APT45GP120J 1200V E E ® POWER MOS 7 IGBT The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 50 kHz operation @ 800V, 16A • Low Gate Charge • 20 kHz operation @ 800V, 30A • Ultrafast Tail Current shutoff • RBSOA rated 27 2 T- C G SO "UL Recognized" ISOTOP ® C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 VGEM Gate-Emitter Voltage Transient ±30 IC1 Continuous Collector Current @ TC = 25°C 75 IC2 Continuous Collector Current @ TC = 110°C 34 ICM Pulsed Collector Current RBSOA PD TJ,TSTG TL UNIT APT45GP120J 1 Volts Amps 170 @ TC = 25°C 170A @ 960V Reverse Bias Safe Operating Area @ TJ = 150°C Watts 329 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA) 1200 VGE(TH) Gate Threshold Voltage VCE(ON) ICES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 45A, Tj = 25°C) 3.3 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 45A, Tj = 125°C) 3.0 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 500 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 6-2003 MIN Rev C Characteristic / Test Conditions 050-7430 Symbol APT45GP120J DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 3935 VGE = 0V, VCE = 25V 300 Reverse Transfer Capacitance f = 1 MHz 55 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 185 VCE = 600V 25 I C = 45A 80 Input Capacitance Coes Output Capacitance Cres VGEP Qge Qgc RBSOA TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 170 A 15V, L = 100µH,VCE = 960V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon1 Eon2 Eoff 102 I C = 45A 38 µJ 904 Inductive Switching (125°C) VCC = 600V 18 VGE = 15V 151 I C = 45A 79 Turn-off Delay Time Current Fall Time Turn-off Switching Energy 1869 6 29 R G = 5Ω 44 Turn-on Switching Energy (Diode) ns 900 TJ = +25°C 5 Current Rise Time Turn-on Switching Energy 29 R G = 5Ω 4 Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 18 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 600V 55 ns 900 TJ = +125°C 3078 66 µJ 2254 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .38 RΘJC Junction to Case (DIODE) N/A Package Weight 29.2 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7430 Rev C 6-2003 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 90 70 60 50 TC=25°C 40 TC=125°C 30 20 10 50 TC=25°C 40 TC=125°C 30 20 0 FIGURE 1, Output Characteristics(VGE = 15V) 160 FIGURE 2, Output Characteristics (VGE = 10V) 16 80 TJ = 25°C 60 TJ = 125°C 40 20 0 5 IC = 90A TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 45A 3 IC = 22.5A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.05 1.0 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 8 VCE=960V 6 4 2 0 20 40 60 80 100 120 140 160 180 200 GATE CHARGE (nC) FIGURE 4, Gate Charge 5 4.5 IC = 90A 4 3.5 IC = 45A 3 IC = 22.5A 2.5 2.0 1.5 1.0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0.05 0 0 120 IC, DC COLLECTOR CURRENT(A) 1.10 VCE=600V 10 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 1.2 1.15 12 0 1 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE=240V 100 80 60 40 6-2003 100 IC = 45A TJ = 25°C 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev C TJ = -55°C 14 050-7430 120 VGE, GATE-TO-EMITTER VOLTAGE (V) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 140 IC, COLLECTOR CURRENT (A) 60 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 70 10 0 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 80 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 80 APT45GP120J 90 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT45GP120J TYPICAL PERFORMANCE CURVES 180 30 25 VGE= 10V 20 VGE= 15V 15 10 VCE = 600V TJ = 25°C or 125°C RG = 5Ω L = 100 µH 5 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 35 0 160 VGE =15V,TJ=125°C VGE =10V,TJ=125°C 140 VGE =15V,TJ=25°C 120 100 80 VGE =10V,TJ=25°C 60 40 VCE = 600V RG = 5Ω L = 100 µH 20 0 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 80 100 TJ = 25 or 125°C,VGE = 10V TJ = 125°C, VGE = 10V or 15V 90 70 80 tf, FALL TIME (ns) tr, RISE TIME (ns) 60 50 40 30 TJ = 25 or 125°C,VGE = 15V 20 70 60 50 40 30 TJ = 25°C, VGE = 10V or 15V 20 10 10 RG =5Ω, L = 100µH, VCE = 600V 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 6000 VCE = 600V L = 100 µH RG = 5 Ω 7000 6000 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ =125°C, VGE=15V TJ =125°C,VGE=10V 5000 4000 3000 2000 TJ = 25°C, VGE=15V 1000 EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 8000 TJ = 25°C, VGE=10V TJ = 125°C, VGE = 10V or 15V 4000 3000 2000 1000 TJ = 25°C, VGE = 10V or 15V 0 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current Eoff 90A 6000 Eon2 45A 4000 Eoff 45A Eon2 22.5A SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 6-2003 Rev C 050-7430 Eon2 90A 8000 2000 5000 8000 VCE = 600V VGE = +15V TJ = 125°C 10000 VCE = 600V L = 100 µH RG = 5 Ω 0 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 12000 RG =5Ω, L = 100µH, VCE = 600V 0 VCE = 600V VGE = +15V RG = 5 Ω 7000 6000 5000 4000 Eoff 90A 3000 Eon2 45A 2000 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance Eoff 45A Eon2 22.5A 1000 Eoff 22.5A Eoff 22.5A 0 Eon2 90A 0 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 10,000 P C, CAPACITANCE ( F) 1,000 500 Coes 100 Cres 50 IC, COLLECTOR CURRENT (A) Cies 5,000 APT45GP120J 180 160 140 120 100 180 160 140 120 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 800 900 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.9 0.35 0.30 0.7 0.25 0.5 0.20 Note: 0.15 PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 0.40 0.3 t1 t2 0.10 Duty Factor D = t1/t2 0.1 0.05 0 0.05 10-5 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION 10 90 RC MODEL 0.0269F 0.265 0.608F Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL 10 TJ = 125°C TC = 75°C D = 50 % VCE = 800V RG = 5 Ω 1 10 20 30 40 50 60 70 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Fmax = min(f max1 , f max 2 ) f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 6-2003 0.0806 Rev C 0.000443F 050-7430 Power (Watts) 0.0339 FMAX, OPERATING FREQUENCY (kHz) Junction temp. ( ”C) APT45GP120J APT30DF120 10% T J = 125 C Gate Voltage Collector Voltage IC V CC V CE td(on) tr 90% A 10% D.U.T. Collector Current 5% 5% Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage t d(off) *DRIVER SAME TYPE AS D.U.T. T J = 125 C tf Collector Voltage 90% A V CE IC 100uH V CLAMP B 0 10% Switching Energy Collector Current A DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) 6-2003 Rev C 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 050-7430 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter 30.1 (1.185) 30.3 (1.193) Collector * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Emitter Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.