ADPOW APT35GP120J

APT35GP120J
1200V
E
E
®
POWER MOS 7 IGBT
G
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 50 kHz operation @ 800V, 14A
• Low Gate Charge
• 20 kHz operation @ 800V, 25A
• Ultrafast Tail Current shutoff
• RBSOA rated
27
2
T-
C
SO
"UL Recognized"
ISOTOP ®
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
64
I C2
Continuous Collector Current @ TC = 110°C
29
I CM
Pulsed Collector Current
RBSOA
PD
TJ,TSTG
TL
UNIT
APT35GP120J
1
Volts
Amps
140
@ TC = 25°C
140A @ 960V
Reverse Bias Safe Operating Area @ TJ = 150°C
Watts
284
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C)
3.3
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C)
3
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
1200
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
nA
6-2003
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
UNIT
Rev D
BVCES
MIN
050-7409
Symbol
APT35GP120J
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
3240
VGE = 0V, VCE = 25V
248
Reverse Transfer Capacitance
f = 1 MHz
31
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
150
VCE = 600V
21
I C = 35A
62
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
Qgc
RBSOA
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
140
A
15V, L = 100µH,VCE = 960V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
I C = 35A
40
4
Turn-on Switching Energy (Diode) 5
Eon1
94
20
R G = 5Ω
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
16
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 600V
750
TJ = +25°C
1305
6
16
VGE = 15V
147
Current Fall Time
I C = 35A
75
Turn-on Switching Energy
R G = 5Ω
Current Rise Time
Turn-off Delay Time
Turn-off Switching Energy
µJ
680
Inductive Switching (125°C)
VCC = 600V
4
Turn-on Switching Energy (Diode)
ns
5
20
ns
750
TJ = +125°C
2132
6
µJ
1744
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.44
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
29.2
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7409
Rev D
6-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
80
80
70
IC, COLLECTOR CURRENT (A)
60
50
40
TC=25°C
30
TC=125°C
20
10
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
TC=25°C
30
TC=125°C
20
10
60
TJ = 25°C
40
TJ = 125°C
20
TJ = -55°C
0
2 3
4 5 6
7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
IC= 70A
4
IC= 35A
3
IC=17.5A
2
1
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
8
4
2
5
4.5
0.85
0.8
-50
-25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.90
40 60 80 100 120 140 160
GATE CHARGE (nC)
FIGURE 4, Gate Charge
IC=70A
IC= 35A
3
2.5
IC= 17.5A
2
1.5
1
0.5
0
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
80
0.95
20
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
1.15
1.0
0
4
90
1.05
VCE= 960V
6
1.2
1.1
VCE= 600V
10
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE= 240V
12
0
70
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2003
80
IC = 35A
TJ = 25°C
14
Rev D
100
IC, COLLECTOR CURRENT (A)
40
FIGURE 2, Output Characteristics (VGE = 10V)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
50
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
120
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
60
0
0
0
APT35GP120J
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7409
IC, COLLECTOR CURRENT (A)
70
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT35GP120J
180
30
VGE= 10V
25
VGE= 15V
20
15
10
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
35
160
VGE =15V,TJ=125°C
140
VGE =10V,TJ=125°C
120
VGE =15V,TJ=25°C
100
80
VGE =10V,TJ=25°C
60
40
VCE = 600V
RG = 5Ω
L = 100 µH
20
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
140
100
RG = 5Ω, L = 100µH, VCE = 600V
TJ = 125°C, VGE = 10V or 15V
90
120
tf, FALL TIME (ns)
tr, RISE TIME (ns)
80
TJ = 25 or125°C,VGE = 10V
100
80
60
40
70
60
50
40
TJ = 25°C, VGE = 10V or 15V
30
20
20
10
TJ = 25 or 125°C,VGE =10V
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
4000
TJ=125°C,VGE=15V
4000
TJ=125°C,VGE=10V
3000
2000
TJ= 25°C,VGE=15V
1000
TJ= 25°C,VGE=10V
EOFF, TURN OFF ENERGY LOSS (µJ)
VCE = 600V
RG = 5 Ω
VCE = 600V
RG = 5 Ω
TJ = 125°C, VGE = 10V or 15V
3000
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
8000
5000
VCE = 600V
VGE = +15V
7000
TJ = 125°C
Eon2 70A
6000
5000
Eoff 70A
4000
3000
Eon2 35A
2000
Eon2 17.5A
Eoff 35A
1000
0
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
Rev D
6-2003
EON2, TURN ON ENERGY LOSS (µJ)
5000
050-7409
RG = 5Ω, L = 100µH, VCE = 600V
VCE = 600V
VGE = +15V
RG = 5 Ω
4000
3000
Eoff70A
Eon2 35A
2000
1000
Eon2 17.5A
Eoff 35A
Eoff 17.5A
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
Eon2 70A
0
Eoff 17.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT35GP120J
10,000
P
C, CAPACITANCE ( F)
Cies
1,000
500
Coes
100
50
Cres
IC, COLLECTOR CURRENT (A)
160
5,000
140
120
100
80
60
40
20
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0 100 200 300 400 500 600 700 800 900 1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Reverse Bias Safe Operating Area
0.45
0.9
0.35
0.7
0.30
0.25
0.5
0.20
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.4
0.3
0.15
0.10
t1
t2
0.1
0.05
Duty Factor D = t1/t2
0.05
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0
10-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
RC MODEL
0.158F
0.116
1.958F
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
Fmax = min(f max1 , f max 2 )
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
10
3
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 5 Ω
Pdiss =
TJ − TC
R θJC
10
20
30
40
50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
6-2003
0.228
50
Rev D
0.00997F
050-7409
Power
(Watts)
0.0966
FMAX, OPERATING FREQUENCY (kHz)
100
Junction
temp. ( ”C)
APT35GP120J
Gate Voltage
APT30DF120
10%
TJ = 125 C
t d(on)
tr
V CE
IC
V CC
90%
Collector Current
5%
10%
5%
A
Collector Voltage
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
*DRIVER SAME TYPE AS D.U.T.
t d(off)
Gate Voltage
T J = 125 C
90%
A
tf
V CE
Collector Voltage
IC
100uH
10%
0
V CLAMP
B
Collector Current
Switching
Energy
A
DRIVER*
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 24, EON1 Test Circuit
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
6-2003
14.9 (.587)
15.1 (.594)
Rev D
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
050-7409
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
1.95 (.077)
2.14 (.084)
* Emitter
30.1 (1.185)
30.3 (1.193)
Collector
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter
Gate
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.