AOSMD AOTF474

AOT474/AOTF474
N-Channel Enhancement Mode
Field Effect Transistor
General Description
Product Summary
The AOT(F)474/L uses a robust technology that is
designed to provide efficient and reliable power
conversion even in the most demanding applications,
including motor control. With low R DS(ON) and excellent
thermal capability this device is appropriate for high
current switching and can endure adverse operating
conditions.
75V
VDS
ID_TO220 (at V GS=10V)
127A
ID_TO220FL (at VGS=10V)
47A
RDS(ON) (at VGS=10V)
< 11.3mΩ
100% UIS Tested
AOT(F)474/AOT(F)474L are electrically Identical
AOT(F)474 -RoHS Compliant
AOT(F)474L -Halogen Free
TO220
Bottom View
Top View
Top View
TO220FL
Bottom View
D
D
G
S
G
S
D
S
D
G
Absolute Maximum Ratings TA=25°C unless otherwise noted
AOT474
Parameter
Symbol
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
TC=25°C
C
Avalanche Current
C
Repetitive avalanche energy L=0.1mH
C
TC=25°C
Power Dissipation
B
TC=100°C
Power Dissipation
A
TA=70°C
Rev 0: February 2009
Steady-State
7
7
A
A
mJ
Symbol
Steady-State
9
562
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient
AD
9
106
TJ, TSTG
Maximum Junction-to-Ambient
Maximum Junction-to-Case
A
EAR
Junction and Storage Temperature Range
t ≤ 10s
33
IAR
PDSM
A
V
200
PD
TA=25°C
Units
V
47
89
IDSM
TA=70°C
AOTF474
±25
IDM
TA=25°C
Continuous Drain
Current
G
S
75
127
ID
TC=100°C
Pulsed Drain Current
D
S
AOTF474
AOT474
Continuous Drain
Current
G
D
RθJA
417
57.5
208
29
1.9
1.9
1.2
1.2
RθJC
www.aosmd.com
W
°C
-55 to 175
AOT474
13.9
W
AOTF474
13.9
Units
°C/W
65
65
°C/W
0.36
2.6
°C/W
Page 1 of 7
AOT474/AOTF474
Electrical Characteristics (T J=25°C unless otherwise noted)
Parameter
Symbol
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
Conditions
Min
ID=250µA, VGS=0V
VDS=75V, VGS=0V
5
IGSS
Gate-Body leakage current
VDS=0V, VGS= ±25V
Gate Threshold Voltage
On state drain current
VDS=VGS ID=250µA
2.6
VGS=10V, VDS=5V
200
VGS=10V, ID=30A
Static Drain-Source On-Resistance
gFS
Forward Transconductance
VSD
Diode Forward Voltage
IS=1A,VGS=0V
Maximum Body-Diode Continuous Current
TJ=125°C
VDS=5V, ID=30A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
Units
V
1
TJ=55°C
RDS(ON)
Max
75
VGS(th)
ID(ON)
IS
Typ
µA
100
nA
3.4
4
V
9.4
11.3
18
21.5
A
67
0.73
mΩ
S
1
V
128
A
2240
2805
3370
pF
355
507
660
pF
22
36
50
pF
VGS=0V, VDS=0V, f=1MHz
1.4
2.8
4.2
Ω
39
49.6
60
nC
VGS=10V, VDS=30V, ID=30A
11
13.8
17
nC
8
14
20
nC
VGS=0V, VDS=30V, f=1MHz
VGS=10V, VDS=30V, RL=1Ω,
RGEN=3Ω
15
ns
34
ns
42
ns
4.5
ns
trr
Body Diode Reverse Recovery Time
IF=30A, dI/dt=500A/µs
35
50
65
Qrr
Body Diode Reverse Recovery Charge IF=30A, dI/dt=500A/µs
330
472
614
ns
nC
A. The value of RθJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on
the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial
TJ =25°C.
D. The RθJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating.
G. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
Rev 0:February 2009
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 0: February 2009
www.aosmd.com
Page 2 of 7
AOT474/AOTF474
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
150
105
10V
8V
120
VDS=5V
90
6V
ID(A)
ID (A)
75
90
5.5V
60
-40°C
60
125°C
45
30
5V
30
25°C
15
VGS=4.5V
0
0
0
2
4
6
8
3
10
13
4
4.5
5
5.5
6
6.5
7
2.5
11
Normalized On-Resistance
12
RDS(ON) (mΩ)
3.5
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
VGS=10V
10
9
8
7
VGS=10V
ID=30A
2.0
1.5
17
5
2
10
1.0
0.5
0.0
6
0
20
40
60
80
-50 -25
100
ID (A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage (Note E)
0
25
50
75 100 125 150 175 200
Temperature (°C)
0
Figure 4: On-Resistance vs. Junction Temperature
18
(Note E)
1.0E+02
30
ID=30A
1.0E+01
25
15
IS (A)
RDS(ON) (mΩ)
40
1.0E+00
20
125°C
10
125°C
1.0E-01
1.0E-03
25°C
5
-40°C
1.0E-02
25°C
1.0E-04
1.0E-05
0
4
8
12
16
20
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev 0: February 2009
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 7
AOT474/AOTF474
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
5000
VDS=30V
ID=30A
4000
Capacitance (pF)
VGS (Volts)
8
6
4
Ciss
3000
2000
Coss
2
1000
0
0
Crss
0
10
20
30
40
Qg (nC)
Figure 7: Gate-Charge Characteristics
50
0
10
20
30
40
50
VDS (Volts)
Figure 8: Capacitance Characteristics
60
IAR (A) Peak Avalanche Current
200
150
TA=25°C
TA=100°C
100
TA=150°C
50
TA=125°C
0
0.000001
0.00001
0.0001
0.001
Time in avalanche, tA (s)
Figure 9: Single Pulse Avalanche capability (Note
C)
Rev 0: February 2009
www.aosmd.com
Page 4 of 7
AOT474/AOTF474
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10000
10000
TJ(Max)=175°C
TC=25°C
TJ(Max)=175°C
TC=25°C
8000
Power (W)
Power (W)
8000
6000
4000
2000
6000
4000
2000
0
1E-05 0.0001 0.001
0.01
0.1
1
0
1E-05 0.0001
10
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase for AOT474 (Note F)
10000
0.001
0.01
0.1
TA=25°C
1000
1000
Power (W)
Power (W)
10
10000
TA=25°C
100
10
100
10
1
0.001
0.1
10
1
0.001
1000
Pulse Width (s)
Figure 12: Single Pulse Power Rating Junction-toAmbient for AOT474 (NoteG)
10µs
RDS(ON)
limited
TJ(Max)=175°C
TC=25°C
0.1
10.0
RDS(ON)
limited
0.0
0.01
www.aosmd.com
100µs
DC
1.0
1ms
10ms
TJ(Max)=175°C
TC=25°C
0.1
1
10
100
1000
VDS (Volts)
Figure 14: Maximum Forward Biased
Safe Operating Area for AOT474 (Note F)
Rev 0: February 2009
ID (Amps)
1ms
10ms
1.0
0.0
0.01
1000
10µs
100.0
100µs
DC
0.1
10
1000.0
100.0
10.0
0.1
Pulse Width (s)
Figure 13: Single Pulse Power Rating Junction-toAmbient for AOTF474 (Note G)
1000.0
ID (Amps)
1
Pulse Width (s)
Figure 11: Single Pulse Power Rating Junction-toCase for AOTF474 (Note F)
0.1
1
10
100
1000
VDS (Volts)
Figure 15: Maximum Forward Biased
Safe Operating Area for AOTF474 (Note
F)
Page 5 of 7
AOT474/AOTF474
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
ZθJC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJC=0.36°C/W
0.1
PD
0.01
Ton
Single Pulse
0.001
0.000001
0.00001
0.0001
0.001
0.01
0.1
T
1
10
100
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance for AOT474 (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJC=2.6°C/W
0.1
PD
0.01
0.001
0.00001
Ton
Single Pulse
0.0001
0.001
0.01
0.1
1
T
10
100
Pulse Width (s)
Figure 17: Normalized Maximum Transient Thermal Impedance for AOTF474 (Note F)
Rev 0: February 2009
www.aosmd.com
Page 6 of 7
AOT474/AOTF474
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
VDC
DUT
Qgs
Qgd
-
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
DUT
Vgs
90%
+ Vdd
VDC
Rg
-
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
EAR= 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
VDC
Rg
-
I AR
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds -
Isd
Vgs
Ig
Rev 0: February 2009
Vgs
L
Isd
+ Vdd
VDC
-
IF
t rr
dI/dt
I RM
Vdd
Vds
www.aosmd.com
Page 7 of 7