MICROSEMI APT25GT120BRDLG

TYPICAL PERFORMANCE CURVES
APT25GT120BRDL(G)
1200V
APT25GT120BRDL(G)
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Resonant Mode IGBT®
TO
-2
47
The Thunderbolt IGBT® used in this Resonant Mode Combi is a new generation of high voltage
power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior
ruggedness and ultrafast switching speed.
Typical Applications
Features
• Low Conduction Loss
• SSOA Rated
• Induction Heating
• Low Gate Charge
• RoHS Compliant
• Welding
G
• Ultrafast Tail Current shutoff
• Low forward Diode Voltage (VF)
• High Power Telecom
• Ultrasoft Recovery Diode
• Resonant Mode Phase Shifted
Bridge
G
E
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Parameter
APT25GT120BRDL(G)
VCES
Collector-Emitter Voltage
VGE
Gate-Emitter Voltage
I C1
Continuous Collector Current @ TC = 25°C
54
I C2
Continuous Collector Current @ TC = 110°C
25
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
E
C
• Medical
Symbol
C
1200
UNIT
Volts
±30
1
Amps
75
Switching Safe Operating Area @ TJ = 150°C
75A @ 1200V
Total Power Dissipation
Watts
347
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.5mA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
MAX
4.5
5.5
6.5
2.7
3.2
3.7
Units
1200
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
3.9
200
2
Gate-Emitter Leakage Current (VGE = ±20V)
μA
1250
120
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Volts
nA
6-2009
V(BR)CES
MIN
Rev B
Characteristic / Test Conditions
052-6349
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT25GT120BRDL(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
170
f = 1 MHz
110
Gate Charge
10.0
VGE = 15V
170
VCE = 600V
20
TJ = 150°C, R G = 5Ω, VGE =
15V, L = 100μH,VCE = 1200V
27
Turn-off Delay Time
150
I C = 25A
36
Turn-on Switching Energy
RG = 5Ω
14
Current Rise Time
VCC = 800V
27
Turn-off Delay Time
VGE = 15V
175
Turn-on Delay Time
I C = 25A
Current Fall Time
Turn-on Switching Energy
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
μJ
720
Inductive Switching (125°C)
Eon2
ns
1860
6
Eon1
nC
930
TJ = +25°C
5
V
A
VGE = 15V
4
UNIT
pF
75
Current Rise Time
Current Fall Time
MAX
100
14
Turn-off Switching Energy
tf
VGE = 0V, VCE = 25V
VCC = 800V
Eoff
td(off)
1845
Inductive Switching (25°C)
Turn-on Switching Energy (Diode)
tr
TYP
Capacitance
I C = 25A
Turn-on Delay Time
Eon2
td(on)
MIN
45
925
RG = 5Ω
44
55
ns
TJ = +125°C
μJ
3265
6
965
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.36
RθJC
Junction to Case (DIODE)
1.4
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
052-6349
Rev B
6-2009
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
= 15V
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
70
60
TJ = 25°C
50
TJ = 125°C
40
TJ = -55°C
30
20
10
FIGURE 1, Output Characteristics(TJ = 25°C)
50
40
30
0
TJ = 25°C
TJ = 125°C
0
9V
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
TJ = -55°C
60
10
10V
20
16
250μs PULSE
TEST<0.5 % DUTY
CYCLE
20
11V
40
0
0
2
4
6
8
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
70
12V
60
8V
7V
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
80
13V
80
J
VCE = 600V
10
VCE = 960V
8
6
4
2
0
20 40 60 80 100 120 140 160 180 200
GATE CHARGE (nC)
5
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 25A
3
IC = 12.5A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC = 50A
6
5
1
0
0.85
0.80
0.75
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
70
0.90
IC = 12.5A
2
1.05
0.95
IC = 25A
3
80
1.00
IC = 50A
4
1.10
IC, DC COLLECTOR CURRENT(A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
VCE = 240V
12
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 25A
C
T = 25°C
14
0
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2009
GE
15V
Rev B
V
APT25GT120BRDL(G)
100
052-6349
80
APT25GT120BRDL(G)
200
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
30
25
20
VGE = 15V
15
10
VCE = 800V
5 T = 25°C, or 125°C
J
RG = 5Ω
L = 100μH
0
160
140
VGE =15V,TJ=125°C
120
VGE =15V,TJ=25°C
100
80
60
40
VCE = 800V
20 RG = 5Ω
L = 100μH
0
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
70
180
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
50
RG = 5Ω, L = 100μH, VCE = 800V
RG = 5Ω, L = 100μH, VCE = 800V
45
60
40
30
TJ = 25 or 125°C,VGE = 15V
20
tf, FALL TIME (ns)
tr, RISE TIME (ns)
40
50
35
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
30
25
20
15
10
10
5
0
0
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
2500
V
= 800V
CE
V
= +15V
GE
R = 5Ω
EOFF, TURN OFF ENERGY LOSS (μJ)
EON2, TURN ON ENERGY LOSS (μJ)
10,000
G
8,000
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ = 125°C
6,000
4,000
2,000
TJ = 25°C
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
14,000
12,000
10,000
8,000
6,000
Eon2,25A
0
Eoff,50A
Eon2,12.5A
2,000
Eoff,25A
0
1500
1000
TJ = 25°C
500
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
Eoff,12.5A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
6-2009
Rev B
052-6349
Eon2,50A
J
4,000
TJ = 125°C
9,000
V
= 800V
CE
V
= +15V
GE
T = 125°C
16,000
G
2000
0
0
18,000
V
= 800V
CE
V
= +15V
GE
R = 5Ω
V
= 800V
CE
V
= +15V
GE
R = 5Ω
8,000
Eon2,50A
G
7,000
6,000
5,000
4,000
3,000
Eon2,12.5A
1,000
0
Eoff,50A
Eon2,25A
2,000
Eoff,12.5A
0
Eoff,25A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
3,000
IC, COLLECTOR CURRENT (A)
1,000
C, CAPACITANCE ( F)
500
P
APT25GT120BRDL(G)
80
Cies
Coes
100
Cres
50
70
60
50
40
30
20
10
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.35
D = 0.9
0.30
0.7
0.25
0.20
0.5
Note:
0.15
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.40
0.3
0.10
t2
0.05
0
t1
t
0.1
SINGLE PULSE
0.05
10-4
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5
1.0
50
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
10
5
1
5
10
15
20
25
30
35
40
45
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
50
Rev B
6-2009
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6349
FMAX, OPERATING FREQUENCY (kHz)
140
APT25GT120BRDL(G)
APT15DL120
Gate Voltage
10%
TJ = 125°C
td(on)
IC
V CC
tr
V CE
Collector Current
90%
5%
10%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
90%
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
052-6349
Rev B
6-2009
Figure 23, Turn-off Switching Waveforms and Definitions
TYPICAL PERFORMANCE CURVES
APT25GT120BRDL(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
APT25GT120BRDL(G)
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 115°C, Duty Cycle = 0.5)
15
RMS Forward Current (Square wave, 50% duty)
30
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
60
UNIT
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
Forward Voltage
MIN
TYP
MAX
IF = 15A
1.6
2.1
IF = 30A
2.0
IF = 15A, TJ = 125°C
1.6
UNIT
Volts
DYNAMIC CHARACTERISTICS
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/μs, V = 30V, T = 25°C
F
F
R
J
-
51
trr
Reverse Recovery Time
-
523
Qrr
Reverse Recovery Charge
-
1492
-
7
-
716
ns
-
2886
nC
-
8
-
233
ns
-
2873
nC
-
25
Amps
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 15A, diF/dt = -1000A/μs
Maximum Reverse Recovery Current
VR = 800V, TC = 125°C
-
-
Amps
Amps
1.6
1.4
0.9
1.2
0.7
1.0
0.8
0.5
Note:
0.5
0.4
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
t1
t2
0.2
0
0.3
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
IRRM
IF = 15A, diF/dt = -200A/μs
nC
t
0.05
10-5
SINGLE PULSE
10-4
1.0
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (seconds)
FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
6-2009
IRRM
VR = 800V, TC = 25°C
Rev B
IRRM
IF = 15A, diF/dt = -200A/μs
ns
052-6349
Symbol
APT25GT120BRDL(G)
800
60
30A
TJ= 125°C
700
40
TJ= 150°C
TJ= 25°C
30
20
10
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
trr, COLLECTOR CURRENT (A)
TJ= 55°C
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
FIGURE 2, Forward Current vs. Forward Voltage
5000
T = 125°C
J
V = 800V
R
30A
4000
15A
3000
7.5A
2000
1000
0
7.5A
500
400
300
200
100
0
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 3, Reverse Recovery Time vs. Current Rate of Change
30
T = 125°C
J
V = 800V
15
10
5
0
35
IRRM
0.8
30
tRR
0.6
QRR
0.4
25
20
15
10
0.2
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 6, Dynamic Parameters vs Junction Temperature
CJ, JUNCTION CAPACITANCE (pF)
600
6-2009
7.5A
40
1.0
0
Rev B
15A
20
5
052-6349
30A
R
25
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 5, Reverse Recovery Current vs. Current Rate of Change
45
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/μs)
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change
1.2
R
15A
600
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT (A)
50
T = 125°C
J
V = 800V
500
400
300
200
100
0
0
100 200 300 400 500 600 700 800
VR, REVERSE VOLTAGE (V)
FIGURE 8, Junction Capacitance vs. Reverse Voltage
0
Duty cycle = 0.5
TJ = 45°C
25
50
75
100
125
150
Case Temperature (°C)
FIGURE 7, Maximum Average Forward Current vs. Case Temperature
TYPICAL PERFORMANCE CURVES
APT25GT120BRDL(G)
Vr
diF /dt Adjust
+18V
APT10078BLL
0V
D.U.T.
30μH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
0.25 IRRM
3
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
3.55 (.138)
3.81 (.150)
4.50 (.177) Max.
2.21 (.087)
2.59 (.102)
Gate
Collector
(Cathode)
Emitter
(Anode)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
Rev B
1.01 (.040)
1.40 (.055)
6-2009
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
052-6349
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)