APT60GT60JRDQ3 600V TYPICAL PERFORMANCE CURVES APT60GT60JRDQ3 ® E E Thunderbolt IGBT® The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 100KHz • Low Tail Current • Ultra Low Leakage Current C G ISOTOP ® S OT 22 7 "UL Recognized" file # E145592 C • RBSOA and SCSOA Rated G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT60GT60JRDQ3 VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 105 I C2 Continuous Collector Current @ TC = 110°C 48 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 360 Switching Safe Operating Area @ TJ = 150°C 360A @ 600V Total Power Dissipation Watts 379 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 330µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4 5 Collector-Emitter On Voltage (VGE = 15V, I C = 60A, Tj = 25°C) 2.0 2.5 Collector-Emitter On Voltage (VGE = 15V, I C = 60A, Tj = 125°C) 2.8 (VCE = VGE, I C = 700µA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 3 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 330 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Units nA 10-2005 MIN Rev A Characteristic / Test Conditions 052-6260 Symbol DYNAMIC CHARACTERISTICS Symbol APT60GT60JRDQ3 Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 tf 185 Gate Charge 7.5 VGE = 15V 290 15V, L = 100µH,VCE = 600V 1265 TJ = +25°C 1200 17 VCC = 400V 34 Turn-off Delay Time VGE = 15V 260 RG = 4.3Ω 60 1285 I C = 60A Current Fall Time Eoff Turn-off Switching Energy µJ 1505 Inductive Switching (125°C) Current Rise Time Turn-on Switching Energy (Diode) ns 26 RG = 4.3Ω Turn-on Delay Time Turn-on Switching Energy nC 235 6 Eon2 V A 34 I C = 60A Eon1 pF 360 17 5 UNIT 130 VCC = 400V 4 MAX 20 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy td(off) f = 1 MHz TJ = 150°C, R G = 4.3Ω, VGE = Turn-off Delay Time Eoff tr 390 VGE = 15V Turn-on Switching Energy (Diode) td(on) 3100 VGE = 0V, VCE = 25V I C = 60A Current Rise Time Eon2 TYP Capacitance VCE = 300V Turn-on Delay Time Turn-on Switching Energy MIN 44 55 TJ = +125°C ns µJ 2135 6 1705 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .33 RθJC Junction to Case (DIODE) .60 WT VIsolation Package Weight 29.2 RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500 UNIT °C/W gm Volts 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 052-6260 Rev A 10-2005 4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES TC = -55°C 140 120 TC = 25°C 100 80 TC = 125°C 60 40 20 0 IC, COLLECTOR CURRENT (A) 140 TJ = -55°C TJ = 25°C 120 100 80 60 TJ = 125°C 40 20 0 0 10V 150 9V 100 8V 7V 50 6V FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 11V 200 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 160 13V 250 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 180 15V J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 60A C T = 25°C 14 0 IC = 120A 3.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.0 2.5 IC = 60A 2.0 IC = 30A 1.5 1.0 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.00 0.95 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) (NORMALIZED) VGS(TH), THRESHOLD VOLTAGE 1.05 250 300 4.5 4.0 IC = 120A 3.5 3.0 IC = 60A 2.5 IC = 30A 2.0 1.5 1.0 0.5 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 140 1.15 1.10 100 150 200 GATE CHARGE (nC) FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4.0 50 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 10-2005 IC, COLLECTOR CURRENT (A) = 15V Rev A GE 052-6260 V 160 APT60GT60JRDQ3 300 IC, COLLECTOR CURRENT (A) 180 VGE = 15V 20 15 10 5 VCE = 400V TJ = 25°C, or 125°C RG = 4.3Ω L = 100µH 0 VGE =15V,TJ=125°C 100 VCE = 400V RG = 4.3Ω L = 100µH 50 RG = 4.3Ω, L = 100µH, VCE = 400V 120 tf, FALL TIME (ns) tr, RISE TIME (ns) 150 140 RG = 4.3Ω, L = 100µH, VCE = 400V 60 40 TJ = 25 or 125°C,VGE = 15V 7000 G 5000 TJ = 125°C 4000 3000 2000 1000 TJ = 25°C 0 Eoff,120A Eon2,120A 8000 6000 Eoff,60A Eon2,60A Eoff,30A 2000 Eon2,30A 0 50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 40 TJ = 25°C, VGE = 15V 100 120 140 80 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current V = 400V CE V = +15V GE R = 4.3Ω 3500 G TJ = 125°C 3000 2500 2000 1500 1000 TJ = 25°C 500 0 80 100 120 140 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (µJ) J 4000 60 7000 = 400V V CE = +15V V GE T = 125°C 10000 80 0 100 120 140 80 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 12000 TJ = 125°C, VGE = 15V 4000 V = 400V CE V = +15V GE R = 4.3Ω 6000 100 20 EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) VGE =15V,TJ=25°C 100 100 120 140 80 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current SWITCHING ENERGY LOSSES (µJ) 200 0 0 10-2005 250 80 100 120 140 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 20 Rev A 300 100 120 140 80 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 80 052-6260 APT60GT60JRDQ3 350 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 = 400V V CE = +15V V GE R = 4.3Ω 6000 G Eon2,120A 5000 4000 Eoff,120A 3000 2000 Eon2,60A 1000 0 Eoff,60A Eoff,30A Eon2,30A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) Cies P C, CAPACITANCE ( F) APT60GT60JRDQ3 400 5,000 1,000 500 Coes 350 300 250 200 150 100 Cres 50 100 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.30 D = 0.9 0.25 0.7 0.20 0.5 0.15 Note: 0.3 0.10 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 0.05 10-5 t1 t2 SINGLE PULSE 0.05 0 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.35 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 0.0434 0.0078 0.285 4.38 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. Figure 19b, TRANSIENT THERMAL IMPEDANCE MODEL = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 5 1 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 4.3Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 10 20 30 40 50 60 70 80 90 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 10-2005 0.151 F 10 Rev A 0.136 Dissipated Power (Watts) 50 052-6260 TC (°C) ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 120 APT60GT60JRDQ3 Gate Voltage APT60DQ60 10% TJ = 125°C td(on) 90% V CE IC V CC Collector Current tr 5% 5% 10% CollectorVoltage A D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% Gate Voltage td(off) TJ = 125°C 90% CollectorVoltage tf 10% 0 Collector Current Switching Energy 052-6260 Rev A 10-2005 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT60GT60JRDQ3 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT60GT60JRDQ3 Characteristic / Test Conditions Maximum Average Forward Current (TC = 92°C, Duty Cycle = 0.5) 60 RMS Forward Current (Square wave, 50% duty) 79 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) UNIT Amps 600 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions Forward Voltage MIN TYP IF = 60A 1.8 IF = 120A 2.2 IF = 60A, TJ = 125°C 1.9 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 160 trr Reverse Recovery Time - 70 Qrr Reverse Recovery Charge - 100 - 4 - 140 ns - 690 nC - 9 - 80 ns - 1540 nC - 31 Amps IRRM Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current IF = 60A, diF/dt = -200A/µs VR = 800V, TC = 25°C IF = 60A, diF/dt = -200A/µs VR = 800V, TC = 125°C IF = 60A, diF/dt = -1000A/µs VR = 800V, TC = 125°C ns nC - - Amps Amps 0.60 D = 0.9 0.50 0.7 0.40 0.5 0.20 0.3 0.10 0.1 0.05 t2 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION TJ (°C) TC (°C) 0.159 0.255 0.186 Dissipated Power (Watts) 0.0056 0.0850 0.490 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 10-2005 10-4 Rev A 10-5 t1 052-6260 0 Note: PDM 0.30 ZEXT ZθJC, THERMAL IMPEDANCE (°C/W) 0.70 200 140 120 TJ = 175°C 100 80 TJ = 125°C 60 40 TJ = -55°C 20 0 Qrr, REVERSE RECOVERY CHARGE (nC) 2500 T = 125°C J V = 400V R 2000 120A 60A 1500 1000 30A 500 0 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change 60 40 60 T = 125°C J V = 400V R 50 120A 40 30 60A 20 30A 10 0 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change 100 Duty cycle = 0.5 T = 175°C J 80 0.8 IRRM trr 0.6 60 40 0.4 Qrr 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature 0 600 CJ, JUNCTION CAPACITANCE (pF) 30A 80 trr 1.0 0.0 10-2005 60A 100 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change Qrr 0.2 Rev A 120 R 0 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 T = 125°C J V = 400V 120A 140 20 TJ = 25°C 0.5 1.0 1.5 2.0 2.5 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage 052-6260 trr, REVERSE RECOVERY TIME (ns) 160 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 180 0 APT60GT60JRDQ3 160 500 400 300 200 100 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 20 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT60GT60JRDQ3 Vr diF /dt Adjust +18V APT60M75L2LL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode ISOTOP® is a Registered Trademark of SGS Thomson. Collector/Cathode Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 10-2005 3.3 (.129) 3.6 (.143) Rev A r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 052-6260 7.8 (.307) 8.2 (.322)