LTC1706-63 5-Bit VID Voltage Programmer for Sun CPUs U FEATURES DESCRIPTIO ■ The LTC®1706-63 is a precision, digitally programmed, resistive ladder which adjusts the output of any 0.6V referenced regulator. Depending on the state of the five VID inputs, an output voltage between 1.025V and 1.4125V is programmed in 12.5mV increments. ■ ■ ■ ■ Programs Regulator Output Voltage Range from 1.025V to 1.4125V in 12.5mV Steps Programs a Wide Range of Linear Technology DC/DC Converters with a 0.6V Reference ±0.35% Accurate Output Voltage Built-In 40k Pull-Up Resistors on VID Inputs Available in MSOP-10 Package The LTC1706-63 is designed specifically to program an entire family of Linear Technology DC/DC converters with on board 0.6V references. Please see the related parts list at the end of the data sheet. U APPLICATIO S ■ ■ For a 2-phase synchronous controller with on-board LTC1706-63, see the LTC3819. SunTM Processor Power Supply Workstations and Servers Large Memory Array Supply , LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. U ■ TYPICAL APPLICATIO 5-Bit VID-Controlled High Current Application (Simplified Block Diagram) VIN 4.5V TO 22V VIN LTC1629-6 VID0 FROM µP INTVCC SENSE VID2 LTC1706-63 VID3 VID4 RSENSE1 VDIFFOUT + BG1 VOUT 1.025V TO 1.4125V UP TO 80A COUT VIN PGND SGND FB GND L1 SW1 VCC VID1 TG1 TG2 EAIN L2 RSENSE2 L3 RSENSE3 L4 RSENSE4 SW2 ITH BG2 VIN 4.5V TO 22V VIN LTC1629-6 TG1 SW1 BG1 PGND VIN SGND EAIN ITH TG2 SW2 BG2 1706-63 TA01 170663f 1 LTC1706-63 W U U U W W W ABSOLUTE MAXIMUM RATINGS PACKAGE/ORDER INFORMATION (Note 1) (Voltages Referred to GND Pin) Input Supply Voltage (VCC) ..........................– 0.3V to 7V VID Input Pins .............................................– 0.3V to 7V SENSE Pin ...................................................– 0.3V to 7V FB Pin ..........................................................– 0.3V to 7V Operating Ambient Temperature Range (Note 2) .................................................. – 40°C to 85°C Junction Temperature ........................................... 110°C Storage Temperature Range ................. – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C TOP VIEW VID0 VID1 VID2 VID3 VCC 10 9 8 7 6 1 2 3 4 5 FB GND NC VID4 SENSE MS PACKAGE 10-LEAD PLASTIC MSOP TJMAX = 110°C, θJA = 120°C/ W MS PART MARKING ORDER PART NUMBER LTC1706EMS-63 LTBXM Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF Lead Free Part Marking: http://www.linear.com/leadfree/ Consult LTC Marketing for parts specified with wider operating temperature ranges. ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. 2.7V ≤ VCC ≤ 5.5V, VID0 = VID1 = VID2 = VID3 = VID4 = NC unless otherwise specified. SYMBOL VCC IVCC RFB-SENSE VOUT Error % RPULLUP VIDTH IVID-LEAK VPULLUP PARAMETER Operating Supply Voltage Range Supply Current Resistance Between SENSE and FB Output Voltage Accuracy VID Input Pull-Up Resistance VID Input Voltage Threshold VID Input Leakage Current VID Pull-Up Voltage CONDITIONS MIN 2.7 (Note 3) ● ● VDIODE = 0.6V (Note 4) VIL (2.7V ≤ VCC ≤ 5.5V) VIH (2.7V ≤ VCC ≤ 5.5V) VCC < VID < 7V (Note 4) VCC = 3.3V VCC = 5V Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: The LTC1706EMS-63 is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the – 40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls. 3 – 0.35 TYP 0.1 5 MAX 5.5 5 7 + 0.35 40 0.4 1.6 0.01 2.8 4.5 ±1 UNITS V µA kΩ % kΩ V V µA V V Note 3: With all five VID inputs floating, the VCC supply current is simply the device leakage current. However, the VCC supply current will rise and be approximately equal to the number of grounded VID input pins times (VCC – 0.6V)/40k. (See the VID Input Characteristics section for more details.) Note 4: Each built-in pull-up resistor attached to the VID inputs also has a series diode connected to VCC to allow input voltages higher than the VCC supply without damage or clamping. (See Operation section for further details.) 170663f 2 LTC1706-63 U W TYPICAL PERFORMANCE CHARACTERISTICS IVID-PULLUP vs Temperature 1.0 100 80 60 1.5 SUPPLY CURRENT (µA) 120 ALL VID INPUTS OPEN TA = 25°C ALL VID INPUTS OPEN VCC = 5V VID4 = 0V VID0 = VID1 = VID2 = VID3 = OPEN SUPPLY CURRENT (µA) VID PULL-UP CURRENT (µA) Supply Current vs Supply Voltage Supply Current vs Temperature 2.0 140 1.0 VCC = 5V VCC = 3.3V VCC = 2.7V 0.5 0.5 40 0 50 TEMPERATURE (°C) 0 0 –50 100 0 50 TEMPERATURE (°C) VID 0.35 0.25 0.25 0.15 0.15 VIDACCURACY ( %) VIDACCURACY ( %) 0.35 VCC = 2.7V –0.05 –0.15 –0.25 –0.25 0.975 1.175 1.375 1.575 VCC = 5.5V 5.250 VSENSE = 1.025V VSENSE = 1.4125V 5.000 4.975 –0.35 –60 –40 –20 0 20 40 60 80 100 4.950 –50 TEMPERATURE (°C) SENSE VOLTAGE (V) 6.0 RFB1 vs Temperature 0.05 –0.05 5.5 5.500 VSENSE = 1.225V –0.15 –0.35 0.775 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 1706-63 G03 VID Sense Accuracy vs Temperature VID Sense Accuracy VCC = 5.5V 3.0 1706-63 G02 1706-63 G01 0.05 2.5 100 RFB1 (kΩ) 20 –50 1706-63 G04 1706-63 G05 0 50 TEMPERATURE (°C) 100 1706-63 G06 U U U PIN FUNCTIONS VID0 (Pin 1): LSB Programming Input. Low = GND, High = VCC or Float. Grounding VID0 adds 12.5mV to the output sense voltage. VID1 (Pin 2): 4th MSB Programming Input. Low = GND, High = VCC or Float. Grounding VID1 adds 25mV to the output sense voltage. VID2 (Pin 3): 3rd MSB Programming Input. Low = GND, High = VCC or Float. Grounding VID2 adds 50mV to the output sense voltage. VID3 (Pin 4): 2nd MSB Programming Input. Low = GND, High = VCC or Float. Grounding VID3 adds 100mV to the output sense voltage. VCC (Pin 5): Power Supply Voltage. Range from 2.7V to 5.5V. SENSE (Pin 6): Regulator Output Voltage. Connect directly to regulator output sense node. VID4 (Pin 7): MSB Programming Input. Low = GND, High = VCC or Float. Grounding VID4 adds 200mV to the output sense voltage. NC (Pin 8): No Connect. GND (Pin 9): Ground. Connect to regulator signal ground. FB (Pin 10): Feedback Input. Connect to the 0.6V feedback pin of a compatible regulator. 170663f 3 LTC1706-63 U U U PIN FUNCTIONS MIN NOMINAL (V) TYP MAX ABSOLUTE MAX (V) MIN MAX PIN NAME DESCRIPTION 1 VID0 LSB Programmable Input 0 VCC – 0.3 7 2 VID1 4th MSB Programmable Input 0 VCC – 0.3 7 3 VID2 3rd MSB Programmable Input 0 VCC – 0.3 7 4 VID3 2nd MSB Programmable Input 0 VCC – 0.3 7 5 VCC Power Supply 2.7 5.5 – 0.3 7 6 SENSE Regulator Output Voltage 0.8 1.55 – 0.3 7 7 VID4 1st MSB Programmable Input 0 VCC – 0.3 7 8 NC – 0.3 7 1.5 – 0.3 7 9 GND Ground 10 FB 0.6V Feedback Input 0 0 0.6 W BLOCK DIAGRA VCC 40k VID0 1 VCC VCC 5 6 40k VID1 2 SENSE RFB1 VCC 10 FB SWITCH CONTROL LOGIC RFB2 9 40k GND VID2 3 1706-63 BD VCC VCC 40k VID3 4 40k VID4 7 U OPERATIO The LTC1706-63 is a precision resistive divider designed specifically for use with an entire family of Linear Technology Corporation DC/DC switching regulators with 0.6V internal reference and feedback voltage. The LTC1706-63 produces an output voltage ranging from 1.025V to 1.4125V in 12.5mV steps by closing the loop between the output voltage sense and the feedback input of the regulator with the appropriate resistive divider network. The “top” feedback resistor, RFB1, connected between SENSE and FB, is typically 5k and is not modified by the state of the VID program inputs. The “bottom” feedback resistor, RFB2, however, is modified by the five VID inputs and is precisely ratioed to RFB1. 170663f 4 LTC1706-63 U OPERATIO VID Programming A list of programmed inputs and their corresponding output voltages is shown in Table 1. Programming is accomplished by applying the proper voltage (or float condition) on the five digital VID inputs. Table 1. VID Inputs and Corresponding Output Voltage CODE VID4 VID3 VID2 VID1 VID0 OUTPUT 00000 GND GND GND GND GND 1.4125V 00001 GND GND GND GND Float 1.4000V 00010 GND GND GND Float GND 1.3875V 00011 GND GND GND Float Float 1.3750V 00100 GND GND Float GND GND 1.3625V 00101 GND GND Float GND Float 1.3500V 00110 GND GND Float Float GND 1.3375V 00111 GND GND Float Float Float 1.3250V 01000 GND Float GND GND GND 1.3125V 01001 GND Float GND GND Float 1.3000V 01010 GND Float GND Float GND 1.2875V 01011 GND Float GND Float Float 1.2750V 01100 GND Float Float GND GND 1.2625V 01101 GND Float Float GND Float 1.2500V 01110 GND Float Float Float GND 1.2375V 01111 GND Float Float Float Float 1.2250V 10000 Float GND GND GND GND 1.2125V 10001 Float GND GND GND Float 1.2000V 10010 Float GND GND Float GND 1.1875V 10011 Float GND GND Float Float 1.1750V 10100 Float GND Float GND GND 1.1625V 10101 Float GND Float GND Float 1.1500V 10110 Float GND Float Float GND 1.1375V 10111 Float GND Float Float Float 1.1250V 11000 Float Float GND GND GND 1.1125V 11001 Float Float GND GND Float 1.1000V 11010 Float Float GND Float GND 1.0875V 11011 Float Float GND Float Float 1.0750V 11100 Float Float Float GND GND 1.0625V 11101 Float Float Float GND Float 1.0500V 11110 Float Float Float Float GND 1.0375V 11111 Float Float Float Float Float 1.0250V When all five VID inputs are high or floating, such as when no CPU is present in a system, a regulated 1.025V output is generated at VSENSE. Each VID input pin is pulled up by a 40k resistor in series with a diode connected to VCC. Therefore, it should be grounded (or driven low) to produce a digital low input. It can either be floated or connected to VCC to get a digital high input. The series diode is included to prevent the input from being damaged or clamped when it is driven higher than VCC. Voltage Sensing and Feedback Pins The FB pin is a high impedance node that requires minimum layout distance to reduce extra loading and unwanted stray pickup. When used with the LTC1629-6, the LTC1706-63’s FB, SENSE, VCC and GND pins should be connected, respectively, with the EAIN, VDIFFOUT, INTVCC and SGND pins of the LTC1629-6. The result of this application is a precisely controlled, variable output voltage supply to any low voltage, high current system such as a powerful personal computer, workstation or network server. VID Input Characteristics The VID inputs should be driven with a maximum VIL of 0.4V and a minimum VIH of 1.6V. However, the VID input range is not limited to values less than VCC. Because of the internal diode between VCC and the pull-up resistor, the inputs can go higher than VCC without being clamped to VCC or damaging the input. This allows the LTC1706-63 to be fully logic compatible and operational over a higher input voltage range (less than the 7V absolute maximum rating). When a VID input is grounded, there will be a higher quiescent current flow from VCC because of a resistor from VCC through a series diode to each one of the inputs. This increase in quiescent current is calculated from: IQ = N(VCC – VDIODE)/RPULLUP N is the number of grounded VID inputs. VDIODE is typically 0.6V while RPULLUP has a typical pull-up resistance of 40kΩ. 170663f 5 LTC1706-63 U OPERATIO In other words, each VID input has a typical pull-up current of 68µA for a 3.3V system. Besides the LTC1629-6, the LTC1706-63 also programs a whole family of LTC DC/DC converters that have an on-board 0.6V reference. The LTC3714, LTC3778 and LTC3731 are just a few of the high efficiency step-down switching regulators that will work equally well with the LTC1706-63. The LTC3819 is a VID controlled 2-phase synchronous step-down controller with on-board LTC1706-63. U TYPICAL APPLICATIO 2-Phase 12V Input, 1.025V to 1.4125V/45A Max Power Supply (LTC3819) with Adjustable Overvoltage Protection (LTC1706-63) VCC VDD_CORE+ LTC1706-63 SENSE – OVP TO SYSTEM OVERVOLTAGE PROTECTION VID0 VID1 VID2 VID3 VID4 LOGIC FB OVP THRESHOLD FROM µP + COMPARATOR PWRGD ENABLE RUN/SS D1 BAT54 C3 1nF C1 0.1µF CLK1 TG1 3 SENSE1– SW1 6 7 R6 2.2k 8 C10 220pF 9 R24 107k C14 470pF 10 11 INTVCC C17 1nF VID0 VID1 EAIN PLLFLTR PLLIN BOOST1 VIN BG1 FCB EXTVCC ITH INTVCC SGND VDIFFOUT PGND BG2 – BOOST2 12 VOS+ SW2 13 SENSE2 – TG2 14 Q9 (OPT) 2N7002 PGOOD SENSE1+ 5 C9 4.7nF RUN/SS 2 4 R23 48.7k R1 10Ω LTC3819 1 15 16 17 18 VOS SENSE2 + ATTENIN ATTENOUT VBIAS NO_CPU VID4 VID0 VID3 VID1 VID2 36 C2 0.47µF 10Ω L1 0.8µH Q1 ×2 35 34 C5 0.47µF 33 32 C7 1µF 31 30 29 28 INTVCC C11 2.2µF + 27 C12 10µF C15 0.47µF 26 Q3 ×2 10Ω C13 0.47µF L2 0.8µH C8 0.47µF Q4 ×3 23 COUT1 R7 0.002Ω R8 50Ω C16 0.47µF D4 B320A GND R9 50Ω COREFB_H R12 10Ω 10Ω 22 21 VDD_CORE+ + 25 24 GND R5 0.002Ω D2 B320A Q2 ×3 D3 BAT54A 12VIN CIN1 10Ω C18 0.1µF 20 19 VID2 VID3 VID4 COREFB_L CIN1: SIX 10µF 16V CERAMIC CAPACITORS COUT1: TEN 22µF 6.3V CERAMIC CAPACITORS L1, L2: SUMIDA CEP125-1R0MC-H Q1, Q3: TWO Si7448DP IN PARALLEL Q2, Q4: THREE Si7448DP IN PARALLEL 1706-63 TA03 170663f 6 LTC1706-63 U TYPICAL APPLICATIO 1.025V to 1.4125V VID Programmable 15A Power Supply 1µF X5R CMDSH-3 1 2 100k 3 4 1500pF 20k 5 6 22pF 7 0.01µF 8 9 330k 10 RUN/SS VON BOOST LTC3778 TG SW PGOOD VRNG SENSE + ITH SENSE – FCB PGND SGND BG ION DRVCC VFB INTVCC EXTVCC VIN 19 0.22µF 18 VIN 12V 10µF 16V X5R ×4 IRF7811 20 0.68µH 17 SP 270µF 2V ×3 16 B320A 15 IRF7811 14 VOUT 1.025V TO 1.4125V 15A 22µF 6.3V X5R 13 4.7µF X5R 6.3V 12 1Ω 11 VIN 5V 0.1µF 5 FROM µP 1 2 3 4 7 VCC 6 VID0 SENSE VID1 VID2 LTC1706-63 VID3 FB VID4 GND 10 9 1706-63 TA02 U PACKAGE DESCRIPTION MS Package 10-Lead Plastic MSOP (Reference LTC DWG # 05-08-1661) 3.00 ± 0.102 (.118 ± .004) (NOTE 3) 0.889 ± 0.127 (.035 ± .005) 10 9 8 7 6 5.23 (.206) MIN 3.2 – 3.45 (.126 – .136) 0.254 (.010) 0.50 0.305 ± 0.038 (.0197) (.0120 ± .0015) BSC TYP RECOMMENDED SOLDER PAD LAYOUT 3.00 ± 0.102 (.118 ± .004) NOTE 4 4.90 ± 0.15 (1.93 ± .006) DETAIL “A” 0.497 ± 0.076 (.0196 ± .003) REF 0° – 6° TYP GAUGE PLANE 1 2 3 4 5 0.53 ± 0.01 (.021 ± .006) DETAIL “A” 0.86 (.034) REF 1.10 (.043) MAX 0.18 (.007) NOTE: 1. DIMENSIONS IN MILLIMETER/(INCH) 2. DRAWING NOT TO SCALE 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX SEATING PLANE 0.17 – 0.27 (.007 – .011) TYP 0.50 (.0197) BSC 0.13 ± 0.076 (.005 ± .003) MSOP (MS) 0802 170663f Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 7 LTC1706-63 U TYPICAL APPLICATION VID Controlled High Current 70A 4-Phase Application OPTIONAL SYNC CLOCK IN 2 0.33µF 3 1000pF 4 5 1 2 FROM µP 3 4 7 5 VCC SENSE VID1 VID2 6 0.33µF VID0 7 6 47k LTC1706-63 FB GND 8 9 100pF VDIFFOUT 10 VOS– 11 VOS+ 12 VID3 VID4 6800pF 100pF 10 1000pF 13 9 14 RUN/SS SENSE1 CLKOUT + SENSE1– EAIN TG1 SW1 BOOST1 PLLFLTR PLLIN VIN BG1 L1 28 27 5V 0.003Ω 26 0.47µF 25 M1 10Ω 24 M2 1µF 23 22 EXTVCC 21 ITH LTC1629-6 INTVCC 20 SGND PGND 19 VDIFFOUT BG2 18 VOS– BOOST2 17 + VOS SW2 16 – SENSE2 TG2 15 SENSE2+ AMPMD PHASMD D7 D8 1µF 25V + 1 22µF 6.3V M3 150µF, 16V ×2 + D1 MBRS 340T3 + COUT 470µF, 6.3V ×3 GND M4 0.47µF M5 M6 VOUT 1.025V TO 1.4125V 70A D2 MBRS 340T3 0.003Ω L2 24k 75k 1 2 1000pF 47pF 3 4 10k 5 0.01µF 6 CLKOUT RUN/SS SENSE1+ SENSE1 – EAIN PLLFLTR PLLIN TG1 SW1 BOOST1 VIN BG1 L3 28 27 5V 0.003Ω 26 25 0.47µF 10Ω 24 VDIFFOUT VOS– VOS+ 1000pF M1 TO M12: FDS7760A L1 TO L4: 1µH SUMIDA CEPH149-IROMC D7 TO D10: CENTROI CMDSH-3TR COUT: KEMET T510X477M006AS fSW: 200kHz D9 D10 + 47pF 22µF 6.3V + D3 MBRS 340T3 COUT 470µF, 6.3V ×3 150µF, 16V ×2 7 1µF 25V M9 M8 1µF 23 22 EXTVCC PHASMD 8 LTC1629-6 21 INTVCC ITH 9 20 PGND SGND 10 19 BG2 VDIFFOUT 11 18 BOOST2 VOS– 12 17 + SW2 VOS 13 16 – TG2 SENSE2 14 15 AMPMD SENSE2+ M7 + GND VIN 12V 0.47µF M10 M12 M11 D4 MBRS 340T3 0.003Ω L4 1706-63 TA04 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS ® LTC1629-6 PolyPhase Synchronous Step-Down Controller Up to 12-Phase Operation, Up to 200A Power Supply LTC3714 Single Phase Synchronous Step-Down Controller with VID 0.6V ≤ VOUT ≤ 1.75V, IOUT ≤ 25A LTC3716 2-Phase Synchronous Step-Down Controller with VID 0.6V ≤ VOUT ≤ 1.75V, IOUT ≤ 40A LTC3731 3-Phase, 60A Synchronous Step-Down Controller Single IC 60A Solution with Onboard MOSFET Drivers, ±5% Output Current Matching for Optimum Thermal Performance and Reliability LTC3733 3-Phase, 60A Synchronous Step-Down Controller for AMD Opteron Processors On-Board VID and MOSFET Drivers, 0.8V ≤ VOUT ≤ 1.55V, IOUT ≤ 60A LTC3778 Optional RSENSE DC/DC Synchronous Controller Current Mode Operation with RSENSE or MOSFET RDC(0N) Sensing, 4.5V ≤ VIN ≤ 36V LTC3819 2-Phase Synchronous Step-Down Controller 1.025V ≤ VOUT ≤ 1.4125V; 40A PolyPhase is a registered trademark of Linear Technology Corporation. 170663f 8 Linear Technology Corporation LT 1005 • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 2005