TI TM893GBK32S

TM497FBK32, TM497FBK32S 4194304 BY 32-BIT
TM893GBK32, TM893GBK32S 8388608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
D
D
D
D
D
D
D
D
D
D
Organization
– TM497FBK32/S: 4 194 304 x 32
– TM893GBK32/S: 8 388 608 x 32
Single 5-V Power Supply (±10% Tolerance)
72-Pin Single-In-Line Memory Module
(SIMM) for Use With Sockets
TM497FBK32/S – Uses Eight 16M-Bit
Dynamic Random-Access Memories
(DRAMs) in Plastic Small-Outline J-Lead
(SOJ) Packages
TM893GBK32/S – Uses Sixteen 16M-Bit
DRAMs in Plastic SOJ Packages
Long Refresh Period
32 ms (2 048 Cycles)
All Inputs, Outputs, Clocks Fully
TTL-Compatible
3-State Output
Common CAS Control for Eight Common
Data-In and Data-Out Lines in Four Blocks
Extended Data Out (EDO) Operation With
CAS-Before-RAS ( CBR), RAS-Only, and
Hidden Refresh
D
D
Presence Detect
Performance Ranges:
ACCESS ACCESS ACCESS
TIME
TIME
TIME
tRAC
tAA
tCAC
(MAX)
(MAX)
(MAX)
’497FBK32/S-60 60 ns
30 ns
15 ns
’497FBK32/S-70 70 ns
35 ns
18 ns
’497FBK32/S-80 80 ns
40 ns
20 ns
D
D
D
D
’893GBK32/S-60 60 ns
’893GBK32/S-70 70 ns
’893GBK32/S-80 80 ns
30 ns
35 ns
40 ns
15 ns
18 ns
20 ns
EDO
CYCLE
tHPC
(MIN)
25 ns
30 ns
35 ns
25 ns
30 ns
35 ns
Low Power Dissipation
Operating Free-Air Temperature Range
0°C to 70°C
Gold-Tabbed Version Available:†
TM497FBK32, TM893GBK32
Tin-Lead (Solder-) Tabbed Version
Available: TM497FBK32S, TM893GBK32S
description
The TM497FBK32 is a 16M-byte dynamic random-access memory (DRAM) organized as four times
4 194 304 × 8 bits in a 72-pin leadless single-in-line memory module (SIMM). The SIMM is composed of eight
TMS417409DJ, 4 194 304 × 4-bit DRAMs, each in 24/26-lead plastic small-outline J-lead (SOJ) packages
mounted on a substrate with decoupling capacitors. The TMS417409DJ is described in the TMS416409,
TMS417409 data sheet (literature number SMKS884).
The TM497FBK32 SIMM is available in the single-sided BK leadless module for use with sockets. The
TM497FBK32 features RAS access times of 60 ns, 70 ns, and 80 ns. This device is characterized for operation
from 0°C to 70°C.
The TM893GBK32/S is a 32M-byte DRAM organized as four times 8 388 608 × 8 bits in a 72-pin leadless SIMM.
The SIMM is composed of sixteen TMS417409DJ 4 194 304 × 4-bit DRAMs.
The TM893GBK32/S SIMM is available in the double-sided BK leadless module for use with sockets. The
TM893GBK32/S features RAS access times of 60 ns, 70 ns, and 80 ns. This device is characterized for
operation from 0°C to 70°C.
operation
The TM497FBK32/S operates as eight TMS417409DJs connected as shown in Figure 1 and in Table 1. The
common I/O feature dictates the use of early write cycles to prevent contention on D and Q.
The TM893GBK32/S operates as sixteen TMS417409DJs connected as shown in Figure 2 and in Table 2. The
common I/O feature dictates the use of early write cycles to prevent contention on D and Q.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
† Part numbers in this data sheet are for the gold-tabbed version; the information applies to both gold-tabbed and solder-tabbed versions.
Copyright  1996, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
1
TM497FBK32, TM497FBK32S 4194304 BY 32-BIT
TM893GBK32, TM893GBK32S 8388608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
refresh
The refresh period is extended to 32 ms and, during this period, each of the 2 048 rows must be strobed with
RAS in order to retain data. CAS can remain high during the refresh sequence to conserve power.
power up
To achieve proper operation, an initial pause of 200 µs followed by a minimum of eight initialization cycles is
required after full VCC level is achieved. These eight initialization cycles need to include at least one refresh
(RAS-only or CBR ) cycle.
2
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM497FBK32, TM497FBK32S 4194304 BY 32-BIT
TM893GBK32, TM893GBK32S 8388608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
BK SINGLE-IN-LINE PACKAGE
( TOP VIEW )
VSS
DQ0
DQ16
DQ1
DQ17
DQ2
DQ18
DQ3
DQ19
VCC
NC
A0
A1
A2
A3
A4
A5
A6
A10
DQ4
DQ20
DQ5
DQ21
DQ6
DQ22
DQ7
DQ23
A7
NC
VCC
A8
A9
NC
RAS2
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
NC
NC
VSS
CAS0
CAS2
CAS3
CAS1
RAS0
NC
NC
W
NC
DQ8
DQ24
DQ9
DQ25
DQ10
DQ26
DQ11
DQ27
DQ12
DQ28
VCC
DQ29
DQ13
DQ30
DQ14
DQ31
DQ15
NC
PD1
PD2
PD3
PD4
NC
VSS
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
TM497FBK32/S
( SIDE VIEW )
TM893GBK32/S
( SIDE VIEW )
PIN NOMENCLATURE
A0 – A10
CAS0 – CAS3
DQ0 – DQ31
NC
PD1 – PD4
RAS0 – RAS3
VCC
VSS
W
Address Inputs
Column-Address Strobe
Data In / Data Out
No Connection
Presence Detects
Row-Address Strobe
5-V Supply
Ground
Write Enable
PRESENCE DETECT
SIGNAL
(PIN)
80 ns
TM497FBK32/S
70 ns
60 ns
TM893GBK32/S
POST OFFICE BOX 1443
PD1
(67)
PD2
(68)
PD3
(69)
PD4
(70)
VSS
VSS
NC
NC
NC
VSS
NC
VSS
NC
80 ns
VSS
NC
70 ns
NC
VSS
VSS
60 ns
NC
VSS
• HOUSTON, TEXAS 77251–1443
NC
NC
VSS
NC
NC
VSS
NC
NC
3
TM497FBK32, TM497FBK32S 4194304 BY 32-BIT
TM893GBK32, TM893GBK32S 8388608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
Table 1. TM497FBK32/S Connection Table
DATA BLOCK
RASx
CASx
DQ0 – DQ7
RAS0
CAS0
DQ8 – DQ15
RAS0
CAS1
DQ16 – DQ23
RAS2
CAS2
DQ24 – DQ31
RAS2
CAS3
Table 2. TM893GBK32/S Connection Table
DATA BLOCK
RASx
CASx
Side 1
Side 2
DQ0 – DQ7
RAS0
RAS1
CAS0
DQ8 – DQ15
RAS0
RAS1
CAS1
DQ16 – DQ23
RAS2
RAS3
CAS2
DQ24 – DQ31
RAS2
RAS3
CAS3
single-in-line memory module and components
PC substrate: 1,27 ± 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage
Bypass capacitors: Multilayer ceramic
Contact area for TM497FBK32 and TM893GBK32: Nickel plate and gold plate over copper
Contact area for TM497FBK32S and TM893GBK32S: Nickel plate and tin-lead over copper
4
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
A0 – A10
RAS0
W
CAS0
11
RAS2
CAS1
11
11
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1 –
DQ4
11
DQ0 –
DQ3
11
DQ4 –
DQ7
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1 –
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1 –
DQ4
11
DQ8 –
DQ11
11
DQ12 –
DQ15
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1 –
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1 –
DQ4
Figure 1. Functional Block Diagram of TM497FBK32
11
DQ16 –
DQ19
11
DQ20 –
DQ23
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1 –
DQ4
DQ24 –
DQ27
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1 –
DQ4
DQ28 –
DQ31
SMMS668 – NOVEMBER 1996
5
TM497FBK32, TM497FBK32S 4 194 304 BY 32-BIT
TM893GBK32, TM893GBK32S 8 388 608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1 –
DQ4
CAS3
CAS2
11
RAS2
CAS1
11
11
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
CAS3
CAS2
11
DQ0 –
DQ3
11
DQ4 –
DQ7
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
DQ8 –
DQ11
11 4 M × 4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
11
DQ12 –
DQ15
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
11
DQ16 –
DQ19
11
DQ20 –
DQ23
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
DQ24 –
DQ27
DQ28 –
DQ31
side 2
A0 – A10
RAS1
W
CAS0
11
RAS3
CAS1
11
11
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
11
DQ0 –
DQ3
11
DQ4 –
DQ7
CAS3
CAS2
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
DQ8 –
DQ11
11 4 M × 4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
11
DQ12 –
DQ15
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
Figure 2. Functional Block Diagram of TM893GBK32/S
11
DQ16 –
DQ19
11
DQ20 –
DQ23
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
DQ24 –
DQ27
DQ28 –
DQ31
Template Release Date: 7–11–94
A0 – A10
RAS0
W
CAS0
TM497FBK32, TM497FBK32S 4 194 304 BY 32-BIT
TM893GBK32, TM893GBK32S 8 388 608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
6
side 1
TM497FBK32, TM497FBK32S 4 194 304 BY 32-BIT
TM893GBK32, TM893GBK32S 8 388 608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 W
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to VSS.
recommended operating conditions
MIN
NOM
MAX
5
UNIT
VCC
VIH
Supply voltage
4.5
5.5
V
High-level input voltage
2.4
6.5
V
VIL
TA
Low-level input voltage (see Note 2)
–1
0.8
V
0
70
°C
Operating free-air temperature
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
VOH
VOL
High-level output voltage
II
Input current (leakage)
IO
ICC1
ICC2
Low-level output voltage
TEST CONDITIONS‡
IOH = – 5 mA
IOL = 4.2 mA
’497FBK32-60
MIN
MAX
2.4
’497FBK32-70
MIN
MAX
2.4
’497FBK32-80
MIN
MAX
2.4
UNIT
V
0.4
0.4
0.4
V
VCC = 5.5 V,
VI = 0 V to 6.5 V,
All others = 0 V to VCC
± 10
± 10
± 10
µA
Output current (leakage)
VCC = 5.5 V,
CAS high
VO = 0 V to VCC,
± 10
± 10
± 10
µA
Read- or write-cycle current
(see Note 3)
VCC = 5.5 V,
Minimum cycle
880
800
720
mA
16
16
16
mA
8
8
8
mA
Standby current
VIH = 2.4 V (TTL),
After one memory cycle,
RAS and CAS high
VIH = VCC – 0.2 V (CMOS),
After one memory cycle,
RAS and CAS high
ICC3
Average refresh current
(RAS only or CBR)
(see Note 3)
VCC = 5.5 V,
Minimum cycle,
RAS cycling,
CAS high
(RAS only);
RAS low after
CAS low (CBR)
880
800
720
mA
ICC4
Average page current
(see Note 4)
VCC = 5.5 V,
RAS low,
560
480
400
mA
tPC = MIN,
CAS cycling
‡ For test conditions shown as MIN / MAX, use the appropriate value specified under recommended operating conditions.
NOTES: 3. Measured with a maximum of one address change while RAS = VIL
4. Measured with a maximum of one address change while CAS = VIH
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
7
TM497FBK32, TM497FBK32S 4 194 304 BY 32-BIT
TM893GBK32, TM893GBK32S 8 388 608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
TEST CONDITIONS†
PARAMETER
VOH
VOL
High-level output voltage
Low-level output voltage
IOH = – 5 mA
IOL = 4.2 mA
’893GBK32-60
MIN
MAX
2.4
’893GBK32-70
MIN
MAX
2.4
’893GBK32-80
MIN
MAX
2.4
UNIT
V
0.4
0.4
0.4
V
± 20
± 20
± 20
µA
II
Input current (leakage)
VCC = 5.5 V,
VI = 0 V to 6.5 V,
All others = 0 V to VCC
IO
Output current (leakage)
VCC = 5.5 V,
CASx high
VO = 0 V to VCC,
± 20
± 20
± 20
µA
ICC1
Read- or write-cycle current
(see Note 3)
VCC = 5.5 V,
Minimum cycle
896
816
736
mA
VIH = 2.4 V (TTL),
After one memory cycle,
RASx and CASx high
32
32
32
mA
VIH = VCC – 0.2 V (CMOS),
After one memory cycle,
RASx and CASx high
16
16
16
mA
1760
1600
1440
mA
576
496
416
mA
ICC2
Standby current
ICC3
Average refresh current
(RAS only or CBR)
(see Note 3)
VCC = 5.5 V,
RASx cycling,
(RASx only);
Minimum cycle
CASx low (CBR) CASx high
RASx low after
ICC4
Average page current
(see Note 4)
VCC = 5.5 V,
RASx low,
tPC = MIN,
CASx cycling
† For test conditions shown as MIN / MAX, use the appropriate value specified under recommended operating conditions.
NOTES: 3. Measured with a maximum of one address change while RAS = VIL
4. Measured with a maximum of one address change while CAS = VIH
capacitance over recommended ranges of supply voltage and operating free-air temperature,
f = 1 MHz (see Note 5)
TM497FBK32
PARAMETER
MIN
MAX
TM893GBK32
MIN
MAX
UNIT
Ci(A)
Input capacitance, address inputs
50
80
pF
Ci(R)
Input capacitance, RAS inputs
33
28
pF
Ci(C)
Input capacitance, CAS inputs
17
28
pF
Ci(W)
Input capacitance, write-enable input
66
112
pF
Co(DQ)
Output capacitance on DQ pins
9
14
pF
NOTE 5: VCC = 5 V ± 0.5 V, and the bias on pins under test is 0 V.
8
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM497FBK32, TM497FBK32S 4 194 304 BY 32-BIT
TM893GBK32, TM893GBK32S 8 388 608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature
’497FBK32-60
’893GBK32-60
PARAMETER
MIN
MAX
’497FBK32-70
’893GBK32-70
MIN
MAX
’497FBK32-80
’893GBK32-80
MIN
UNIT
MAX
tAA
tCAC
Access time from column address
30
35
40
ns
Access time from CAS low
15
18
20
ns
tCPA
tRAC
Access time from column precharge
35
40
45
ns
Access time from RAS low
60
70
80
ns
tCLZ
tOH
CAS to output in low-impedance state
0
0
0
Output disable time from start of CAS high
3
3
3
tOFF Output disable time after CAS high (see Note 6)
NOTE 6: tOFF is specified when the output is no longer driven.
0
15
0
18
0
ns
ns
20
ns
EDO timing requirements over recommended ranges of supply voltage and operating free-air
temperature
’497FBK32-60
’893GBK32-60
MIN
MAX
’497FBK32-70
’893GBK32-70
MIN
MAX
’497FBK32-80
’893GBK32-80
MIN
UNIT
MAX
tHPC
tPRWC
Cycle time, EDO page mode read or write
25
30
35
ns
Cycle time, EDO read-write
80
90
100
ns
tCSH
tDOH
Hold time, CAS after RAS
50
55
60
ns
3
3
3
ns
tCAS
tWPE
Pulse duration, CAS
Pulse duration, W (output disable only)
5
5
5
ns
tCP
Precharge time, CAS
5
5
5
ns
Hold time, output after RAS
10
POST OFFICE BOX 1443
10 000
• HOUSTON, TEXAS 77251–1443
12
10 000
15
10 000
ns
9
TM497FBK32, TM497FBK32S 4 194 304 BY 32-BIT
TM893GBK32, TM893GBK32S 8 388 608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
timing requirements over recommended ranges of supply voltage and operating free-air
temperature
’497FBK32-60
’893GBK32-60
MIN
MAX
’497FBK32-70
’893GBK32-70
MIN
MAX
’497FBK32-80
’893GBK32-80
MIN
UNIT
MAX
tRC
tPC
Cycle time, random read or write (see Note 7)
110
130
150
ns
Cycle time, page-mode read or write (see Notes 7 and 8)
40
45
50
ns
tRASP
tRAS
Pulse duration, page-mode, RAS low
60 100 000
70
100 000
80
100 000
ns
Pulse duration, non-page-mode, RAS low
60
10 000
70
10 000
80
10 000
ns
tCAS
tCP
Pulse duration, CAS low
15
10 000
18
10 000
20
10 000
ns
Pulse duration, CAS high
10
10
10
ns
tRP
tWP
Pulse duration, RAS high (precharge)
40
50
60
ns
Pulse duration, W low
10
10
10
ns
tASC
tASR
Setup time, column address before CAS low
0
0
0
ns
Setup time, row address before RAS low
0
0
0
ns
tDS
tRCS
Setup time, data before CAS low
0
0
0
ns
Setup time, W high before CAS low
0
0
0
ns
tCWL
tRWL
Setup time, W-low before CAS high
10
12
15
ns
Setup time, W-low before RAS high
10
12
15
ns
tWCS
tWRP
Setup time, W-low before CAS low
0
0
0
ns
Setup time, W-high before RAS low (CBR refresh only)
10
10
10
ns
tCAH
tRHCP
Hold time, column address after CAS low
10
12
15
ns
Hold time, RAS high after CAS precharge
35
40
45
ns
tDH
tRAH
Hold time, data after CAS low
10
12
15
ns
Hold time, row address after RAS low
10
10
10
ns
tRCH
tRRH
Hold time, W high after CAS high (see Note 9)
0
0
0
ns
Hold time, W high after RAS high (see Note 9)
0
0
0
ns
tWCH
tWRH
Hold time, W low after CAS low
10
12
15
ns
Hold time, W high after RAS low (CBR refresh only)
10
10
10
ns
tCHR
tCRP
Delay time, RAS low to CAS high (CBR refresh only)
10
10
10
ns
Delay time, CAS high to RAS low
5
5
5
ns
tCSH
tCSR
Delay time, RAS low to CAS high
50
55
60
ns
tRAD
tRAL
Delay time, RAS low to column address (see Note 10)
15
Delay time, column address to RAS high
30
35
40
tCAL
tRCD
Delay time, column address to CAS high
30
35
40
Delay time, RAS low to CAS low (see Note 10)
20
tRPC
tRSH
Delay time, RAS high to CAS low (CBR only)
tREF
tT
Refresh time interval
Delay time, CAS low to RAS low (CBR refresh only)
Delay time, CAS low to RAS high
5
30
45
15
20
52
15
20
0
0
0
12
15
3
30
All cycles assume tT = 5 ns.
To assure tPC min, tASC should be greater than or equal to tCP.
Either tRRH or tRCH must be satisfied for a read cycle.
The maximum value is specified only to assure access time.
POST OFFICE BOX 1443
5
35
10
32
Transition time
NOTES: 7.
8.
9.
10.
10
5
• HOUSTON, TEXAS 77251–1443
32
3
30
3
ns
40
ns
ns
ns
60
ns
ns
ns
32
ms
30
ns
TM497FBK32, TM497FBK32S 4 194 304 BY 32-BIT
TM893GBK32, TM893GBK32S 8 388 608 BY 32-BIT
EXTENDED DATA OUT DYNAMIC RAM MODULES
SMMS668 – NOVEMBER 1996
MECHANICAL DATA
BK (R-PSIM-N72)
SINGLE-IN-LINE MEMORY MODULE
0.054 (1,37)
0.047 (1,19)
4.255 (108,08)
4.245 (107,82)
0.125 (3,18) TYP
1.005 (25,53)
0.995 (25,27)
0.128 (3,25)
0.120 (3,05)
0.050 (1,27)
0.010 (0,25) MAX
0.400 (10,16) TYP
0.040 (1,02) TYP
0.208 (5,28) MAX
0.360 (9,14) MAX
(For Double-Sided SIMM)
4040197 / B 02/96
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
device symbolization
TM497FBK32
-SS
YY
MM
T
-SS
YYMMT
= Year Code
= Month Code
= Assembly Site Code
= Speed Code
NOTE: The location of the part number may vary.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
11
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated