 0:tc(SPC)S = 2tc(ICLK) ≥ 100 ns. 6 The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 51 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SPIn slave mode timing parameters (continued) 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSOMI SPISOMI Data Is Valid Data Valid 6 PRODUCT PREVIEW 7 SPInSIMO SPISIMO Data Must Be Valid Figure 15. SPIn Slave Mode External Timing (CLOCK PHASE = 1) 52 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SCIn isosynchronous mode timings — internal clock timing requirements for internal clock SCIn isosynchronous mode(1)(2)(3) (see Figure 16) (BAUD + 1) IS ODD AND BAUD ≠ 0 UNIT MIN MAX MIN MAX 2tc(ICLK) 224tc(ICLK) 3tc(ICLK) (224 –1) tc(ICLK) 1 tc(SCC) Cycle time, SCInCLK 2 tw(SCCL) Pulse duration, SCInCLK low 0.5tc(SCC) – tf 0.5tc(SCC) + 5 0.5tc(SCC) +0.5tc(ICLK) – tf 0.5tc(SCC) +0.5tc(ICLK) ns 3 tw(SCCH) Pulse duration, SCInCLK high 0.5tc(SCC) – tr 0.5tc(SCC) + 5 0.5tc(SCC) –0.5tc(ICLK) – tr 0.5tc(SCC) –0.5tc(ICLK) ns 4 td(SCCH-TXV) Delay time, SCInCLK high to SCInTX valid 5 tv(TX) Valid time, SCInTX data after SCInCLK low 6 tsu(RX-SCCL) Setup time, SCInRX before SCInCLK low 7 tv(SCCL-RX) Valid time, SCInRX data - tc(ICLK) + tf + 20 after SCInCLK low 10 10 ns ns tc(SCC) – 10 tc(SCC) – 10 ns tc(ICLK) + tf + 20 tc(ICLK) + tf + 20 ns - tc(ICLK) + tf + 20 ns PRODUCT PREVIEW (BAUD + 1) IS EVEN OR BAUD = 0 NO. 1 BAUD = 24-bit concatenated value formed by the SCI[H,M,L]BAUD registers. 2 tc(ICLK) = interface clock cycle time = 1/f(ICLK) 3 For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. 1 3 2 SCICLK 5 4 SCITX Data Valid 6 7 SCIRX NOTE : Data Valid Data transmission/reception characteristics for isosynchronous mode with internal clocking are similar to the asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception on the SCICLK falling edge. Figure 16. SCIn Isosynchronous Mode Timing Diagram for Internal Clock POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 53 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 SCIn isosynchronous mode timings — external clock timing requirements for external clock SCIn isosynchronous mode(1)(2) (see Figure 17) MIN NO. (3) MAX 1 tc(SCC) Cycle time, SCInCLK 2 tw(SCCH) Pulse duration, SCInCLK high 0.5tc(SCC) – 0.25tc(ICLK) 0.5tc(SCC) + 0.25tc(ICLK) ns 3 tw(SCCL) Pulse duration, SCInCLK low 0.5tc(SCC) – 0.25tc(ICLK) 0.5tc(SCC) + 0.25tc(ICLK) ns 4 td(SCCH-TXV) Delay time, SCInCLK high to SCInTX valid 2tc(ICLK) + 12 + tr ns 8tc(ICLK) 5 tv(TX) Valid time, SCInTX data after SCInCLK low 6 tsu(RX-SCCL) Setup time, SCInRX before SCInCLK low 7 tv(SCCL-RX) Valid time, SCInRX data after SCInCLK low ns 2tc(SCC)–10 0 2tc(ICLK) + 10 PRODUCT PREVIEW 1 2 3 SCICLK 5 4 SCITX Data Valid 6 7 SCIRX NOTE : Data Valid Data transmission/reception characteristics for isosynchronous mode with external clocking are similar to the asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception on the SCICLK falling edge. Figure 17. SCIn Isosynchronous Mode Timing Diagram for External Clock POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 ns ns 1 tc(ICLK) = interface clock cycle time = 1/f(ICLK) 2 For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. 3 When driving an external SCInCLK, the following must be true: tc(SCC) ≥ 8tc(ICLK) 54 UNIT ns TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 I2C timing Table 11 below assumes testing over recommended operating conditions. Table 11. I2C Signals (SDA and SCL) Switching Characteristics(1) STANDARD FAST MODE MODE UNIT MIN MAX MIN MAX tc(I2CCLK) Cycle time, I2C module clock 75 tc(SCL) Cycle time, SCL 10 2.5 μs tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 μs th(SCLL-SDAL) Hold time, SCL low after SDA low (for a repeated START condition) 4 0.6 μs tw(SCLL) Pulse duration, SCL low 4.7 1.3 μs tw(SCLH) Pulse duration, SCL high 4 0.6 μs tsu(SDA-SCLH) Setup time, SDA valid before SCL high 250 100 th(SDA-SCLL) Hold time, SDA valid after SCL low tw(SDAH) Pulse duration, SDA high between STOP and START conditions For I2C bus devices tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) tw(SP) Cb 150 0 3.45(2) 0 4.7 1.3 4.0 0.6 0 Pulse duration, spike (must be suppressed) (3) 75 400 Capacitive load for each bus line 150 ns ns 0.9 μs μs μs 50 ns 400 pF 1 The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. 2 The maximum th(SDA-SCLL) for I2C bus devices needs only be met if the device does not stretch the low period (tw(SCLL)) of the SCL signal. 3 Cb = The total capacitance of one bus line in pF. SDA tsu(SDA-SCLH) tw(SDAH) tw(SCLL) tr(SCL) tw(SP) tsu(SCLH-SDAH) tw(SCLH) SCL tc(SCL) th(SCLL-SDAL) Stop tf(SCL) th(SDA-SCLL) Start th(SCLL-SDAL) tsu(SCLH-SDAL) Repeated Start Stop NOTE:A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. NOTE:The maximum th(SDA-SCLL) needs only be met if the device does not stretch the LOW period (tw(SCLL)) of the SCL signal. NOTE:A Fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH). NOTE:Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed. Figure 18. I2C Timings POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 55 PRODUCT PREVIEW PARAMETER TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 standard CAN controller (SCC) mode timings dynamic characteristics for the CANSTX and CANSRX pins MIN PARAMETER td(CANSTX) Delay time, transmit shift register to CANSTX pin(1) td(CANSRX) Delay time, CANSRX pin to receive shift register MAX UNIT 15 ns 5 ns 1 These values do not include rise/fall times of the output buffer. expansion bus timing parameters, –40°C ≤ TJ ≤ 150°C, 3.0 V ≤ VCC ≤ 3.6 V (see figure 19 and figure 20) PRODUCT PREVIEW NO. MIN PARAMETER 1 tc(CO) Cycle time, CLKOUT 2 td(COH-EBADV) Delay Time, CLKOUT high to EBADDR valid 3 th(COH-EBADIV) Hold Time, EBADDR invalid after CLKOUT high 4 td(COH-EBOE) Delay Time, CLKOUT high to EBOE fall 5 th(COH-EBOEH) Hold Time, EBOE rise after CLKOUT high 6 td(COL-EBWR) Delay Time, CLKOUT low to write strobe (EBWR) low 7 th(COL-EBWRH) Hold Time, EBWR high after CLKOUT low 8 tsu(EBRDATV-COH) Setup time, EBDATA valid before CLKOUT high (READ)(2) Hold time, EBDATA invalid after CLKOUT high (READ) MAX UNIT 20.8 ns 26 (– 8) ns 15 2 9 th(COH-EBRDATIV) 10 td(COL-EBWDATV) Delay time, CLKOUT low to EBDATA valid 11 th(COL-EBWDATIV) Hold time, EBDATA invalid after CLKOUT low (WRITE) ns ns ns 17 ns 3 ns 25 ns (– 6) (WRITE)(3) ns 19 (– 12) ns ns SECONDARY TIMES 12 td(COH-EBCS0) Delay, CLKOUT high to EBCS0 fall 13 th(COH-EBCS0H) Hold, EBCS0 rise after CLKOUT high 14 tsu(COH-EBHOLDL) 15 tsu(COH-EBHOLDH) Setup time, EBHOLD low to CLKOUT 6 high(2) Setup time, EBHOLD high to CLKOUT high(2) 2 Setup time is the minimum time under worst case conditions. Data with less setup time will not work. 3 Valid after CLKOUT goes low for write cycles. 56 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 20 ns 21 ns 25 ns 25 ns TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 expansion bus module timing 1 CLKOUT 3 2 Valid EBADDR 9 8 Valid EBDATA 4 5 EBOE 12 13 EBCS0 15 14 PRODUCT PREVIEW EBHOLD 1 Hold State Figure 19. Expansion Memory Signal Timing - Reads 1 CLKOUT 2 3 Valid EBADDR 11 10 Valid EBDATA 6 7 EBWR 12 12 EBCS0 14 15 EBHOLD 1 Hold State Figure 20. Expansion Memory Signal Timing - Writes POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 57 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 high-end timer (HET) timings minimum PWM output pulse width: This is equal to one high resolution clock period (HRP). The HRP is defined by the 6-bit high resolution prescale factor (hr) which is user defined, giving prescale factors of 1 to 64, with a linear increment of codes. Therefore, the minimum PWM output pulse width = HRP(min) = hr(min)/SYSCLK = 1/SYSCLK For example, for a SYSCLK of 30 MHz, the minimum PWM output pulse width = 1/30 = 33.33ns minimum input pulses we can capture: The input pulse width must be greater or equal to the low resolution clock period (LRP), i.e., the HET loop (the HET program must fit within the LRP). The LRP is defined by the 3-bit loop-resolution prescale factor (lr), which is user defined, with a power of 2 increment of codes. That is, the value of lr can be 1, 2, 4, 8, 16, or 32. Therefore, the minimum input pulse width = LRP(min) = hr(min) * lr(min)/SYSCLK = 1 * 1/SYSCLK For example, with a SYSCLK of 30 MHz, the minimum input pulse width = 1 * 1/30 = 33.33 ns PRODUCT PREVIEW NOTE Once the input pulse width is greater than LRP, the resolution of the measurement is still HRP. (That is, the captured value gives the number of HRP clocks inside the pulse.) Abbreviations: High resolution clock period = HRP = hr/SYSCLK Loop resolution clock period = LRP = hr*lr/SYSCLK hr = HET high resolution divide rate = 1, 2, 3,...63, 64 lr = HET low resolution divide rate = 1, 2, 4, 8, 16, 32 58 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 multi-buffered A-to-D converter (MibADC) The multi-buffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to ADREFLO unless otherwise noted. Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 bits (1024 values) Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Assured Output conversion code . . . . . . . . . . . . . . . . . . . . . . . 00h to 3FFh [00 for VAI ≤ADREFLO; 3FF for VAI ≥ ADREFHI] MibADC recommended operating conditions(1) ADREFLO MIN MAX UNIT A-to-D high -voltage reference source VSSAD VCCAD V A-to-D low-voltage reference source VSSAD VCCAD V VSSAD − 0.3 VCCAD + 0.3 V VAI Analog input voltage IAIC Analog input clamp current(2) (VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3) −2 2 mA 1 For VCCAD and VSSAD recommended operating conditions, see the "device recommended operating conditions" table. 2 Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels. operating characteristics over full ranges of recommended operating conditions(1)(2) PARAMETER Ri DESCRIPTION/CONDITIONS Analog input resistance MIN Analog input capacitance See Figure 21 IAIL Analog input leakage current See Figure 21 IADREFHI ADREFHI input current ADREFHI = 3.6 V, ADREFLO = VSSAD CR Conversion range over which specified accuracy is maintained ADREFHI − ADREFLO EDNL Differential nonlinearity error EINL ETOT MAX 250 UNIT 500 Ω Conversion 10 pF Sampling 30 pF See Figure 21 Ci TYP –1 3 1 μA 5 mA 3.6 V Difference between the actual step width and the ideal value. (See Figure 22) ±2 LSB Integral nonlinearity error Maximum deviation from the best straight line through the MibADC. MibADC transfer characteristics, excluding the quantization error. (See Figure 23) ±2 LSB Total error/Absolute accuracy Maximum value of the difference between an analog value and the ideal midstep value. (See Figure 24) ±2 LSB 1 VCCAD = ADREFHI 2 1 LSB = (ADREFHI – ADREFLO)/210 for the MibADC POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 59 PRODUCT PREVIEW ADREFHI TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 multi-buffered A-to-D converter (MibADC) (continued) External Rs MibADC Input Pin Ri Sample Switch Parasitic Capacitance Vsrc Sample Capacitor Rleak Ci PRODUCT PREVIEW Figure 21. MibADC Input Equivalent Circuit multi-buffer ADC timing requirements MIN NOM MAX UNIT μs tc(ADCLK) Cycle time, MibADC clock td(SH) Delay time, sample and hold time 1 μs td(C) Delay time, conversion time 0.55 μs td(SHC)(1) Delay time, total sample/hold and conversion time 1.55 μs 0.05 1 This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors; for more details, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). 60 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 multi-buffered A-to-D converter (MibADC) (continued) The differential nonlinearity error shown in Figure 22 (sometimes referred to as differential linearity) is the difference between an actual step width and the ideal value of 1 LSB. 0 ... 110 0 ... 0. .. 100 0 ... 0. .. 011 Differential Linearity Error (1/2 LSB) 1 LSB 0 ... 0. .. 010 0 ... 0. .. 001 Differential Linearity Error (–1/2 LSB) 1 LSB 0 ... 0. .. 000 0 1 2 3 4 Analog Input Value (LSB) 5 NOTE A: 1 LSB = (ADREFHI – ADREFLO)/210 Figure 22. Differential Nonlinearity (DNL) The integral nonlinearity error shown in Figure 23 (sometimes referred to as linearity error) is the deviation of the values on the actual transfer function from a straight line. 0 ... 111 Digital Output Code 0 ... 110 Ideal Transition 0 ... 101 Actual Transition 0 ... 100 At Transition 011/100 (– 1/2 LSB) 0 ... 011 0 ... 010 End-Point Lin. Error 0 ... 001 At Transition 001/010 (– 1/4 LSB) 0 ... 000 0 1 2 3 4 5 6 Analog Input Value (LSB) NOTE A: 1 LSB = (ADREFHI – ADREFLO)/210 7 Figure 23. Integral Nonlinearity (INL) Error POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 61 PRODUCT PREVIEW Digital Output Code 0 ... 101 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 multi-buffer A-to-D converter (MibADC) (continued) The absolute accuracy or total error of an MibADC as shown in Figure 24 is the maximum value of the difference between an analog value and the ideal midstep value. 0 ... 111 Digital Output Code 0 ... 110 0 ... 101 0 ... 100 Total Error At Step 0 ... 101 (–1 1/4 LSB) 0 ... 011 0 ... 010 Total Error At Step 0 ... 001 (1/2 LSB) PRODUCT PREVIEW 0 ... 001 0 ... 000 0 1 2 3 4 5 6 Analog Input Value (LSB) NOTE A: 1 LSB = (ADREFHI – ADREFLO)/210 7 Figure 24. Absolute Accuracy (Total) Error 62 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 MECHANICAL DATA PGE (S-PQFP-G144) PLASTIC QUAD FLATPACK 108 73 109 72 0,27 0,17 0,08 M 144 0,13 NOM 37 1 PRODUCT PREVIEW 0,50 36 Gage Plane 17,50 TYP 20,20 SQ 19,80 22,20 SQ 21,80 0,25 0,05 MIN 0°-7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040147/C 11 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 Thermal Resistance Characteristics PARAMETER °C/W RΘJA 43 RΘJC 5 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 63 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 MECHANICAL DATA PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 PRODUCT PREVIEW 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°-7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149/B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 Thermal Resistance Characteristics 64 PARAMETER °C/W RΘJA 48 RΘJC 5 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 List of Figures POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 PRODUCT PREVIEW TMS470R1VF288 144-Pin PGE Package (TOP VIEW) (without Expansion Bus) TMS470R1VF288 144-Pin PGE Package (TOP VIEW) (with Expansion Bus) TMS470R1VF288 100-Pin PZ Package (TOP VIEW) Functional Block Diagram Figure 1. TMS470R1VF288 Memory Map Figure 2. JTAG Interface Figure 3. TMS470R1x Family Nomenclature Figure 4. Test Load Circuit Figure 5. Crystal/Clock Connection Figure 6. CLKOUT Timing Diagram Figure 7. ECLK Timing Diagram Figure 8. PORRST Timing Diagram Figure 9. JTAG Scan Timings Figure 10. CMOS-Level Outputs Figure 11. CMOS-Level Inputs Figure 12. SPIn Master Mode External Timing (CLOCK PHASE = 0) Figure 13. SPIn Master Mode External Timing (CLOCK PHASE = 1) Figure 14. SPIn Slave Mode External Timing (CLOCK PHASE = 0) Figure 15. SPIn Slave Mode External Timing (CLOCK PHASE = 1) Figure 16. SCIn Isosynchronous Mode Timing Diagram for Internal Clock Figure 17. SCIn Isosynchronous Mode Timing Diagram for External Clock Figure 18. I2C Timings Figure 19. Expansion Memory Signal Timing - Reads Figure 20. Expansion Memory Signal Timing - Writes Figure 21. MibADC Input Equivalent Circuit Figure 22. Differential Nonlinearity (DNL) Figure 23. Integral Nonlinearity (INL) Error Figure 24. Absolute Accuracy (Total) Error Mechanical Data Mechanical Data 65 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER SPNS095E – JULY 2004 – REVISED DECEMBER 2005 List of Tables Device Characteristics TMS470R1VF288 Memory Selection Assignment VF288 Peripherals, System Module, and Flash Base Addresses DMA Request Lines Connections Interrupt Priority (IEM and CIM) Expansion Bus Mux Mapping Expansion Bus Pins MibADC Event Hookup Configuration TMS470 Device ID Bit Allocation Register Device Part Number I2C Signals (SDA and SCL) Switching Characteristics PRODUCT PREVIEW Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. 66 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF288 16/32-BIT RISC FLASH MICROCONTROLLER REVISION HISTORY REVISION HISTORY REV E DATE 12/05 NOTES Updates: Page 44, temperature condition removed from twec parameter. Page 44, note #2 revised. Page 56, expansion bus timing parameters updated. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 67 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and application s using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different form or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Interface Logic Power Mgmt Microcontrollers Mailing Address: Applications amplifier.ti.com dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated