LINEAR LTC1706EMS-63

LTC1706-63
5-Bit VID Voltage
Programmer for Sun CPUs
U
FEATURES
DESCRIPTIO
■
The LTC®1706-63 is a precision, digitally programmed,
resistive ladder which adjusts the output of any 0.6V
referenced regulator. Depending on the state of the five
VID inputs, an output voltage between 1.025V and 1.4125V
is programmed in 12.5mV increments.
■
■
■
■
Programs Regulator Output Voltage Range from
1.025V to 1.4125V in 12.5mV Steps
Programs a Wide Range of Linear Technology
DC/DC Converters with a 0.6V Reference
±0.35% Accurate Output Voltage
Built-In 40k Pull-Up Resistors on VID Inputs
Available in MSOP-10 Package
The LTC1706-63 is designed specifically to program
an entire family of Linear Technology DC/DC converters
with on board 0.6V references. Please see the related parts
list at the end of the data sheet.
U
APPLICATIO S
■
■
For a 2-phase synchronous controller with on-board
LTC1706-63, see the LTC3819.
SunTM Processor Power Supply
Workstations and Servers
Large Memory Array Supply
, LTC and LT are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners.
U
■
TYPICAL APPLICATIO
5-Bit VID-Controlled High Current Application (Simplified Block Diagram)
VIN
4.5V TO 22V
VIN
LTC1629-6
VID0
FROM
µP
INTVCC
SENSE
VID2 LTC1706-63
VID3
VID4
RSENSE1
VDIFFOUT
+
BG1
VOUT
1.025V TO 1.4125V
UP TO 80A
COUT
VIN
PGND
SGND
FB
GND
L1
SW1
VCC
VID1
TG1
TG2
EAIN
L2
RSENSE2
L3
RSENSE3
L4
RSENSE4
SW2
ITH
BG2
VIN
4.5V TO 22V
VIN
LTC1629-6
TG1
SW1
BG1
PGND
VIN
SGND
EAIN
ITH
TG2
SW2
BG2
1706-63 TA01
170663f
1
LTC1706-63
W
U
U
U
W W
W
ABSOLUTE MAXIMUM RATINGS
PACKAGE/ORDER INFORMATION
(Note 1)
(Voltages Referred to GND Pin)
Input Supply Voltage (VCC) ..........................– 0.3V to 7V
VID Input Pins .............................................– 0.3V to 7V
SENSE Pin ...................................................– 0.3V to 7V
FB Pin ..........................................................– 0.3V to 7V
Operating Ambient Temperature Range
(Note 2) .................................................. – 40°C to 85°C
Junction Temperature ........................................... 110°C
Storage Temperature Range ................. – 65°C to 150°C
Lead Temperature (Soldering, 10 sec).................. 300°C
TOP VIEW
VID0
VID1
VID2
VID3
VCC
10
9
8
7
6
1
2
3
4
5
FB
GND
NC
VID4
SENSE
MS PACKAGE
10-LEAD PLASTIC MSOP
TJMAX = 110°C, θJA = 120°C/ W
MS PART MARKING
ORDER PART NUMBER
LTC1706EMS-63
LTBXM
Order Options Tape and Reel: Add #TR
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF
Lead Free Part Marking: http://www.linear.com/leadfree/
Consult LTC Marketing for parts specified with wider operating temperature ranges.
ELECTRICAL CHARACTERISTICS
The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.
2.7V ≤ VCC ≤ 5.5V, VID0 = VID1 = VID2 = VID3 = VID4 = NC unless otherwise specified.
SYMBOL
VCC
IVCC
RFB-SENSE
VOUT Error %
RPULLUP
VIDTH
IVID-LEAK
VPULLUP
PARAMETER
Operating Supply Voltage Range
Supply Current
Resistance Between SENSE and FB
Output Voltage Accuracy
VID Input Pull-Up Resistance
VID Input Voltage Threshold
VID Input Leakage Current
VID Pull-Up Voltage
CONDITIONS
MIN
2.7
(Note 3)
●
●
VDIODE = 0.6V (Note 4)
VIL (2.7V ≤ VCC ≤ 5.5V)
VIH (2.7V ≤ VCC ≤ 5.5V)
VCC < VID < 7V (Note 4)
VCC = 3.3V
VCC = 5V
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: The LTC1706EMS-63 is guaranteed to meet performance
specifications from 0°C to 70°C. Specifications over the – 40°C to 85°C
operating temperature range are assured by design, characterization and
correlation with statistical process controls.
3
– 0.35
TYP
0.1
5
MAX
5.5
5
7
+ 0.35
40
0.4
1.6
0.01
2.8
4.5
±1
UNITS
V
µA
kΩ
%
kΩ
V
V
µA
V
V
Note 3: With all five VID inputs floating, the VCC supply current is simply
the device leakage current. However, the VCC supply current will rise and
be approximately equal to the number of grounded VID input pins times
(VCC – 0.6V)/40k. (See the VID Input Characteristics section for more
details.)
Note 4: Each built-in pull-up resistor attached to the VID inputs also has a
series diode connected to VCC to allow input voltages higher than the VCC
supply without damage or clamping. (See Operation section for further
details.)
170663f
2
LTC1706-63
U W
TYPICAL PERFORMANCE CHARACTERISTICS
IVID-PULLUP vs Temperature
1.0
100
80
60
1.5
SUPPLY CURRENT (µA)
120
ALL VID INPUTS OPEN
TA = 25°C
ALL VID INPUTS OPEN
VCC = 5V
VID4 = 0V
VID0 = VID1 = VID2 = VID3 = OPEN
SUPPLY CURRENT (µA)
VID PULL-UP CURRENT (µA)
Supply Current vs Supply Voltage
Supply Current vs Temperature
2.0
140
1.0
VCC = 5V
VCC = 3.3V
VCC = 2.7V
0.5
0.5
40
0
50
TEMPERATURE (°C)
0
0
–50
100
0
50
TEMPERATURE (°C)
VID
0.35
0.25
0.25
0.15
0.15
VIDACCURACY ( %)
VIDACCURACY ( %)
0.35
VCC = 2.7V
–0.05
–0.15
–0.25
–0.25
0.975
1.175
1.375
1.575
VCC = 5.5V
5.250
VSENSE = 1.025V
VSENSE = 1.4125V
5.000
4.975
–0.35
–60 –40 –20
0
20
40
60
80
100
4.950
–50
TEMPERATURE (°C)
SENSE VOLTAGE (V)
6.0
RFB1 vs Temperature
0.05
–0.05
5.5
5.500
VSENSE = 1.225V
–0.15
–0.35
0.775
3.5 4.0
4.5 5.0
SUPPLY VOLTAGE (V)
1706-63 G03
VID Sense Accuracy vs
Temperature
VID Sense Accuracy
VCC = 5.5V
3.0
1706-63 G02
1706-63 G01
0.05
2.5
100
RFB1 (kΩ)
20
–50
1706-63 G04
1706-63 G05
0
50
TEMPERATURE (°C)
100
1706-63 G06
U
U
U
PIN FUNCTIONS
VID0 (Pin 1): LSB Programming Input. Low = GND,
High = VCC or Float. Grounding VID0 adds 12.5mV
to the output sense voltage.
VID1 (Pin 2): 4th MSB Programming Input. Low = GND,
High = VCC or Float. Grounding VID1 adds 25mV
to the output sense voltage.
VID2 (Pin 3): 3rd MSB Programming Input. Low = GND,
High = VCC or Float. Grounding VID2 adds 50mV
to the output sense voltage.
VID3 (Pin 4): 2nd MSB Programming Input. Low = GND,
High = VCC or Float. Grounding VID3 adds 100mV
to the output sense voltage.
VCC (Pin 5): Power Supply Voltage. Range from 2.7V to
5.5V.
SENSE (Pin 6): Regulator Output Voltage. Connect
directly to regulator output sense node.
VID4 (Pin 7): MSB Programming Input. Low = GND, High
= VCC or Float. Grounding VID4 adds 200mV to the output
sense voltage.
NC (Pin 8): No Connect.
GND (Pin 9): Ground. Connect to regulator signal ground.
FB (Pin 10): Feedback Input. Connect to the 0.6V feedback
pin of a compatible regulator.
170663f
3
LTC1706-63
U
U
U
PIN FUNCTIONS
MIN
NOMINAL (V)
TYP
MAX
ABSOLUTE MAX (V)
MIN
MAX
PIN
NAME
DESCRIPTION
1
VID0
LSB Programmable Input
0
VCC
– 0.3
7
2
VID1
4th MSB Programmable Input
0
VCC
– 0.3
7
3
VID2
3rd MSB Programmable Input
0
VCC
– 0.3
7
4
VID3
2nd MSB Programmable Input
0
VCC
– 0.3
7
5
VCC
Power Supply
2.7
5.5
– 0.3
7
6
SENSE
Regulator Output Voltage
0.8
1.55
– 0.3
7
7
VID4
1st MSB Programmable Input
0
VCC
– 0.3
7
8
NC
– 0.3
7
1.5
– 0.3
7
9
GND
Ground
10
FB
0.6V Feedback Input
0
0
0.6
W
BLOCK DIAGRA
VCC
40k
VID0 1
VCC
VCC
5
6
40k
VID1 2
SENSE
RFB1
VCC
10 FB
SWITCH
CONTROL
LOGIC
RFB2
9
40k
GND
VID2 3
1706-63 BD
VCC
VCC
40k
VID3 4
40k
VID4 7
U
OPERATIO
The LTC1706-63 is a precision resistive divider designed
specifically for use with an entire family of Linear
Technology Corporation DC/DC switching regulators with
0.6V internal reference and feedback voltage. The
LTC1706-63 produces an output voltage ranging from
1.025V to 1.4125V in 12.5mV steps by closing the loop
between the output voltage sense and the feedback input of
the regulator with the appropriate resistive divider network.
The “top” feedback resistor, RFB1, connected between
SENSE and FB, is typically 5k and is not modified by the
state of the VID program inputs.
The “bottom” feedback resistor, RFB2, however, is modified by the five VID inputs and is precisely ratioed
to RFB1.
170663f
4
LTC1706-63
U
OPERATIO
VID Programming
A list of programmed inputs and their corresponding
output voltages is shown in Table 1. Programming is
accomplished by applying the proper voltage (or float
condition) on the five digital VID inputs.
Table 1. VID Inputs and Corresponding Output Voltage
CODE
VID4
VID3
VID2
VID1
VID0
OUTPUT
00000
GND
GND
GND
GND
GND
1.4125V
00001
GND
GND
GND
GND
Float
1.4000V
00010
GND
GND
GND
Float
GND
1.3875V
00011
GND
GND
GND
Float
Float
1.3750V
00100
GND
GND
Float
GND
GND
1.3625V
00101
GND
GND
Float
GND
Float
1.3500V
00110
GND
GND
Float
Float
GND
1.3375V
00111
GND
GND
Float
Float
Float
1.3250V
01000
GND
Float
GND
GND
GND
1.3125V
01001
GND
Float
GND
GND
Float
1.3000V
01010
GND
Float
GND
Float
GND
1.2875V
01011
GND
Float
GND
Float
Float
1.2750V
01100
GND
Float
Float
GND
GND
1.2625V
01101
GND
Float
Float
GND
Float
1.2500V
01110
GND
Float
Float
Float
GND
1.2375V
01111
GND
Float
Float
Float
Float
1.2250V
10000
Float
GND
GND
GND
GND
1.2125V
10001
Float
GND
GND
GND
Float
1.2000V
10010
Float
GND
GND
Float
GND
1.1875V
10011
Float
GND
GND
Float
Float
1.1750V
10100
Float
GND
Float
GND
GND
1.1625V
10101
Float
GND
Float
GND
Float
1.1500V
10110
Float
GND
Float
Float
GND
1.1375V
10111
Float
GND
Float
Float
Float
1.1250V
11000
Float
Float
GND
GND
GND
1.1125V
11001
Float
Float
GND
GND
Float
1.1000V
11010
Float
Float
GND
Float
GND
1.0875V
11011
Float
Float
GND
Float
Float
1.0750V
11100
Float
Float
Float
GND
GND
1.0625V
11101
Float
Float
Float
GND
Float
1.0500V
11110
Float
Float
Float
Float
GND
1.0375V
11111
Float
Float
Float
Float
Float
1.0250V
When all five VID inputs are high or floating, such as when
no CPU is present in a system, a regulated 1.025V output
is generated at VSENSE.
Each VID input pin is pulled up by a 40k resistor in series
with a diode connected to VCC. Therefore, it should be
grounded (or driven low) to produce a digital low input. It
can either be floated or connected to VCC to get a digital
high input. The series diode is included to prevent the
input from being damaged or clamped when it is driven
higher than VCC.
Voltage Sensing and Feedback Pins
The FB pin is a high impedance node that requires minimum layout distance to reduce extra loading and
unwanted stray pickup.
When used with the LTC1629-6, the LTC1706-63’s FB,
SENSE, VCC and GND pins should be connected, respectively, with the EAIN, VDIFFOUT, INTVCC and SGND pins of
the LTC1629-6. The result of this application is a precisely
controlled, variable output voltage supply to any low
voltage, high current system such as a powerful personal
computer, workstation or network server.
VID Input Characteristics
The VID inputs should be driven with a maximum VIL of
0.4V and a minimum VIH of 1.6V. However, the VID input
range is not limited to values less than VCC. Because of the
internal diode between VCC and the pull-up resistor, the
inputs can go higher than VCC without being clamped to
VCC or damaging the input.
This allows the LTC1706-63 to be fully logic compatible
and operational over a higher input voltage range (less
than the 7V absolute maximum rating).
When a VID input is grounded, there will be a higher
quiescent current flow from VCC because of a resistor from
VCC through a series diode to each one of the inputs. This
increase in quiescent current is calculated from:
IQ = N(VCC – VDIODE)/RPULLUP
N is the number of grounded VID inputs. VDIODE is typically
0.6V while RPULLUP has a typical pull-up resistance
of 40kΩ.
170663f
5
LTC1706-63
U
OPERATIO
In other words, each VID input has a typical pull-up current
of 68µA for a 3.3V system.
Besides the LTC1629-6, the LTC1706-63 also programs
a whole family of LTC DC/DC converters that have an
on-board 0.6V reference. The LTC3714, LTC3778 and
LTC3731 are just a few of the high efficiency step-down
switching regulators that will work equally well with the
LTC1706-63. The LTC3819 is a VID controlled 2-phase
synchronous step-down controller with on-board
LTC1706-63.
U
TYPICAL APPLICATIO
2-Phase 12V Input, 1.025V to 1.4125V/45A Max Power Supply (LTC3819)
with Adjustable Overvoltage Protection (LTC1706-63)
VCC
VDD_CORE+
LTC1706-63
SENSE
–
OVP
TO SYSTEM
OVERVOLTAGE
PROTECTION
VID0
VID1
VID2
VID3
VID4
LOGIC
FB
OVP
THRESHOLD
FROM
µP
+
COMPARATOR
PWRGD
ENABLE
RUN/SS
D1
BAT54
C3
1nF
C1
0.1µF
CLK1
TG1
3
SENSE1–
SW1
6
7
R6 2.2k
8
C10 220pF
9
R24
107k
C14 470pF
10
11
INTVCC
C17
1nF
VID0
VID1
EAIN
PLLFLTR
PLLIN
BOOST1
VIN
BG1
FCB
EXTVCC
ITH
INTVCC
SGND
VDIFFOUT
PGND
BG2
–
BOOST2
12
VOS+
SW2
13
SENSE2 –
TG2
14
Q9 (OPT)
2N7002
PGOOD
SENSE1+
5
C9 4.7nF
RUN/SS
2
4
R23 48.7k
R1
10Ω
LTC3819
1
15
16
17
18
VOS
SENSE2 +
ATTENIN
ATTENOUT
VBIAS
NO_CPU
VID4
VID0
VID3
VID1
VID2
36
C2
0.47µF
10Ω
L1
0.8µH
Q1
×2
35
34
C5
0.47µF
33
32
C7 1µF
31
30
29
28
INTVCC
C11
2.2µF
+
27
C12
10µF
C15
0.47µF
26
Q3
×2
10Ω
C13
0.47µF
L2
0.8µH
C8
0.47µF
Q4
×3
23
COUT1
R7
0.002Ω
R8
50Ω
C16
0.47µF
D4
B320A
GND
R9
50Ω
COREFB_H
R12 10Ω
10Ω
22
21
VDD_CORE+
+
25
24
GND
R5
0.002Ω
D2
B320A
Q2
×3
D3
BAT54A
12VIN
CIN1
10Ω
C18
0.1µF
20
19
VID2
VID3
VID4
COREFB_L
CIN1: SIX 10µF 16V CERAMIC CAPACITORS
COUT1: TEN 22µF 6.3V CERAMIC CAPACITORS
L1, L2: SUMIDA CEP125-1R0MC-H
Q1, Q3: TWO Si7448DP IN PARALLEL
Q2, Q4: THREE Si7448DP IN PARALLEL
1706-63 TA03
170663f
6
LTC1706-63
U
TYPICAL APPLICATIO
1.025V to 1.4125V VID Programmable 15A Power Supply
1µF
X5R
CMDSH-3
1
2
100k 3
4
1500pF
20k
5
6
22pF
7
0.01µF
8
9
330k
10
RUN/SS
VON
BOOST
LTC3778
TG
SW
PGOOD
VRNG
SENSE +
ITH
SENSE –
FCB
PGND
SGND
BG
ION
DRVCC
VFB
INTVCC
EXTVCC
VIN
19
0.22µF
18
VIN
12V
10µF
16V
X5R
×4
IRF7811
20
0.68µH
17
SP
270µF
2V
×3
16
B320A
15
IRF7811
14
VOUT
1.025V TO 1.4125V
15A
22µF
6.3V
X5R
13 4.7µF
X5R
6.3V
12
1Ω
11
VIN
5V
0.1µF
5
FROM
µP
1
2
3
4
7
VCC
6
VID0
SENSE
VID1
VID2 LTC1706-63
VID3
FB
VID4
GND
10
9
1706-63 TA02
U
PACKAGE DESCRIPTION
MS Package
10-Lead Plastic MSOP
(Reference LTC DWG # 05-08-1661)
3.00 ± 0.102
(.118 ± .004)
(NOTE 3)
0.889 ± 0.127
(.035 ± .005)
10 9 8 7 6
5.23
(.206)
MIN
3.2 – 3.45
(.126 – .136)
0.254
(.010)
0.50
0.305 ± 0.038
(.0197)
(.0120 ± .0015)
BSC
TYP
RECOMMENDED SOLDER PAD LAYOUT
3.00 ± 0.102
(.118 ± .004)
NOTE 4
4.90 ± 0.15
(1.93 ± .006)
DETAIL “A”
0.497 ± 0.076
(.0196 ± .003)
REF
0° – 6° TYP
GAUGE PLANE
1 2 3 4 5
0.53 ± 0.01
(.021 ± .006)
DETAIL “A”
0.86
(.034)
REF
1.10
(.043)
MAX
0.18
(.007)
NOTE:
1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX
SEATING
PLANE
0.17 – 0.27
(.007 – .011)
TYP
0.50
(.0197)
BSC
0.13 ± 0.076
(.005 ± .003)
MSOP (MS) 0802
170663f
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
7
LTC1706-63
U
TYPICAL APPLICATION
VID Controlled High Current 70A 4-Phase Application
OPTIONAL SYNC
CLOCK IN
2
0.33µF
3
1000pF 4
5
1
2
FROM
µP
3
4
7
5
VCC
SENSE
VID1
VID2
6
0.33µF
VID0
7
6
47k
LTC1706-63
FB
GND
8
9
100pF
VDIFFOUT
10
VOS–
11
VOS+
12
VID3
VID4
6800pF
100pF
10
1000pF 13
9
14
RUN/SS
SENSE1
CLKOUT
+
SENSE1–
EAIN
TG1
SW1
BOOST1
PLLFLTR
PLLIN
VIN
BG1
L1
28
27
5V
0.003Ω
26
0.47µF
25
M1
10Ω
24
M2
1µF
23
22
EXTVCC
21
ITH LTC1629-6 INTVCC
20
SGND
PGND
19
VDIFFOUT
BG2
18
VOS–
BOOST2
17
+
VOS
SW2
16
–
SENSE2
TG2
15
SENSE2+
AMPMD
PHASMD
D7
D8
1µF
25V
+
1
22µF
6.3V
M3
150µF, 16V
×2
+
D1
MBRS
340T3
+
COUT
470µF, 6.3V
×3
GND
M4
0.47µF
M5
M6
VOUT
1.025V TO
1.4125V
70A
D2
MBRS
340T3
0.003Ω
L2
24k
75k
1
2
1000pF
47pF
3
4
10k
5
0.01µF
6
CLKOUT
RUN/SS
SENSE1+
SENSE1
–
EAIN
PLLFLTR
PLLIN
TG1
SW1
BOOST1
VIN
BG1
L3
28
27
5V
0.003Ω
26
25
0.47µF
10Ω
24
VDIFFOUT
VOS–
VOS+
1000pF
M1 TO M12: FDS7760A
L1 TO L4: 1µH SUMIDA CEPH149-IROMC
D7 TO D10: CENTROI CMDSH-3TR
COUT: KEMET T510X477M006AS
fSW: 200kHz
D9
D10
+
47pF
22µF
6.3V
+
D3
MBRS
340T3
COUT
470µF, 6.3V
×3
150µF, 16V
×2
7
1µF
25V
M9
M8
1µF
23
22
EXTVCC
PHASMD
8
LTC1629-6
21
INTVCC
ITH
9
20
PGND
SGND
10
19
BG2
VDIFFOUT
11
18
BOOST2
VOS–
12
17
+
SW2
VOS
13
16
–
TG2
SENSE2
14
15
AMPMD
SENSE2+
M7
+
GND
VIN
12V
0.47µF
M10
M12
M11
D4
MBRS
340T3
0.003Ω
L4
1706-63 TA04
RELATED PARTS
PART NUMBER
DESCRIPTION
COMMENTS
®
LTC1629-6
PolyPhase Synchronous Step-Down Controller
Up to 12-Phase Operation, Up to 200A Power Supply
LTC3714
Single Phase Synchronous Step-Down Controller with VID
0.6V ≤ VOUT ≤ 1.75V, IOUT ≤ 25A
LTC3716
2-Phase Synchronous Step-Down Controller with VID
0.6V ≤ VOUT ≤ 1.75V, IOUT ≤ 40A
LTC3731
3-Phase, 60A Synchronous Step-Down Controller
Single IC 60A Solution with Onboard MOSFET Drivers, ±5% Output
Current Matching for Optimum Thermal Performance and Reliability
LTC3733
3-Phase, 60A Synchronous Step-Down Controller for
AMD Opteron Processors
On-Board VID and MOSFET Drivers, 0.8V ≤ VOUT ≤ 1.55V, IOUT ≤ 60A
LTC3778
Optional RSENSE DC/DC Synchronous Controller
Current Mode Operation with RSENSE or MOSFET RDC(0N) Sensing,
4.5V ≤ VIN ≤ 36V
LTC3819
2-Phase Synchronous Step-Down Controller
1.025V ≤ VOUT ≤ 1.4125V; 40A
PolyPhase is a registered trademark of Linear Technology Corporation.
170663f
8
Linear Technology Corporation
LT 1005 • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com
© LINEAR TECHNOLOGY CORPORATION 2005