APT80GP60B2 600V ® POWER MOS 7 IGBT T-MaxTM The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 200 kHz operation @ 400V, 45A • Low Gate Charge • 100 kHz operation @ 400V, 72A • Ultrafast Tail Current shutoff • SSOA rated G C E C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT80GP60B2 VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current 7 @ TC = 25°C 100 I C2 Continuous Collector Current 7 @ TC = 110°C 100 I CM Pulsed Collector Current SSOA PD TJ,TSTG TL 1 UNIT Volts Amps 330 @ TC = 25°C Switching Safe Operating Area @ TJ = 150°C 330A @ 600V 1041 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.0mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 2.5mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 1.0 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts mA 5 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 10-2003 BVCES TYP Rev B MIN 050-7425 Characteristic / Test Conditions Symbol APT80GP60B2 DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 9840 VGE = 0V, VCE = 25V 735 Reverse Transfer Capacitance f = 1 MHz 40 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 280 VCE = 300V 65 85 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 80A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 330 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon1 Eon2 Eoff 116 I C = 80A 78 1199 Inductive Switching (125°C) VCC = 400V 29 VGE = 15V 149 I C = 80A 84 Turn-off Delay Time Current Fall Time Turn-off Switching Energy µJ 1536 6 40 R G = 5Ω 4 Turn-on Switching Energy (Diode) ns 795 TJ = +25°C 5 Current Rise Time Turn-on Switching Energy 40 R G = 5Ω 4 Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 29 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 400V 5 ns 795 TJ = +125°C µJ 2153 6 1690 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .12 RΘJC Junction to Case (DIODE) N/A Package Weight 5.9 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Countinous current limited by package lead temperature. 050-7425 Rev B 10-2003 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT80GP60B2 120 80 60 TC=25°C 40 TC=-55°C TC=125°C 20 IC, COLLECTOR CURRENT (A) VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 100 0 200 TJ = 25°C 100 TJ = 125°C TC=25°C TC=125°C 20 14 IC = 80A TJ = 25°C VCE=120V 12 VCE=300V 10 8 VCE=480V 6 4 2 0 1 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics IC= 80A 2 IC= 40A 1.5 1 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.2 1.15 1.10 1.05 1.0 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 100 150 200 250 GATE CHARGE (nC) FIGURE 4, Gate Charge 300 3 IC= 160A 2.5 IC= 80A 2 IC=40A 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 350 300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 10-2003 2.5 50 Rev B IC= 160A 3 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 3.5 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VGE, GATE-TO-EMITTER VOLTAGE (V) 300 40 FIGURE 2, Output Characteristics (VGE = 10V) 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 400 TC=-55°C 60 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 500 TJ = -55°C 80 0 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE 100 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7425 IC, COLLECTOR CURRENT (A) 120 APT80GP60B2 180 35 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 40 VGE= 15V 30 25 20 15 10 VCE = 400V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 tf, FALL TIME (ns) tr, RISE TIME (ns) 40 30 80 60 TJ = 25°C, VGE = 10V or 15V VCE = 400V RG = 5Ω L = 100 µH 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 4000 EOFF, TURN OFF ENERGY LOSS (µJ) VCE = 400V RG = 5Ω L = 100 µH 3000 TJ =125°C, VGE=15V 2500 TJ = 125°C, VGE = 10V or 15V 100 20 3500 VCE = 400V RG = 5Ω L = 100 µH 20 10 2000 1500 1000 500 VCE = 400V RG = 5Ω L = 100 µH 3000 TJ = 125°C, VGE = 10V or 15V 2000 1000 TJ = 25°C, VGE = 10V or 15V 0 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 6000 4000 VCE = 400V VGE = +15V TJ = 125°C 5000 4000 Eon2 120A Eoff 120A Eon2 80A 3000 Eoff 80A 2000 Eon2 40A 1000 Eoff40A 0 5 10 15 20 25 30 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) SWITCHING ENERGY LOSSES (µJ) 10-2003 40 40 TJ = 25°C, VGE=15V Rev B 60 20 4000 VGE =15V,TJ=25°C 80 120 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 050-7425 100 140 TJ = 25 or 125°C,VGE = 15V 50 120 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current VCE = 400V RG = 5Ω L = 100 µH 60 140 0 0 10 30 50 70 90 110 130 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 70 VGE =15V,TJ=125°C 160 VCE = 400V VGE = +15V RG = 5Ω Eon2 120A 3000 Eoff 120A Eon2 80A 2000 Eoff 80A 1000 Eon2 40A Eoff 40A 0 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT80GP60B2 300 20,000 Cies 10,000 250 1,000 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 5,000 Coes 500 100 50 Cres 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 200 150 100 50 0 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.12 0.9 0.10 0.7 0.08 0.5 0.06 Note: PDM 0.3 t2 0.1 Duty Factor D = t1/t2 0.05 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 380 Power (watts) 0.0475 0.0656 0.00354F 0.0307F 0.361F Case temperature(°C) FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) RC MODEL Junction temp (°C) 0.00791 1.0 100 fmax = min(fmax1, fmax2) 50 fmax1 = TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5Ω 10 10 fmax2 = Pdiss = 0.05 td(on) + tr + td(off) + tf Pdiss Pcond Eon2 + Eoff TJ TC RΘJC 40 70 100 130 160 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 10-2003 0.02 t1 Rev B 0.04 050-7425 ZθJC, THERMAL IMPEDANCE (°C/W) 0.14 APT80GP60B2 APT60DF60 Gate Voltage 10% IC CC T J = 125 C td(on) V CE 90% Collector Current tr A 5% D.U.T. 5% 10% Switching Energy Collector Voltage Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage TJ = 125 C A td(off) Collector Voltage 90% V CE IC 100uH V CLAMP tf B 10% Collector Current Switching Energy A 0 DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions ® T-MAX (B2) Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector (Cathode) 5.38 (.212) 6.20 (.244) 20.80 (.819) 21.46 (.845) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) 10-2003 Rev B 2.87 (.113) 3.12 (.123) Gate Collector Emitter 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. 050-7425 Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.