APT35GP120B APT35GP120BG *G Denotes RoHS Compliant, Pb Free Terminal Finish. POWER MOS 7 IGBT ® TO-247 The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 800V, 14A • Low Gate Charge • 50 kHz operation @ 800V, 25A • Ultrafast Tail Current shutoff • RBSOA rated MAXIMUM RATINGS Symbol G C E G E All Ratings: TC = 25°C unless otherwise specified. Parameter APT35GP120B(G) VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 96 I C2 Continuous Collector Current @ TC = 110°C 46 I CM Pulsed Collector Current RBSOA PD TJ,TSTG TL C 1 UNIT Volts Amps 140 @ TC = 25°C Reverse Bias Safe Operating Area @ TJ = 150°C 140A @ 960V Watts 543 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Characteristic / Test Conditions VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES 4.5 6 3.3 3.9 UNIT 1200 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) MAX 3 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) Volts 250 2 Gate-Emitter Leakage Current (VGE = ±20V) ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com µA 2500 nA 12-2006 Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) TYP Rev E BVCES MIN 050-7406 Symbol APT35GP120B(G) DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 3240 VGE = 0V, VCE = 25V 248 Reverse Transfer Capacitance f = 1 MHz 31 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 150 VCE = 600V 21 I C = 35A 62 Input Capacitance Coes Output Capacitance Cres VGEP Qge Qgc RBSOA TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Reverse Bias Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 140 A 15V, L = 100µH,VCE = 960V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time 4 Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff 1305 16 VGE = 15V 147 20 I C = 35A Current Fall Time 5 ns 75 R G = 5Ω 4 Turn-on Switching Energy (Diode) µJ 680 Inductive Switching (125°C) VCC = 600V Turn-off Delay Time Turn-off Switching Energy 750 TJ = +25°C 6 Current Rise Time Turn-on Switching Energy ns 40 R G = 5Ω Turn-on Switching Energy (Diode) 5 Eon1 94 20 I C = 35A Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 16 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 600V 750 TJ = +125°C 2132 6 µJ 1744 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .23 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7406 Rev E 12-2006 Microsemi reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 70 IC, COLLECTOR CURRENT (A) 50 40 TC=25°C 30 TC=125°C 20 10 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) TJ = 125°C 20 TJ = -55°C 0 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 6 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 5 IC= 70A 4 IC= 35A 3 IC=17.5A 2 1 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 10 0.90 0.85 0.8 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature VCE= 600V 10 8 VCE= 960V 6 4 2 5 4.5 0 20 40 60 80 100 120 140 160 GATE CHARGE (nC) FIGURE 4, Gate Charge VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE IC=70A 4 3.5 IC= 35A 3 2.5 IC= 17.5A 2 1.5 1 0.5 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 120 0.95 VCE= 240V 12 1.15 1.0 IC = 35A TJ = 25°C 14 140 1.05 TC=125°C 20 1.2 1.1 TC=25°C 30 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C 40 VGE, GATE-TO-EMITTER VOLTAGE (V) 60 40 FIGURE 2, Output Characteristics (VGE = 10V) 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 80 50 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 120 100 60 0 0 250µs PULSE TEST <0.5 % DUTY CYCLE VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 12-2006 60 APT35GP120B(G) Rev E 70 IC, COLLECTOR CURRENT (A) 80 050-7406 80 APT35GP120B(G) 180 30 VGE= 10V 25 VGE= 15V 20 15 10 VCE = 600V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 35 160 VGE =15V,TJ=125°C 140 VGE =10V,TJ=125°C 120 VGE =15V,TJ=25°C 100 80 VGE =10V,TJ=25°C 60 40 VCE = 600V RG = 5Ω L = 100 µH 20 0 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 140 100 RG = 5Ω, L = 100µH, VCE = 600V TJ = 125°C, VGE = 10V or 15V 90 120 tf, FALL TIME (ns) tr, RISE TIME (ns) 80 TJ = 25 or125°C,VGE = 10V 100 80 60 40 70 60 50 40 TJ = 25°C, VGE = 10V or 15V 30 20 20 10 TJ = 25 or 125°C,VGE =10V 0 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 050-7406 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ=125°C,VGE=15V 4000 TJ=125°C,VGE=10V 3000 2000 TJ= 25°C,VGE=15V 1000 TJ= 25°C,VGE=10V EOFF, TURN OFF ENERGY LOSS (µJ) 4000 VCE = 600V RG = 5 Ω VCE = 600V RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 3000 2000 1000 TJ = 25°C, VGE = 10V or 15V 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 8000 5000 VCE = 600V VGE = +15V 7000 TJ = 125°C Eon2 70A 6000 5000 Eoff 70A 4000 3000 Eon2 35A 2000 Eon2 17.5A 1000 0 Eoff 35A Eoff 17.5A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) Rev E 12-2006 EON2, TURN ON ENERGY LOSS (µJ) 5000 RG = 5Ω, L = 100µH, VCE = 600V VCE = 600V VGE = +15V RG = 5 Ω Eon2 70A 4000 3000 Eoff70A Eon2 35A 2000 1000 0 Eon2 17.5A Eoff 35A Eoff 17.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT35GP120B(G) 160 10,000 140 Cies 120 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 5,000 1,000 500 Coes 100 50 Cres 10 100 80 60 40 20 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 100 200 300 400 500 600 700 800 900 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Reverse Bias Safe Operating Area 0.9 0.20 0.7 0.15 0.5 Note: PDM 0.10 0.3 t1 0.05 t2 Duty Factor D = t1/t2 0.1 SINGLE PULSE 0.05 Peak TJ = PDM x ZθJC + TC 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration TJ ( C) 1.0 TC ( C) 0.0896 0.140 Dissipated Power (Watts) 0.0108 0.228 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL 180 100 50 7 10 20 30 40 50 60 70 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 12-2006 TJ = 125°C TC = 75°C D = 50 % VCE = 800V RG = 5 Ω f max1 = Rev E 10 Fmax = min(f max1 , f max 2 ) 050-7406 10-5 ZEXT 0 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT35GP120B(G) Gate Voltage APT30DF120 10% TJ = 125 C t d(on) tr V CE IC V CC 90% Collector Current 5% 10% 5% A Collector Voltage D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST t d(off) Gate Voltage *DRIVER SAME TYPE AS D.U.T. T J = 125 C 90% A tf V CE Collector Voltage 10% IC 100uH 0 V CLAMP B Collector Current Switching Energy A DRIVER* Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit T0-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC Collector 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. Rev E 12-2006 0.40 (.016) 0.79 (.031) 050-7406 5.38 (.212) 6.20 (.244) 2.21 (.087) 2.59 (.102) 19.81 (.780) 20.32 (.800) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,5225,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.