APT35GP120J 1200V E E ® POWER MOS 7 IGBT G The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 50 kHz operation @ 800V, 14A • Low Gate Charge • 20 kHz operation @ 800V, 25A • Ultrafast Tail Current shutoff • RBSOA rated 27 2 T- C SO "UL Recognized" ISOTOP ® C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 64 I C2 Continuous Collector Current @ TC = 110°C 29 I CM Pulsed Collector Current RBSOA PD TJ,TSTG TL UNIT APT35GP120J 1 Volts Amps 140 @ TC = 25°C 140A @ 960V Reverse Bias Safe Operating Area @ TJ = 150°C Watts 284 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Characteristic / Test Conditions TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C) 3.3 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C) 3 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES 1200 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts nA 6-2003 Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) UNIT Rev D BVCES MIN 050-7409 Symbol APT35GP120J DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 3240 VGE = 0V, VCE = 25V 248 Reverse Transfer Capacitance f = 1 MHz 31 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 150 VCE = 600V 21 I C = 35A 62 Input Capacitance Coes Output Capacitance Cres VGEP Qge Qgc RBSOA TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Reverse Bias Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 140 A 15V, L = 100µH,VCE = 960V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff I C = 35A 40 4 Turn-on Switching Energy (Diode) 5 Eon1 94 20 R G = 5Ω Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 16 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 600V 750 TJ = +25°C 1305 6 16 VGE = 15V 147 Current Fall Time I C = 35A 75 Turn-on Switching Energy R G = 5Ω Current Rise Time Turn-off Delay Time Turn-off Switching Energy µJ 680 Inductive Switching (125°C) VCC = 600V 4 Turn-on Switching Energy (Diode) ns 5 20 ns 750 TJ = +125°C 2132 6 µJ 1744 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .44 RΘJC Junction to Case (DIODE) N/A Package Weight 29.2 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7409 Rev D 6-2003 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 80 80 70 IC, COLLECTOR CURRENT (A) 60 50 40 TC=25°C 30 TC=125°C 20 10 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) TC=25°C 30 TC=125°C 20 10 60 TJ = 25°C 40 TJ = 125°C 20 TJ = -55°C 0 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 6 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 5 IC= 70A 4 IC= 35A 3 IC=17.5A 2 1 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 8 4 2 5 4.5 0.85 0.8 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.90 40 60 80 100 120 140 160 GATE CHARGE (nC) FIGURE 4, Gate Charge IC=70A IC= 35A 3 2.5 IC= 17.5A 2 1.5 1 0.5 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 80 0.95 20 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 1.15 1.0 0 4 90 1.05 VCE= 960V 6 1.2 1.1 VCE= 600V 10 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE= 240V 12 0 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 6-2003 80 IC = 35A TJ = 25°C 14 Rev D 100 IC, COLLECTOR CURRENT (A) 40 FIGURE 2, Output Characteristics (VGE = 10V) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 50 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 120 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 60 0 0 0 APT35GP120J VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7409 IC, COLLECTOR CURRENT (A) 70 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT35GP120J 180 30 VGE= 10V 25 VGE= 15V 20 15 10 VCE = 600V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 35 160 VGE =15V,TJ=125°C 140 VGE =10V,TJ=125°C 120 VGE =15V,TJ=25°C 100 80 VGE =10V,TJ=25°C 60 40 VCE = 600V RG = 5Ω L = 100 µH 20 0 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 140 100 RG = 5Ω, L = 100µH, VCE = 600V TJ = 125°C, VGE = 10V or 15V 90 120 tf, FALL TIME (ns) tr, RISE TIME (ns) 80 TJ = 25 or125°C,VGE = 10V 100 80 60 40 70 60 50 40 TJ = 25°C, VGE = 10V or 15V 30 20 20 10 TJ = 25 or 125°C,VGE =10V 0 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 4000 TJ=125°C,VGE=15V 4000 TJ=125°C,VGE=10V 3000 2000 TJ= 25°C,VGE=15V 1000 TJ= 25°C,VGE=10V EOFF, TURN OFF ENERGY LOSS (µJ) VCE = 600V RG = 5 Ω VCE = 600V RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 3000 2000 1000 TJ = 25°C, VGE = 10V or 15V 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 8000 5000 VCE = 600V VGE = +15V 7000 TJ = 125°C Eon2 70A 6000 5000 Eoff 70A 4000 3000 Eon2 35A 2000 Eon2 17.5A Eoff 35A 1000 0 SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) Rev D 6-2003 EON2, TURN ON ENERGY LOSS (µJ) 5000 050-7409 RG = 5Ω, L = 100µH, VCE = 600V VCE = 600V VGE = +15V RG = 5 Ω 4000 3000 Eoff70A Eon2 35A 2000 1000 Eon2 17.5A Eoff 35A Eoff 17.5A 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance Eon2 70A 0 Eoff 17.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT35GP120J 10,000 P C, CAPACITANCE ( F) Cies 1,000 500 Coes 100 50 Cres IC, COLLECTOR CURRENT (A) 160 5,000 140 120 100 80 60 40 20 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 800 900 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Reverse Bias Safe Operating Area 0.45 0.9 0.35 0.7 0.30 0.25 0.5 0.20 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.4 0.3 0.15 0.10 t1 t2 0.1 0.05 Duty Factor D = t1/t2 0.05 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 RC MODEL 0.158F 0.116 1.958F Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL Fmax = min(f max1 , f max 2 ) f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off 10 3 TJ = 125°C TC = 75°C D = 50 % VCE = 800V RG = 5 Ω Pdiss = TJ − TC R θJC 10 20 30 40 50 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 6-2003 0.228 50 Rev D 0.00997F 050-7409 Power (Watts) 0.0966 FMAX, OPERATING FREQUENCY (kHz) 100 Junction temp. ( ”C) APT35GP120J Gate Voltage APT30DF120 10% TJ = 125 C t d(on) tr V CE IC V CC 90% Collector Current 5% 10% 5% A Collector Voltage D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST *DRIVER SAME TYPE AS D.U.T. t d(off) Gate Voltage T J = 125 C 90% A tf V CE Collector Voltage IC 100uH 10% 0 V CLAMP B Collector Current Switching Energy A DRIVER* Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 6-2003 14.9 (.587) 15.1 (.594) Rev D 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 050-7409 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) 1.95 (.077) 2.14 (.084) * Emitter 30.1 (1.185) 30.3 (1.193) Collector * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Emitter Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.