TI LMH6642Q

LMH6642Q / LMH6643Q
Low Power, 130MHz, 75mA Rail-to-Rail Output Amplifiers
General Description
Features
The LMH664X family true single supply voltage feedback amplifiers offer high speed (130MHz), low distortion (−62dBc),
and exceptionally high output current (approximately 75mA)
at low cost and with reduced power consumption when compared against existing devices with similar performance.
Input common mode voltage range extends to 0.5V below V
− and 1V from V+. Output voltage range extends to within
40mV of either supply rail, allowing wide dynamic range especially desirable in low voltage applications. The output
stage is capable of approximately 75mA in order to drive
heavy loads. Fast output Slew Rate (130V/µs) ensures large
peak-to-peak output swings can be maintained even at higher
speeds, resulting in exceptional full power bandwidth of
40MHz with a 3V supply. These characteristics, along with
low cost, are ideal features for a multitude of industrial and
commercial applications.
Careful attention has been paid to ensure device stability under all operating voltages and modes. The result is a very well
behaved frequency response characteristic (0.1dB gain flatness up the 12MHz under 150Ω load and AV = +2) with
minimal peaking (typically 2dB maximum) for any gain setting
and under both heavy and light loads. This along with fast
settling time (68ns) and low distortion allows the device to
operate well in ADC buffer, and high frequency filter applications as well as other applications.
This device family offers professional quality video performance with low DG (0.01%) and DP (0.01°) characteristics.
Differential Gain and Differential Phase characteristics are also well maintained under heavy loads (150Ω) and throughout
the output voltage range. The LMH664X family is offered in
single (LMH6642), dual (LMH6643). See ordering information
for packages offered.
(VS = ±5V, TA = 25°C, RL = 2kΩ, AV = +1. Typical values unless specified).
130MHz
■ −3dB BW (AV = +1)
2.7V to 10V
■ Supply voltage range
130V/µs
■ Slew rate (Note 8), (AV = −1)
2.7mA/amp
■ Supply current (no load)
+115mA/−145mA
■ Output short circuit current
±75mA
■ Linear output current
■ Input common mode volt. 0.5V beyond V−, 1V from V+
40mV from rails
■ Output voltage swing
17nV/
■ Input voltage noise (100kHz)
0.9pA/
■ Input current noise (100kHz)
−62dBc
■ THD (5MHz, RL = 2kΩ, VO = 2VPP, AV = +2)
68ns
■ Settling time
■ Fully characterized for 3V, 5V, and ±5V
100ns
■ Overdrive recovery
■ Output short circuit protected (Note 11)
■ No output phase reversal with CMVR exceeded
■ LMH6643QMM and LMH6642QMF are AEC-Q100 grade
3 qualified and are manufactured on an automotive grade
flow
Closed Loop Gain vs. Frequency for Various Gain
30158335
© 2012 Texas Instruments Incorporated
301583 SNOSC61A
Applications
■
■
■
■
■
■
Active filters
CD/DVD ROM
ADC buffer amp
Portable video
Current sense buffer
Automotive
Large Signal Frequency Response
30158347
www.ti.com
LMH6642Q / LMH6643Q Low Power, 130MHz, 75mA Rail-to-Rail Output Amplifiers
January 18, 2012
LMH6642Q / LMH6643Q
Storage Temperature Range
Junction Temperature (Note 4)
Soldering Information
Infrared or Convection Reflow(20 sec)
Wave Soldering Lead Temp.(10 sec)
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the Texas Instruments Sales Office/
Distributors for availability and specifications.
ESD Tolerance
VIN Differential
Output Short Circuit Duration
Supply Voltage (V+ - V−)
Voltage at Input/Output pins
Input Current
2KV (Note 2)
200V (Note 9)
1000V (Note 13)
±2.5V
(Note 3), (Note 11)
13.5V
V+ +0.8V, V− −0.8V
±10mA
Operating Ratings
−65°C to +150°C
+150°C
235°C
260°C
(Note 1)
Supply Voltage (V+ – V−)
Junction Temperature Range (Note 4)
2.7V to 10V
−40°C to +85°C
Package Thermal Resistance (Note 4) (θJA)
5-Pin SOT-23
8-Pin MSOP
265°C/W
235°C/W
3V Electrical Characteristics
Unless otherwise specified, all limits guaranteed for at TJ = 25°C, V+ = 3V, V− = 0V, VCM = VO = V+/2, VID (input differential voltage)
as noted (where applicable) and RL = 2kΩ to V+/2. Boldface limits apply at the temperature extremes.
Symbol
BW
Parameter
−3dB BW
Conditions
AV = +1, VOUT = 200mVPP
Min
(Note 6)
Typ
(Note 5)
80
115
Max
(Note 6)
Units
MHz
AV = +2, −1, VOUT = 200mVPP
46
19
MHz
MHz
BW0.1dB
0.1dB Gain Flatness
AV = +2, RL = 150Ω to V+/2,
PBW
Full Power Bandwidth
AV = +1, −1dB, VOUT = 1VPP
40
en
Input-Referred Voltage Noise
f = 100kHz
17
f = 1kHz
48
RL = 402Ω, VOUT = 200mVPP
in
THD
Input-Referred Current Noise
Total Harmonic Distortion
f = 100kHz
0.90
f = 1kHz
3.3
f = 5MHz, VO = 2VPP, AV = −1,
−48
nV/
pA/
dBc
RL = 100Ω to V+/2
DG
Differential Gain
VCM = 1V, NTSC, AV = +2
0.17
RL =150Ω to V+/2
DP
Differential Phase
%
RL =1kΩ to V+/2
0.03
VCM = 1V, NTSC, AV = +2
0.05
RL =150Ω to
V+/2
deg
0.03
RL =1kΩ to V+/2
CT Rej.
Cross-Talk Rejection
f = 5MHz, Receiver:
Rf = Rg = 510Ω, AV = +2
47
dB
TS
Settling Time
VO = 2VPP, ±0.1%, 8pF Load,
VS = 5V
68
ns
SR
Slew Rate (Note 8)
AV = −1, VI = 2VPP
120
V/µs
VOS
Input Offset Voltage
For LMH6642
±1
±5
±7
For LMH6643
±1
±3.4
±7
90
mV
TC VOS
Input Offset Average Drift
(Note 12)
±5
IB
Input Bias Current
(Note 7)
−1.50
−2.60
−3.25
µA
IOS
Input Offset Current
20
800
1000
nA
RIN
Common Mode Input Resistance
3
MΩ
CIN
Common Mode Input
Capacitance
2
pF
www.ti.com
2
µV/°C
CMVR
Parameter
Input Common-Mode Voltage
Range
Conditions
Min
(Note 6)
CMRR ≥ 50dB
Typ
(Note 5)
Max
(Note 6)
−0.5
−0.2
−0.1
1.8
1.6
2.0
CMRR
Common Mode Rejection Ratio
VCM Stepped from 0V to 1.5V
72
95
AVOL
Large Signal Voltage Gain
VO = 0.5V to 2.5V
80
75
96
74
70
82
RL = 2kΩ to V+/2
VO = 0.5V to 2.5V
RL = 150Ω to V+/2
VO
ISC
dB
RL = 2kΩ to V+/2, VID = 200mV
2.90
2.98
RL = 150Ω to
2.80
2.93
Output Swing
Low
RL = 2kΩ to V+/2, VID = −200mV
25
75
RL = 150Ω to V+/2, VID = −200mV
75
150
Output Short Circuit Current
Sourcing to V+/2
VID = 200mV (Note 10)
50
35
95
Sinking to V+/2
VID = −200mV (Note 10)
55
40
110
VID = 200mV
IOUT
Output Current
+PSRR
Positive Power Supply Rejection V+ = 3.0V to 3.5V, VCM = 1.5V
Ratio
VOUT = 0.5V from either supply
IS
Supply Current (per channel)
75
No Load
V
dB
Output Swing
High
V+/2,
Units
V
mV
mA
±65
mA
85
dB
2.70
4.00
4.50
mA
5V Electrical Characteristics
Unless otherwise specified, all limits guaranteed for at TJ = 25°C, V+ = 5V, V− = 0V, VCM = VO = V+/2, VID (input differential voltage)
as noted (where applicable) and RL = 2kΩ to V+/2. Boldface limits apply at the temperature extremes.
Symbol
Parameter
Conditions
BW
−3dB BW
AV = +1, VOUT = 200mVPP
Min
(Note 6)
Typ
(Note 5)
90
120
Max
(Note 6)
Units
MHz
AV = +2, −1, VOUT = 200mVPP
46
15
MHz
MHz
BW0.1dB
0.1dB Gain Flatness
AV = +2, RL = 150Ω to V+/2,
PBW
Full Power Bandwidth
AV = +1, −1dB, VOUT = 2VPP
22
en
Input-Referred Voltage Noise
f = 100kHz
17
f = 1kHz
48
Rf = 402Ω, VOUT = 200mVPP
in
Input-Referred Current Noise
f = 100kHz
0.90
f = 1kHz
3.3
THD
Total Harmonic Distortion
f = 5MHz, VO = 2VPP, AV = +2
−60
DG
Differential Gain
NTSC, AV = +2
0.16
RL =150Ω to V+/2
DP
Differential Phase
pA/
dBc
%
RL = 1kΩ to V+/2
0.05
NTSC, AV = +2
0.05
RL = 150Ω to V+/2
RL = 1kΩ to
nV/
deg
0.01
V+/2
CT Rej.
Cross-Talk Rejection
f = 5MHz, Receiver:
Rf = Rg = 510Ω, AV = +2
TS
Settling Time
VO = 2VPP, ±0.1%, 8pF Load
SR
Slew Rate (Note 8)
AV = −1, VI = 2VPP
47
95
3
dB
68
ns
125
V/µs
www.ti.com
LMH6642Q / LMH6643Q
Symbol
LMH6642Q / LMH6643Q
Typ
(Note 5)
Max
(Note 6)
For LMH6642
±1
±5
±7
For LMH6643
±1
±3.4
±7
Symbol
Parameter
Conditions
VOS
Input Offset Voltage
Min
(Note 6)
Units
mV
TC VOS
Input Offset Average Drift
(Note 12)
±5
IB
Input Bias Current
(Note 7)
−1.70
−2.60
−3.25
µA
IOS
Input Offset Current
20
800
1000
nA
RIN
Common Mode Input Resistance
3
MΩ
CIN
Common Mode Input
Capacitance
2
pF
CMVR
Input Common-Mode Voltage
Range
CMRR ≥ 50dB
−0.5
3.8
3.6
4.0
CMRR
Common Mode Rejection Ratio
VCM Stepped from 0V to 3.5V
72
95
AVOL
Large Signal Voltage Gain
VO = 0.5V to 4.50V
86
82
98
76
72
82
RL = 2kΩ to V+/2
VO = 0.5V to 4.25V
RL = 150Ω to V+/2
VO
ISC
µV/°C
−0.2
−0.1
dB
dB
Output Swing
High
RL = 2kΩ to V+/2, VID = 200mV
4.90
4.98
RL = 150Ω to
4.65
4.90
Output Swing
Low
RL = 2kΩ to V+/2, VID = −200mV
25
100
RL = 150Ω to V+/2, VID = −200mV
100
150
Output Short Circuit Current
Sourcing to V+/2
VID = 200mV (Note 10)
55
40
115
Sinking to V+/2
VID = −200mV (Note 10)
70
55
140
V+/2,
IOUT
Output Current
+PSRR
Positive Power Supply Rejection V+ = 4.0V to 6V
Ratio
IS
Supply Current (per channel)
VID = 200mV
VO = 0.5V from either supply
79
No Load
V
V
mV
mA
±70
mA
90
dB
2.70
4.25
5.00
mA
±5V Electrical Characteristics
Unless otherwise specified, all limits guaranteed for at TJ = 25°C, V+ = 5V, V− = −5V, VCM = VO = 0V, VID (input differential voltage)
as noted (where applicable) and RL = 2kΩ to ground. Boldface limits apply at the temperature extremes.
Symbol
Parameter
Conditions
BW
−3dB BW
AV = +1, VOUT = 200mVPP
Min
(Note 6)
Typ
(Note 5)
95
130
Max
(Note 6)
Units
MHz
AV = +2, −1, VOUT = 200mVPP
46
12
MHz
MHz
BW0.1dB
0.1dB Gain Flatness
AV = +2, RL = 150Ω to V+/2,
PBW
Full Power Bandwidth
AV = +1, −1dB, VOUT = 2VPP
24
en
Input-Referred Voltage Noise
f = 100kHz
17
f = 1kHz
48
Rf = 806Ω, VOUT = 200mVPP
in
www.ti.com
Input-Referred Current Noise
f = 100kHz
0.90
f = 1kHz
3.3
4
nV/
pA/
Typ
(Note 5)
Parameter
Conditions
THD
Total Harmonic Distortion
f = 5MHz, VO = 2VPP, AV = +2
−62
DG
Differential Gain
NTSC, AV = +2
0.15
Max
(Note 6)
dBc
RL = 150Ω to V+/2
DP
Differential Phase
%
RL = 1kΩ to V+/2
0.01
NTSC, AV = +2
0.04
RL = 150Ω to V+/2
RL = 1kΩ to
Units
deg
0.01
V+/2
CT Rej.
Cross-Talk Rejection
f = 5MHz, Receiver:
Rf = Rg = 510Ω, AV = +2
47
TS
Settling Time
VO = 2VPP, ±0.1%, 8pF Load,
VS = 5V
68
ns
SR
Slew Rate (Note 8)
AV = −1, VI = 2VPP
135
V/µs
VOS
Input Offset Voltage
For LMH6642
±1
±5
±7
For LMH6643
±1
±3.4
±7
100
dB
mV
TC VOS
Input Offset Average Drift
(Note 12)
±5
IB
Input Bias Current
(Note 7)
−1.60
−2.60
−3.25
µA
IOS
Input Offset Current
20
800
1000
nA
RIN
Common Mode Input Resistance
3
MΩ
CIN
Common Mode Input
Capacitance
2
pF
CMVR
Input Common-Mode Voltage
Range
CMRR ≥ 50dB
−5.5
3.8
3.6
4.0
CMRR
Common Mode Rejection Ratio
VCM Stepped from −5V to 3.5V
74
95
AVOL
Large Signal Voltage Gain
VO = −4.5V to 4.5V,
88
84
96
78
74
82
RL = 2kΩ
VO = −4.0V to 4.0V,
RL = 150Ω
VO
ISC
µV/°C
−5.2
−5.1
dB
dB
Output Swing
High
RL = 2kΩ, VID = 200mV
4.90
4.96
RL = 150Ω, VID = 200mV
4.65
4.80
Output Swing
Low
RL = 2kΩ, VID = −200mV
−4.96
−4.90
RL = 150Ω, VID = −200mV
−4.80
−4.65
Output Short Circuit Current
Sourcing to Ground
VID = 200mV (Note 10)
60
35
115
Sinking to Ground
VID = −200mV (Note 10)
85
65
145
IOUT
Output Current
VO = 0.5V from either supply
±75
PSRR
Power Supply Rejection Ratio
(V+, V−) = (4.5V, −4.5V) to (5.5V,
−5.5V)
78
IS
Supply Current (per channel)
No Load
V
V
mA
mA
90
2.70
5
V
dB
4.50
5.50
mA
www.ti.com
LMH6642Q / LMH6643Q
Min
(Note 6)
Symbol
LMH6642Q / LMH6643Q
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, 1.5kΩ in series with 100pF.
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the
maximum allowed junction temperature of 150°C.
Note 4: The maximum power dissipation is a function of TJ(MAX), θJA, and TA. The maximum allowable power dissipation at any ambient temperature is
PD = (TJ(MAX) - TA)/ θJA . All numbers apply for packages soldered directly onto a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Positive current corresponds to current flowing into the device.
Note 8: Slew rate is the average of the rising and falling slew rates.
Note 9: Machine Model, 0Ω in series with 200pF.
Note 10: Short circuit test is a momentary test. See Note 11.
Note 11: Output short circuit duration is infinite for VS < 6V at room temperature and below. For VS > 6V, allowable short circuit duration is 1.5ms.
Note 12: Offset voltage average drift determined by dividing the change in VOS at temperature extremes by the total temperature change.
Note 13: CDM: Charge Device Model
Connection Diagrams
5-Pin SOT23 (LMH6642)
8-Pin MSOP
(LMH6643)
30158361
Top View
30158363
Top View
www.ti.com
6
At TJ = 25°C, V+ = +5, V− = −5V, RF = RL = 2kΩ. Unless otherwise
specified.
Closed Loop Frequency Response for Various Supplies
Closed Loop Gain vs. Frequency for Various Gain
30158357
30158351
Closed Loop Gain vs. Frequency for Various Gain
Closed Loop Frequency Response for Various Temperature
30158350
30158335
Closed Loop Gain vs. Frequency for Various Supplies
Closed Loop Frequency Response for Various Temperature
30158348
30158334
7
www.ti.com
LMH6642Q / LMH6643Q
Typical Performance Characteristics
LMH6642Q / LMH6643Q
Large Signal Frequency Response
Closed Loop Small Signal Frequency Response for Various
Supplies
30158347
30158346
Closed Loop Frequency Response for Various Supplies
±0.1dB Gain Flatness for Various Supplies
30158344
30158345
VOUT (VPP) for THD < 0.5%
VOUT (VPP) for THD < 0.5%
30158309
www.ti.com
30158308
8
Open Loop Gain/Phase for Various Temperature
30158332
30158310
Open Loop Gain/Phase for Various Temperature
HD2 (dBc) vs. Output Swing
30158333
30158314
HD3 (dBc) vs. Output Swing
HD2 vs. Output Swing
30158304
30158315
9
www.ti.com
LMH6642Q / LMH6643Q
VOUT (VPP) for THD < 0.5%
LMH6642Q / LMH6643Q
HD3 vs. Output Swing
THD (dBc) vs. Output Swing
30158305
30158306
Settling Time vs. Input Step Amplitude
(Output Slew and Settle Time)
Input Noise vs. Frequency
30158312
30158313
VOUT from V+ vs. ISOURCE
VOUT from V− vs. ISINK
30158318
www.ti.com
30158319
10
LMH6642Q / LMH6643Q
VOUT from V+ vs. ISOURCE
VOUT from V− vs. ISINK
30158316
30158317
Swing vs. VS
Short Circuit Current (to VS/2) vs. VS
30158329
30158331
Output Sinking Saturation Voltage vs. IOUT
Output Sourcing Saturation Voltage vs. IOUT
30158320
30158301
11
www.ti.com
LMH6642Q / LMH6643Q
Closed Loop Output Impedance vs. Frequency AV = +1
PSRR vs. Frequency
30158303
30158302
CMRR vs. Frequency
Crosstalk Rejection vs. Frequency
(Output to Output)
30158307
30158311
VOS vs. VOUT (Typical Unit)
VOS vs. VCM (Typical Unit)
30158327
30158330
www.ti.com
12
LMH6642Q / LMH6643Q
VOS vs. VS (for 3 Representative Units)
VOS vs. VS (for 3 Representative Units)
30158322
30158323
VOS vs. VS (for 3 Representative Units)
IB vs. VS
30158325
30158324
IOS vs. VS
IS vs. VCM
30158328
30158326
13
www.ti.com
LMH6642Q / LMH6643Q
IS vs. VS
Small Signal Step Response
30158353
30158321
Large Signal Step Response
Large Signal Step Response
30158341
30158339
Small Signal Step Response
Small Signal Step Response
30158356
www.ti.com
30158336
14
LMH6642Q / LMH6643Q
Small Signal Step Response
Small Signal Step Response
30158352
30158338
Large Signal Step Response
Large Signal Step Response
30158337
30158354
Large Signal Step Response
30158360
15
www.ti.com
LMH6642Q / LMH6643Q
Application Information
CIRCUIT DESCRIPTION
The LMH664X family is based on National Semiconductor’s
proprietary VIP10 dielectrically isolated bipolar process.
This device family architecture features the following:
• Complimentary bipolar devices with exceptionally high ft
(∼8GHz) even under low supply voltage (2.7V) and low
bias current.
• A class A-B “turn-around” stage with improved noise,
offset, and reduced power dissipation compared to similar
speed devices (patent pending).
• Common Emitter push-push output stage capable of
75mA output current (at 0.5V from the supply rails) while
consuming only 2.7mA of total supply current per channel.
This architecture allows output to reach within milli-volts of
either supply rail.
• Consistent performance over the entire operating supply
voltage range with little variation for the most important
specifications (e.g. BW, SR, IOUT, etc.)
• Significant power saving (∼40%) compared to competitive
devices on the market with similar performance.
30158342
FIGURE 1. Input and Output Shown with CMVR Exceeded
However, if the input voltage range of −0.5V to 1V from V+ is
exceeded by more than a diode drop, the internal ESD protection diodes will start to conduct. The current in the diodes
should be kept at or below 10mA.
Output overdrive recovery time is less than 100ns as can be
seen from Figure 2 plot:
Application Hints
This Op Amp family is a drop-in replacement for the AD805X
family of high speed Op Amps in most applications. In addition, the LMH664X will typically save about 40% on power
dissipation, due to lower supply current, when compared to
competition. All AD805X family’s guaranteed parameters are
included in the list of LMH664X guaranteed specifications in
order to ensure equal or better level of performance. However, as in most high performance parts, due to subtleties of
applications, it is strongly recommended that the performance
of the part to be evaluated is tested under actual operating
conditions to ensure full compliance to all specifications.
With 3V supplies and a common mode input voltage range
that extends 0.5V below V−, the LMH664X find applications
in low voltage/low power applications. Even with 3V supplies,
the −3dB BW (@ AV = +1) is typically 115MHz with a tested
limit of 80MHz. Production testing guarantees that process
variations with not compromise speed. High frequency response is exceptionally stable confining the typical −3dB BW
over the industrial temperature range to ±2.5%.
As can be seen from the typical performance plots, the
LMH664X output current capability (∼75mA) is enhanced
compared to AD805X. This enhancement, increases the output load range, adding to the LMH664X’s versatility.
Because of the LMH664X’s high output current capability attention should be given to device junction temperature in
order not to exceed the Absolute Maximum Rating.
This device family was designed to avoid output phase reversal. With input overdrive, the output is kept near supply rail
(or as closed to it as mandated by the closed loop gain setting
and the input voltage). See Figure 1:
www.ti.com
30158343
FIGURE 2. Overload Recovery Waveform
INPUT AND OUTPUT TOPOLOGY
All input / output pins are protected against excessive voltages by ESD diodes connected to V+ and V- rails (see Figure
3). These diodes start conducting when the input / output pin
voltage approaches 1Vbe beyond V+ or V- to protect against
over voltage. These diodes are normally reverse biased. Further protection of the inputs is provided by the two resistors
(R in Figure 3), in conjunction with the string of anti-parallel
diodes connected between both bases of the input stage. The
combination of these resistors and diodes reduces excessive
differential input voltages approaching 2Vbe. The most common situation when this occurs is when the device is used as
a comparator (or with little or no feedback) and the device
inputs no longer follow each other. In such a case, the diodes
may conduct. As a consequence, input current increases and
the differential input voltage is clamped. It is important to
make sure that the subsequent current flow through the device input pins does not violate the Absolute Maximum Ratings of the device. To limit the current through this protection
circuit, extra series resistors can be placed. Together with the
built-in series resistors of several hundred ohms, these ex16
30158369
FIGURE 3. Input Equivalent Circuit
(1)
SINGLE SUPPLY, LOW POWER PHOTODIODE
AMPLIFIER
The circuit shown in Figure 4 is used to amplify the current
from a photo-diode into a voltage output. In this circuit, the
emphasis is on achieving high bandwidth and the transimpedance gain setting is kept relatively low. Because of its
high slew rate limit and high speed, the LMH664X family lends
itself well to such an application.
This circuit achieves approximately 1V/mA of transimpedance gain and capable of handling up to 1mApp from
the photodiode. Q1, in a common base configuration, isolates
the high capacitance of the photodiode (Cd) from the Op Amp
input in order to maximize speed. Input is AC coupled through
where GBWP is the Gain Bandwidth Product of the Op Amp
Optimized as such, the I-V converter will have a theoretical
pole, fp, at:
(2)
With Op Amp input capacitance of 3pF and an estimate for
Q1 output capacitance of about 3pF as well, CIN = 6pF. From
the typical performance plots, LMH6642/6643 family GBWP
is approximately 57MHz. Therefore, with Rf = 1k, from Equation 1 and 2 above.
Cf = ∼4.1pF, and fp = 39MHz
30158364
FIGURE 4. Single Supply Photodiode I-V Converter
17
www.ti.com
LMH6642Q / LMH6643Q
C1 to ease biasing and allow single supply operation. With 5V
single supply, the device input/output is shifted to near half
supply using a voltage divider from VCC. Note that Q1 collector
does not have any voltage swing and the Miller effect is minimized. D1, tied to Q1 base, is for temperature compensation
of Q1’s bias point. Q1 collector current was set to be large
enough to handle the peak-to-peak photodiode excitation and
not too large to shift the U1 output too far from mid-supply.
No matter how low an Rf is selected, there is a need for Cf in
order to stabilize the circuit. The reason for this is that the Op
Amp input capacitance and Q1 equivalent collector capacitance together (CIN) will cause additional phase shift to the
signal fed back to the inverting node. Cf will function as a zero
in the feedback path counter-acting the effect of the CIN and
acting to stabilized the circuit. By proper selection of Cf such
that the Op Amp open loop gain is equal to the inverse of the
feedback factor at that frequency, the response is optimized
with a theoretical 45° phase margin.
ternal resistors can limit the input current to a safe number
(i.e. < 10mA). Be aware that these input series resistors may
impact the switching speed of the device and could slow down
the device.
LMH6642Q / LMH6643Q
For this example, optimum Cf was empirically determined to
be around 5pF. This time domain response is shown in Figure
5 below showing about 9ns rise/fall times, corresponding to
about 39MHz for fp. The overall supply current from the +5V
supply is around 5mA with no load.
PRINTED CIRCUIT BOARD LAYOUT AND COMPONENT
VALUES SECTION
Generally, a good high frequency layout will keep power supply and ground traces away from the inverting input and
output pins. Parasitic capacitances on these nodes to ground
will cause frequency response peaking and possible circuit
oscillations (see Application Note OA-15 for more information). National Semiconductor suggests the following evaluation boards as a guide for high frequency layout and as an aid
in device testing and characterization:
Device
Package
LMH6642QMF
LMH6643QMM
5-Pin SOT-23
8-Pin MSOP
Evaluation Board
PN
LMH730216
LMH730123
Another important parameter in working with high speed/high
performance amplifiers, is the component values selection.
Choosing external resistors that are large in value will effect
the closed loop behavior of the stage because of the interaction of these resistors with parasitic capacitances. These
capacitors could be inherent to the device or a by-product of
the board layout and component placement. Either way,
keeping the resistor values lower, will diminish this interaction
to a large extent. On the other hand, choosing very low value
resistors could load down nodes and will contribute to higher
overall power dissipation.
30158365
FIGURE 5. Converter Step Response (1VPP, 20 ns/DIV)
Ordering Information
Package
5–Pin SOT23
8–Pin MSOP
Part Number
Package
Marking
Transport Media
NSC Drawing
Features
LMH6642QMF
1k Units Tape and Reel
MF05A
LMH6642QMFX
A64Q
3k Units Tape and Reel
AEC-Q100 Grade 3
qualified. Automotive
Grade Production
Flow**
LMH6643QMM
1k Units Tape and Reel
LMH6643QMMX
643Q
3.5k Units Tape and Reel
MUA08A
AEC-Q100 Grade 3
qualified. Automotive
Grade Production
Flow**
**Automotive Grade (Q) product incorporates enhanced manufacturing and support processes for the automotive market, including
defect detection methodologies. Reliability qualification is compliant with the requirements and temperature grades defined in the
AEC-Q100 standard. Automotive grade products are identified with the letter Q. For more information go to http://www.national.com/
automotive.
www.ti.com
18
LMH6642Q / LMH6643Q
Physical Dimensions inches (millimeters) unless otherwise noted
5-Pin SOT23
NS Package Number MF05A
8-Pin MSOP
NS Package Number MUA08A
19
www.ti.com
LMH6642Q / LMH6643Q Low Power, 130MHz, 75mA Rail-to-Rail Output Amplifiers
Notes
www.ti.com
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated