ADPOW APT80GP60B2

APT80GP60B2
600V
®
POWER MOS 7 IGBT
T-MaxTM
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 200 kHz operation @ 400V, 45A
• Low Gate Charge
• 100 kHz operation @ 400V, 72A
• Ultrafast Tail Current shutoff
• SSOA rated
G
C
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT80GP60B2
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current
7
@ TC = 25°C
100
I C2
Continuous Collector Current
7
@ TC = 110°C
100
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
Amps
330
@ TC = 25°C
Switching Safe Operating Area @ TJ = 150°C
330A @ 600V
1041
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.0mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 2.5mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
1.0
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
mA
5
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
10-2003
BVCES
TYP
Rev B
MIN
050-7425
Characteristic / Test Conditions
Symbol
APT80GP60B2
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
9840
VGE = 0V, VCE = 25V
735
Reverse Transfer Capacitance
f = 1 MHz
40
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
280
VCE = 300V
65
85
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 80A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
330
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon1
Eon2
Eoff
116
I C = 80A
78
1199
Inductive Switching (125°C)
VCC = 400V
29
VGE = 15V
149
I C = 80A
84
Turn-off Delay Time
Current Fall Time
Turn-off Switching Energy
µJ
1536
6
40
R G = 5Ω
4
Turn-on Switching Energy (Diode)
ns
795
TJ = +25°C
5
Current Rise Time
Turn-on Switching Energy
40
R G = 5Ω
4
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
29
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 400V
5
ns
795
TJ = +125°C
µJ
2153
6
1690
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.12
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.9
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Countinous current limited by package lead temperature.
050-7425
Rev B
10-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT80GP60B2
120
80
60
TC=25°C
40
TC=-55°C
TC=125°C
20
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
100
0
200
TJ = 25°C
100
TJ = 125°C
TC=25°C
TC=125°C
20
14
IC = 80A
TJ = 25°C
VCE=120V
12
VCE=300V
10
8
VCE=480V
6
4
2
0
1
2 3 4
5 6
7 8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
IC= 80A
2
IC= 40A
1.5
1
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.2
1.15
1.10
1.05
1.0
0.95
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
100
150
200
250
GATE CHARGE (nC)
FIGURE 4, Gate Charge
300
3
IC= 160A
2.5
IC= 80A
2
IC=40A
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
350
300
250
200
150
100
50
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
10-2003
2.5
50
Rev B
IC= 160A
3
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
3.5
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
300
40
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
400
TC=-55°C
60
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
500
TJ = -55°C
80
0
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
100
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7425
IC, COLLECTOR CURRENT (A)
120
APT80GP60B2
180
35
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
40
VGE= 15V
30
25
20
15
10
VCE = 400V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
tf, FALL TIME (ns)
tr, RISE TIME (ns)
40
30
80
60
TJ = 25°C, VGE = 10V or 15V
VCE = 400V
RG = 5Ω
L = 100 µH
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
4000
EOFF, TURN OFF ENERGY LOSS (µJ)
VCE = 400V
RG = 5Ω
L = 100 µH
3000
TJ =125°C, VGE=15V
2500
TJ = 125°C, VGE = 10V or 15V
100
20
3500
VCE = 400V
RG = 5Ω
L = 100 µH
20
10
2000
1500
1000
500
VCE = 400V
RG = 5Ω
L = 100 µH
3000
TJ = 125°C, VGE = 10V or 15V
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
4000
VCE = 400V
VGE = +15V
TJ = 125°C
5000
4000
Eon2 120A
Eoff 120A
Eon2 80A
3000
Eoff 80A
2000
Eon2 40A
1000
Eoff40A
0
5
10
15
20
25
30
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
SWITCHING ENERGY LOSSES (µJ)
10-2003
40
40
TJ = 25°C, VGE=15V
Rev B
60
20
4000
VGE =15V,TJ=25°C
80
120
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
050-7425
100
140
TJ = 25 or 125°C,VGE = 15V
50
120
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
VCE = 400V
RG = 5Ω
L = 100 µH
60
140
0
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
70
VGE =15V,TJ=125°C
160
VCE = 400V
VGE = +15V
RG = 5Ω
Eon2 120A
3000
Eoff 120A
Eon2 80A
2000
Eoff 80A
1000
Eon2 40A
Eoff 40A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT80GP60B2
300
20,000
Cies
10,000
250
1,000
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
5,000
Coes
500
100
50
Cres
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
200
150
100
50
0
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.12
0.9
0.10
0.7
0.08
0.5
0.06
Note:
PDM
0.3
t2
0.1
Duty Factor D = t1/t2
0.05
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
380
Power
(watts)
0.0475
0.0656
0.00354F
0.0307F
0.361F
Case temperature(°C)
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
RC MODEL
Junction
temp (°C)
0.00791
1.0
100
fmax = min(fmax1, fmax2)
50
fmax1 =
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5Ω
10
10
fmax2 =
Pdiss =
0.05
td(on) + tr + td(off) + tf
Pdiss
Pcond
Eon2 + Eoff
TJ TC
RΘJC
40
70
100
130
160
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
10-2003
0.02
t1
Rev B
0.04
050-7425
ZθJC, THERMAL IMPEDANCE (°C/W)
0.14
APT80GP60B2
APT60DF60
Gate Voltage
10%
IC
CC
T J = 125 C
td(on)
V CE
90%
Collector Current
tr
A
5%
D.U.T.
5%
10%
Switching
Energy
Collector Voltage
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
TJ = 125 C
A
td(off)
Collector Voltage
90%
V CE
IC
100uH
V CLAMP
tf
B
10%
Collector Current
Switching
Energy
A
0
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
®
T-MAX (B2) Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
(Cathode)
5.38 (.212)
6.20 (.244)
20.80 (.819)
21.46 (.845)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
10-2003
Rev B
2.87 (.113)
3.12 (.123)
Gate
Collector
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
050-7425
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.