ADPOW APT60GT60JRDQ3

APT60GT60JRDQ3
600V
TYPICAL PERFORMANCE CURVES
APT60GT60JRDQ3
®
E
E
Thunderbolt IGBT®
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 100KHz
• Low Tail Current
• Ultra Low Leakage Current
C
G
ISOTOP ®
S
OT
22
7
"UL Recognized"
file # E145592
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT60GT60JRDQ3
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
105
I C2
Continuous Collector Current @ TC = 110°C
48
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
360
Switching Safe Operating Area @ TJ = 150°C
360A @ 600V
Total Power Dissipation
Watts
379
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 330µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4
5
Collector-Emitter On Voltage (VGE = 15V, I C = 60A, Tj = 25°C)
2.0
2.5
Collector-Emitter On Voltage (VGE = 15V, I C = 60A, Tj = 125°C)
2.8
(VCE = VGE, I C = 700µA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
3
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
330
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
nA
10-2005
MIN
Rev A
Characteristic / Test Conditions
052-6260
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT60GT60JRDQ3
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
185
Gate Charge
7.5
VGE = 15V
290
15V, L = 100µH,VCE = 600V
1265
TJ = +25°C
1200
17
VCC = 400V
34
Turn-off Delay Time
VGE = 15V
260
RG = 4.3Ω
60
1285
I C = 60A
Current Fall Time
Eoff
Turn-off Switching Energy
µJ
1505
Inductive Switching (125°C)
Current Rise Time
Turn-on Switching Energy (Diode)
ns
26
RG = 4.3Ω
Turn-on Delay Time
Turn-on Switching Energy
nC
235
6
Eon2
V
A
34
I C = 60A
Eon1
pF
360
17
5
UNIT
130
VCC = 400V
4
MAX
20
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
f = 1 MHz
TJ = 150°C, R G = 4.3Ω, VGE =
Turn-off Delay Time
Eoff
tr
390
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
3100
VGE = 0V, VCE = 25V
I C = 60A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 300V
Turn-on Delay Time
Turn-on Switching Energy
MIN
44
55
TJ = +125°C
ns
µJ
2135
6
1705
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.33
RθJC
Junction to Case (DIODE)
.60
WT
VIsolation
Package Weight
29.2
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500
UNIT
°C/W
gm
Volts
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6260
Rev A
10-2005
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TC = -55°C
140
120
TC = 25°C
100
80
TC = 125°C
60
40
20
0
IC, COLLECTOR CURRENT (A)
140
TJ = -55°C
TJ = 25°C
120
100
80
60
TJ = 125°C
40
20
0
0
10V
150
9V
100
8V
7V
50
6V
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
11V
200
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
160
13V
250
0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
180
15V
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 60A
C
T = 25°C
14
0
IC = 120A
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.0
2.5
IC = 60A
2.0
IC = 30A
1.5
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
(NORMALIZED)
VGS(TH), THRESHOLD VOLTAGE
1.05
250
300
4.5
4.0
IC = 120A
3.5
3.0
IC = 60A
2.5
IC = 30A
2.0
1.5
1.0
0.5
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
1.15
1.10
100
150
200
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.0
50
120
100
80
60
40
20
0
-50 -25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
10-2005
IC, COLLECTOR CURRENT (A)
= 15V
Rev A
GE
052-6260
V
160
APT60GT60JRDQ3
300
IC, COLLECTOR CURRENT (A)
180
VGE = 15V
20
15
10
5 VCE = 400V
TJ = 25°C, or 125°C
RG = 4.3Ω
L = 100µH
0
VGE =15V,TJ=125°C
100
VCE = 400V
RG = 4.3Ω
L = 100µH
50
RG = 4.3Ω, L = 100µH, VCE = 400V
120
tf, FALL TIME (ns)
tr, RISE TIME (ns)
150
140
RG = 4.3Ω, L = 100µH, VCE = 400V
60
40
TJ = 25 or 125°C,VGE = 15V
7000
G
5000
TJ = 125°C
4000
3000
2000
1000
TJ = 25°C
0
Eoff,120A
Eon2,120A
8000
6000
Eoff,60A
Eon2,60A
Eoff,30A
2000
Eon2,30A
0
50
40
30
20
10
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
40
TJ = 25°C, VGE = 15V
100 120 140
80
60
40
20
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
3500
G
TJ = 125°C
3000
2500
2000
1500
1000
TJ = 25°C
500
0
80 100 120 140
60
40
20
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
J
4000
60
7000
= 400V
V
CE
= +15V
V
GE
T = 125°C
10000
80
0
100 120 140
80
60
40
20
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
12000
TJ = 125°C, VGE = 15V
4000
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
6000
100
20
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=25°C
100
100 120 140
80
60
40
20
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
200
0
0
10-2005
250
80 100 120 140
60
40
20
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
20
Rev A
300
100 120 140
80
60
40
20
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
80
052-6260
APT60GT60JRDQ3
350
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
= 400V
V
CE
= +15V
V
GE
R = 4.3Ω
6000
G
Eon2,120A
5000
4000
Eoff,120A
3000
2000
Eon2,60A
1000
0
Eoff,60A
Eoff,30A
Eon2,30A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
APT60GT60JRDQ3
400
5,000
1,000
500
Coes
350
300
250
200
150
100
Cres
50
100
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.30
D = 0.9
0.25
0.7
0.20
0.5
0.15
Note:
0.3
0.10
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.1
0.05
10-5
t1
t2
SINGLE PULSE
0.05
0
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
0.0434
0.0078
0.285
4.38
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
Figure 19b, TRANSIENT THERMAL IMPEDANCE MODEL
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
5
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 4.3Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
10
20
30 40 50
60 70
80 90
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
10-2005
0.151
F
10
Rev A
0.136
Dissipated Power
(Watts)
50
052-6260
TC (°C)
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
120
APT60GT60JRDQ3
Gate Voltage
APT60DQ60
10%
TJ = 125°C
td(on)
90%
V CE
IC
V CC
Collector Current
tr
5%
5%
10%
CollectorVoltage
A
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
Gate Voltage
td(off)
TJ = 125°C
90%
CollectorVoltage
tf
10%
0
Collector Current
Switching Energy
052-6260
Rev A
10-2005
Figure 23, Turn-off Switching Waveforms and Definitions
TYPICAL PERFORMANCE CURVES
APT60GT60JRDQ3
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT60GT60JRDQ3
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 92°C, Duty Cycle = 0.5)
60
RMS Forward Current (Square wave, 50% duty)
79
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
600
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
Forward Voltage
MIN
TYP
IF = 60A
1.8
IF = 120A
2.2
IF = 60A, TJ = 125°C
1.9
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
160
trr
Reverse Recovery Time
-
70
Qrr
Reverse Recovery Charge
-
100
-
4
-
140
ns
-
690
nC
-
9
-
80
ns
-
1540
nC
-
31
Amps
IRRM
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 25°C
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
IF = 60A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
ns
nC
-
-
Amps
Amps
0.60
D = 0.9
0.50
0.7
0.40
0.5
0.20
0.3
0.10
0.1
0.05
t2
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
TJ (°C)
TC (°C)
0.159
0.255
0.186
Dissipated Power
(Watts)
0.0056
0.0850
0.490
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
10-2005
10-4
Rev A
10-5
t1
052-6260
0
Note:
PDM
0.30
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
0.70
200
140
120
TJ = 175°C
100
80
TJ = 125°C
60
40
TJ = -55°C
20
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
2500
T = 125°C
J
V = 400V
R
2000
120A
60A
1500
1000
30A
500
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
60
40
60
T = 125°C
J
V = 400V
R
50
120A
40
30
60A
20
30A
10
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
100
Duty cycle = 0.5
T = 175°C
J
80
0.8
IRRM
trr
0.6
60
40
0.4
Qrr
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
0
600
CJ, JUNCTION CAPACITANCE
(pF)
30A
80
trr
1.0
0.0
10-2005
60A
100
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
Qrr
0.2
Rev A
120
R
0
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
T = 125°C
J
V = 400V
120A
140
20
TJ = 25°C
0.5
1.0
1.5
2.0
2.5
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
052-6260
trr, REVERSE RECOVERY TIME
(ns)
160
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
180
0
APT60GT60JRDQ3
160
500
400
300
200
100
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
20
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT60GT60JRDQ3
Vr
diF /dt Adjust
+18V
APT60M75L2LL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
ISOTOP® is a Registered Trademark of SGS Thomson.
Collector/Cathode
Gate
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
10-2005
3.3 (.129)
3.6 (.143)
Rev A
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
052-6260
7.8 (.307)
8.2 (.322)