TYPICAL PERFORMANCE CURVES APT25GT120BRDL(G) 1200V APT25GT120BRDL(G) *G Denotes RoHS Compliant, Pb Free Terminal Finish. Resonant Mode IGBT® TO -2 47 The Thunderbolt IGBT® used in this Resonant Mode Combi is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. Typical Applications Features • Low Conduction Loss • SSOA Rated • Induction Heating • Low Gate Charge • RoHS Compliant • Welding G • Ultrafast Tail Current shutoff • Low forward Diode Voltage (VF) • High Power Telecom • Ultrasoft Recovery Diode • Resonant Mode Phase Shifted Bridge G E All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Parameter APT25GT120BRDL(G) VCES Collector-Emitter Voltage VGE Gate-Emitter Voltage I C1 Continuous Collector Current @ TC = 25°C 54 I C2 Continuous Collector Current @ TC = 110°C 25 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current E C • Medical Symbol C 1200 UNIT Volts ±30 1 Amps 75 Switching Safe Operating Area @ TJ = 150°C 75A @ 1200V Total Power Dissipation Watts 347 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.5mA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES MAX 4.5 5.5 6.5 2.7 3.2 3.7 Units 1200 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) TYP 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 3.9 200 2 Gate-Emitter Leakage Current (VGE = ±20V) μA 1250 120 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Volts nA 6-2009 V(BR)CES MIN Rev B Characteristic / Test Conditions 052-6349 Symbol DYNAMIC CHARACTERISTICS Symbol APT25GT120BRDL(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge 3 Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 170 f = 1 MHz 110 Gate Charge 10.0 VGE = 15V 170 VCE = 600V 20 TJ = 150°C, R G = 5Ω, VGE = 15V, L = 100μH,VCE = 1200V 27 Turn-off Delay Time 150 I C = 25A 36 Turn-on Switching Energy RG = 5Ω 14 Current Rise Time VCC = 800V 27 Turn-off Delay Time VGE = 15V 175 Turn-on Delay Time I C = 25A Current Fall Time Turn-on Switching Energy Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy μJ 720 Inductive Switching (125°C) Eon2 ns 1860 6 Eon1 nC 930 TJ = +25°C 5 V A VGE = 15V 4 UNIT pF 75 Current Rise Time Current Fall Time MAX 100 14 Turn-off Switching Energy tf VGE = 0V, VCE = 25V VCC = 800V Eoff td(off) 1845 Inductive Switching (25°C) Turn-on Switching Energy (Diode) tr TYP Capacitance I C = 25A Turn-on Delay Time Eon2 td(on) MIN 45 925 RG = 5Ω 44 55 ns TJ = +125°C μJ 3265 6 965 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .36 RθJC Junction to Case (DIODE) 1.4 WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 052-6349 Rev B 6-2009 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) Microsemi reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES = 15V IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 70 60 TJ = 25°C 50 TJ = 125°C 40 TJ = -55°C 30 20 10 FIGURE 1, Output Characteristics(TJ = 25°C) 50 40 30 0 TJ = 25°C TJ = 125°C 0 9V FIGURE 2, Output Characteristics (TJ = 125°C) VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) TJ = -55°C 60 10 10V 20 16 250μs PULSE TEST<0.5 % DUTY CYCLE 20 11V 40 0 0 2 4 6 8 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 70 12V 60 8V 7V 0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0 80 13V 80 J VCE = 600V 10 VCE = 960V 8 6 4 2 0 20 40 60 80 100 120 140 160 180 200 GATE CHARGE (nC) 5 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 25A 3 IC = 12.5A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC = 50A 6 5 1 0 0.85 0.80 0.75 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 70 0.90 IC = 12.5A 2 1.05 0.95 IC = 25A 3 80 1.00 IC = 50A 4 1.10 IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 6 VCE = 240V 12 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 25A C T = 25°C 14 0 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 6-2009 GE 15V Rev B V APT25GT120BRDL(G) 100 052-6349 80 APT25GT120BRDL(G) 200 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 30 25 20 VGE = 15V 15 10 VCE = 800V 5 T = 25°C, or 125°C J RG = 5Ω L = 100μH 0 160 140 VGE =15V,TJ=125°C 120 VGE =15V,TJ=25°C 100 80 60 40 VCE = 800V 20 RG = 5Ω L = 100μH 0 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 70 180 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 50 RG = 5Ω, L = 100μH, VCE = 800V RG = 5Ω, L = 100μH, VCE = 800V 45 60 40 30 TJ = 25 or 125°C,VGE = 15V 20 tf, FALL TIME (ns) tr, RISE TIME (ns) 40 50 35 TJ = 125°C, VGE = 15V TJ = 25°C, VGE = 15V 30 25 20 15 10 10 5 0 0 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 2500 V = 800V CE V = +15V GE R = 5Ω EOFF, TURN OFF ENERGY LOSS (μJ) EON2, TURN ON ENERGY LOSS (μJ) 10,000 G 8,000 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 125°C 6,000 4,000 2,000 TJ = 25°C 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 14,000 12,000 10,000 8,000 6,000 Eon2,25A 0 Eoff,50A Eon2,12.5A 2,000 Eoff,25A 0 1500 1000 TJ = 25°C 500 10 15 20 25 30 35 40 45 50 55 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current Eoff,12.5A 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (μJ) SWITCHING ENERGY LOSSES (μJ) 6-2009 Rev B 052-6349 Eon2,50A J 4,000 TJ = 125°C 9,000 V = 800V CE V = +15V GE T = 125°C 16,000 G 2000 0 0 18,000 V = 800V CE V = +15V GE R = 5Ω V = 800V CE V = +15V GE R = 5Ω 8,000 Eon2,50A G 7,000 6,000 5,000 4,000 3,000 Eon2,12.5A 1,000 0 Eoff,50A Eon2,25A 2,000 Eoff,12.5A 0 Eoff,25A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 3,000 IC, COLLECTOR CURRENT (A) 1,000 C, CAPACITANCE ( F) 500 P APT25GT120BRDL(G) 80 Cies Coes 100 Cres 50 70 60 50 40 30 20 10 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.35 D = 0.9 0.30 0.7 0.25 0.20 0.5 Note: 0.15 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.40 0.3 0.10 t2 0.05 0 t1 t 0.1 SINGLE PULSE 0.05 10-4 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10-5 1.0 50 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf 10 5 1 5 10 15 20 25 30 35 40 45 f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC 50 Rev B 6-2009 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6349 FMAX, OPERATING FREQUENCY (kHz) 140 APT25GT120BRDL(G) APT15DL120 Gate Voltage 10% TJ = 125°C td(on) IC V CC tr V CE Collector Current 90% 5% 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) 90% Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6349 Rev B 6-2009 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT25GT120BRDL(G) ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM APT25GT120BRDL(G) Characteristic / Test Conditions Maximum Average Forward Current (TC = 115°C, Duty Cycle = 0.5) 15 RMS Forward Current (Square wave, 50% duty) 30 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) 60 UNIT Amps STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions Forward Voltage MIN TYP MAX IF = 15A 1.6 2.1 IF = 30A 2.0 IF = 15A, TJ = 125°C 1.6 UNIT Volts DYNAMIC CHARACTERISTICS Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/μs, V = 30V, T = 25°C F F R J - 51 trr Reverse Recovery Time - 523 Qrr Reverse Recovery Charge - 1492 - 7 - 716 ns - 2886 nC - 8 - 233 ns - 2873 nC - 25 Amps Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge VR = 800V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IF = 15A, diF/dt = -1000A/μs Maximum Reverse Recovery Current VR = 800V, TC = 125°C - - Amps Amps 1.6 1.4 0.9 1.2 0.7 1.0 0.8 0.5 Note: 0.5 0.4 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC t1 t2 0.2 0 0.3 PDM ZθJC, THERMAL IMPEDANCE (°C/W) IRRM IF = 15A, diF/dt = -200A/μs nC t 0.05 10-5 SINGLE PULSE 10-4 1.0 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (seconds) FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION 6-2009 IRRM VR = 800V, TC = 25°C Rev B IRRM IF = 15A, diF/dt = -200A/μs ns 052-6349 Symbol APT25GT120BRDL(G) 800 60 30A TJ= 125°C 700 40 TJ= 150°C TJ= 25°C 30 20 10 0 Qrr, REVERSE RECOVERY CHARGE (nC) trr, COLLECTOR CURRENT (A) TJ= 55°C 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) FIGURE 2, Forward Current vs. Forward Voltage 5000 T = 125°C J V = 800V R 30A 4000 15A 3000 7.5A 2000 1000 0 7.5A 500 400 300 200 100 0 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 3, Reverse Recovery Time vs. Current Rate of Change 30 T = 125°C J V = 800V 15 10 5 0 35 IRRM 0.8 30 tRR 0.6 QRR 0.4 25 20 15 10 0.2 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 6, Dynamic Parameters vs Junction Temperature CJ, JUNCTION CAPACITANCE (pF) 600 6-2009 7.5A 40 1.0 0 Rev B 15A 20 5 052-6349 30A R 25 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 5, Reverse Recovery Current vs. Current Rate of Change 45 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/μs) 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change 1.2 R 15A 600 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 50 T = 125°C J V = 800V 500 400 300 200 100 0 0 100 200 300 400 500 600 700 800 VR, REVERSE VOLTAGE (V) FIGURE 8, Junction Capacitance vs. Reverse Voltage 0 Duty cycle = 0.5 TJ = 45°C 25 50 75 100 125 150 Case Temperature (°C) FIGURE 7, Maximum Average Forward Current vs. Case Temperature TYPICAL PERFORMANCE CURVES APT25GT120BRDL(G) Vr diF /dt Adjust +18V APT10078BLL 0V D.U.T. 30μH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 0.25 IRRM 3 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions TO-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Cathode) 20.80 (.819) 21.46 (.845) 3.55 (.138) 3.81 (.150) 4.50 (.177) Max. 2.21 (.087) 2.59 (.102) Gate Collector (Cathode) Emitter (Anode) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. Rev B 1.01 (.040) 1.40 (.055) 6-2009 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 052-6349 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123)