MICROSEMI APT50GT60BRDLG

TYPICAL PERFORMANCE CURVES
APT50GT60BRDL(G)
600V
APT50GT60BRDL(G)
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Resonant Mode Combi IGBT®
The Thunderbolt IGBT® used in this Resonant Mode Combi is a new generation of high
voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed.
TO
-24
7
Typical Applications
Features
• Low Conduction Loss
• Low Gate Charge
• SSOA Rated
• Induction Heating
• RoHS Compliant
• Welding
G
• Ultrafast Tail Current shutoff
• Medical
• Low forward Diode Voltage (VF)
• High Power Telecom
• Ultrasoft Recovery Diode
• Resonant Mode Phase Shifted
Bridge
MAXIMUM RATINGS
Symbol
C
C
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT50GT60BRDL(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
E
1
7
@ TC = 25°C
UNIT
Volts
110
52
@ TC = 150°C
Amps
150
Switching Safe Operating Area @ TJ = 150°C
150A @ 600V
Total Power Dissipation
Watts
446
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
MIN
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C)
I CES
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
I GES
TYP
MAX
3
4
5
1.7
2.0
2.5
Gate-Emitter Leakage Current (VGE = ±20V)
µA
1250
120
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Volts
2.2
50
2
Units
nA
Rev B 11-2008
Characteristic / Test Conditions
052-6359
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT50GT60BRDL(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
VGE = 0V, VCE = 25V
250
f = 1 MHz
155
Gate Charge
7.5
VGE = 15V
240
VCE = 300V
20
I C = 50A
110
TJ = 150°C, R G = 5Ω, VGE =
15V, L = 100µH,VCE = 600V
32
Turn-off Delay Time
VGE = 15V
240
I C = 50A
36
RG = 5Ω
995
Turn-on Switching Energy
4
TJ = +25°C
5
Turn-on Delay Time
14
Current Rise Time
VCC = 400V
32
Turn-off Delay Time
VGE = 15V
270
I C = 50A
Current Fall Time
Turn-on Switching Energy
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
nC
ns
µJ
55
ns
95
1035
RG = 5Ω
44
Eon2
V
1070
Inductive Switching (125°C)
Eon1
pF
1110
6
UNIT
A
Current Rise Time
Current Fall Time
MAX
150
14
Turn-off Switching Energy
tf
2500
VCC = 400V
Eoff
td(off)
Capacitance
Inductive Switching (25°C)
Turn-on Switching Energy (Diode)
tr
TYP
Turn-on Delay Time
Eon2
td(on)
MIN
TJ = +125°C
µJ
1655
6
1505
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.28
RθJC
Junction to Case (DIODE)
.61
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6359 Rev B
11-2008
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
Microsemi Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT50GT60BRDL(G)
200
160
180
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
120
TJ = 25°C
100
TJ = -55°C
80
TJ = 125°C
60
40
10
10V
140
120
9V
100
80
8V
60
40
0
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
7V
250µs PULSE
TEST<0.5 % DUTY
CYCLE
140
TJ = -55°C
120
100
80
60
TJ = 25°C
40
TJ = 125°C
20
0
6V
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
160
IC, COLLECTOR CURRENT (A)
11V
160
20
0
0
15V 13V
= 15V
J
VCE = 120V
12
VCE = 300V
10
VCE = 480V
8
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 50A
C
T = 25°C
14
0
50
IC = 100A
3
IC = 50A
2
IC = 25A
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
3.5
2.5
IC = 50A
2.0
1.5
0.5
0
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
140
0.90
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
1.10
0.95
IC = 25A
1.0
160
1.00
IC = 100A
3.0
1.15
1.05
250
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
5
100
150
200
GATE CHARGE (nC)
0
120
100
80
Lead Temperature
Limited
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev B 11-2008
GE
052-6359
V
140
APT50GT60BRDL(G)
350
VGE = 15V
15
10
5 VCE = 400V
TJ = 25°C, or 125°C
0
tr, RISE TIME (ns)
td (OFF), TURN-OFF DELAY TIME (ns)
20
RG = 5Ω
L = 100µH
150
50 VCE = 400V
RG = 5Ω
L = 100µH
180
RG = 5Ω, L = 100µH, VCE = 400V
80
160
70
140
60
50
40
30
80
60
0
0
G
TJ = 125°C
3000
2000
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ = 25°C
V
= 400V
CE
V
= +15V
GE
R = 5Ω
3000
G
TJ = 125°C
2500
2000
1500
1000
TJ = 25°C
500
0
0
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
Eon2,100A
J
6,000
4,000 Eoff,100A
Eoff,50A
Eon2,50A
2,000
Eoff,25A
SWITCHING ENERGY LOSSES (µJ)
5,000
V
= 400V
CE
V
= +15V
GE
T = 125°C
8,000
0
TJ = 25°C, VGE = 15V
3500
V
= 400V
CE
V
= +15V
GE
R = 5Ω
10,000
TJ = 125°C, VGE = 15V
100
20
1000
RG = 5Ω, L = 100µH, VCE = 400V
120
10
4000
0
40
TJ = 25 or 125°C,VGE = 15V
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=25°C
200
90
5000
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=125°C
20
40
60
80
100
125
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
11-2008
250
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
20
052-6359 Rev B
300
0
0
tf, FALL TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
V
= 400V
CE
V
= +15V
GE
R = 5Ω
G
Eoff,100A
3,000
2,000
Eon2,50A
Eoff,50A
1,000
Eon2,25A
Eon2,25A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
Eon2,100A
4,000
0
Eoff,25A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
APT50GT60BRDL(G)
160
4,000
1,000
500
140
120
100
80
60
40
Coes
20
Cres
100
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.25
0.20
0.7
0.15
0.5
0.10
0.3
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
SINGLE PULSE
0.05
t1
t2
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
0
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.0057
0.113
0.0276
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
10
2
T = 125°C
J
T = 75°C
C
D = 50 %
= 400V
V
CE
R = 5Ω
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
G
10 20
30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Rev B 11-2008
0.114
Power
(watts)
50
052-6359
RC MODEL
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
120
APT50GT60BRDL(G)
Gate Voltage
10%
APT50DL60
TJ = 125°C
td(on)
tr
IC
V CC
Collector Current
90%
V CE
5%
10%
5%
Collector Voltage
A
D.U.T.
Switching Energy
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
90%
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
052-6359 Rev B
11-2008
Figure 23, Turn-off Switching Waveforms and Definitions
TYPICAL PERFORMANCE CURVES
APT50GT60BRDL(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Characteristic / Test Conditions
IF
(AV)
APT50GT60BRDL(G)
Maximum Average Forward Current (TC = 100°C, Duty Cycle = 0.5)
IF
(RMS)
IFSM
UNIT
50
RMS Forward Current (Square wave, 50% duty)
150
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
320
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
MIN
Forward Voltage
VF
TYP
MAX
IF = 50A
1.25
1.6
IF = 100A
2.0
IF = 50A, TJ = 125°C
UNIT
Volts
1.25
DYNAMIC CHARACTERISTICS
Characteristic
Symbol
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
52
trr
Reverse Recovery Time
-
399
Qrr
Reverse Recovery Charge
-
1498
-
9
-
649
ns
-
3734
nC
-
13
-
284
ns
-
5134
nC
-
34
Amps
IRRM
IF = 50A, diF/dt = -200A/µs
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
IF = 50A, diF/dt = -200A/µs
Reverse Recovery Charge
IRRM
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
IF = 50A, diF/dt = -1000A/µs
Reverse Recovery Charge
IRRM
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
0.6
0.5
0.3
Note:
0.2
PDM
0.4
t1
t2
0.1
0
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-5
10-4
10-3
10-2
10-1
1.0
TC (°C)
0.316
Dissipated Power
(Watts)
0.0046
0.312
0.1483
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL
052-6359
TJ (°C)
Rev B 11-2008
RECTANGULAR PULSE DURATION (seconds)
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
0.7
APT50GT60BRDL(G)
TYPICAL PERFORMANCE CURVES
700
120
TJ= 125°C
trr, COLLECTOR CURRENT (A)
IF, FORWARD CURRENT (A)
100
TJ= 55°C
80
TJ= 25°C
60
40
20
0
0.5
1.0
1.5
2.0
2.5
3.0
VF, ANODE-TO-CATHODE VOLTAGE (V)
FIGURE 2, Forward Current vs. Forward Voltage
100A
R
7000
6000
50A
5000
25A
4000
3000
2000
1000
0
0.8
CJ, JUNCTION CAPACITANCE (pF)
11-2008
40
T = 125°C
J
V = 400V
R
50A
100A
35
30
25A
25
20
15
10
5
0
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 5, Reverse Recovery Current vs. Current Rate of Change
70
50
40
30
20
10
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 6, Dynamic Parameters vs Junction Temperature
500
052-6359 Rev B
100
IRRM
0.2
0
200
60
0.4
25A
300
tRR
QRR
0.6
50A
400
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 3, Reverse Recovery Time vs. Current Rate of Change
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/μs)
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change
1.2
1.0
500
45
T = 125°C
J
V = 400V
R
600
0
IRRM, REVERSE RECOVERY CURRENT
(A)
Qrr, REVERSE RECOVERY CHARGE
(nC)
0
8000
T = 125°C
J
V = 400V
100A
TJ= 150°C
450
400
350
300
250
200
150
100
50
0
0
10
100
400
VR, REVERSE VOLTAGE (V)
FIGURE 8, Junction Capacitance vs. Reverse Voltage
0
Duty cycle = 0.5
TJ = 126°C
25
50
75
100
125
150
175
Case Temperature (°C)
FIGURE 7, Maximum Average Forward Current vs. Case Temperature
Vr
TYPICAL PERFORMANCE CURVES
APT50GT60BRDL(G)
diF /dt Adjust
+18V
0V
D.U.T.
trr/Qrr
Waveform
CURRENT
TRANSFORMER
Figure 9. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
1
4
6
Zero
5
5
Qrr - Area Under the Curve Defined by IRRM and trr.
6
diM/dt - Maximum Rate of Current Increase During the Trailing Portion of trr.
3
2
0.25 IRRM
Slope = diM/dt
Figure 10, Diode Reverse Recovery Waveform and Definitions
TO-247 (B) Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
(Cathode)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector (Cathode)
Emitter (Anode)
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
Rev B 11-2008
19.81 (.780)
20.32 (.800)
052-6359
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)