TYPICAL PERFORMANCE CURVES APT50GT60BRDL(G) 600V APT50GT60BRDL(G) *G Denotes RoHS Compliant, Pb Free Terminal Finish. Resonant Mode Combi IGBT® The Thunderbolt IGBT® used in this Resonant Mode Combi is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. TO -24 7 Typical Applications Features • Low Conduction Loss • Low Gate Charge • SSOA Rated • Induction Heating • RoHS Compliant • Welding G • Ultrafast Tail Current shutoff • Medical • Low forward Diode Voltage (VF) • High Power Telecom • Ultrasoft Recovery Diode • Resonant Mode Phase Shifted Bridge MAXIMUM RATINGS Symbol C C G E All Ratings: TC = 25°C unless otherwise specified. Parameter APT50GT60BRDL(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM SSOA PD TJ,TSTG TL Pulsed Collector Current E 1 7 @ TC = 25°C UNIT Volts 110 52 @ TC = 150°C Amps 150 Switching Safe Operating Area @ TJ = 150°C 150A @ 600V Total Power Dissipation Watts 446 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS MIN V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) (VCE = VGE, I C = 1mA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C) I CES Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) I GES TYP MAX 3 4 5 1.7 2.0 2.5 Gate-Emitter Leakage Current (VGE = ±20V) µA 1250 120 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Volts 2.2 50 2 Units nA Rev B 11-2008 Characteristic / Test Conditions 052-6359 Symbol DYNAMIC CHARACTERISTICS Symbol APT50GT60BRDL(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Qge Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 VGE = 0V, VCE = 25V 250 f = 1 MHz 155 Gate Charge 7.5 VGE = 15V 240 VCE = 300V 20 I C = 50A 110 TJ = 150°C, R G = 5Ω, VGE = 15V, L = 100µH,VCE = 600V 32 Turn-off Delay Time VGE = 15V 240 I C = 50A 36 RG = 5Ω 995 Turn-on Switching Energy 4 TJ = +25°C 5 Turn-on Delay Time 14 Current Rise Time VCC = 400V 32 Turn-off Delay Time VGE = 15V 270 I C = 50A Current Fall Time Turn-on Switching Energy Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy nC ns µJ 55 ns 95 1035 RG = 5Ω 44 Eon2 V 1070 Inductive Switching (125°C) Eon1 pF 1110 6 UNIT A Current Rise Time Current Fall Time MAX 150 14 Turn-off Switching Energy tf 2500 VCC = 400V Eoff td(off) Capacitance Inductive Switching (25°C) Turn-on Switching Energy (Diode) tr TYP Turn-on Delay Time Eon2 td(on) MIN TJ = +125°C µJ 1655 6 1505 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .28 RθJC Junction to Case (DIODE) .61 WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 052-6359 Rev B 11-2008 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Continuous current limited by package lead temperature. Microsemi Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT50GT60BRDL(G) 200 160 180 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 120 TJ = 25°C 100 TJ = -55°C 80 TJ = 125°C 60 40 10 10V 140 120 9V 100 80 8V 60 40 0 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 7V 250µs PULSE TEST<0.5 % DUTY CYCLE 140 TJ = -55°C 120 100 80 60 TJ = 25°C 40 TJ = 125°C 20 0 6V 0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 160 IC, COLLECTOR CURRENT (A) 11V 160 20 0 0 15V 13V = 15V J VCE = 120V 12 VCE = 300V 10 VCE = 480V 8 6 4 2 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 50A C T = 25°C 14 0 50 IC = 100A 3 IC = 50A 2 IC = 25A 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 3.5 2.5 IC = 50A 2.0 1.5 0.5 0 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 140 0.90 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 1.10 0.95 IC = 25A 1.0 160 1.00 IC = 100A 3.0 1.15 1.05 250 FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 100 150 200 GATE CHARGE (nC) 0 120 100 80 Lead Temperature Limited 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev B 11-2008 GE 052-6359 V 140 APT50GT60BRDL(G) 350 VGE = 15V 15 10 5 VCE = 400V TJ = 25°C, or 125°C 0 tr, RISE TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns) 20 RG = 5Ω L = 100µH 150 50 VCE = 400V RG = 5Ω L = 100µH 180 RG = 5Ω, L = 100µH, VCE = 400V 80 160 70 140 60 50 40 30 80 60 0 0 G TJ = 125°C 3000 2000 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 25°C V = 400V CE V = +15V GE R = 5Ω 3000 G TJ = 125°C 2500 2000 1500 1000 TJ = 25°C 500 0 0 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current Eon2,100A J 6,000 4,000 Eoff,100A Eoff,50A Eon2,50A 2,000 Eoff,25A SWITCHING ENERGY LOSSES (µJ) 5,000 V = 400V CE V = +15V GE T = 125°C 8,000 0 TJ = 25°C, VGE = 15V 3500 V = 400V CE V = +15V GE R = 5Ω 10,000 TJ = 125°C, VGE = 15V 100 20 1000 RG = 5Ω, L = 100µH, VCE = 400V 120 10 4000 0 40 TJ = 25 or 125°C,VGE = 15V EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) VGE =15V,TJ=25°C 200 90 5000 SWITCHING ENERGY LOSSES (µJ) VGE =15V,TJ=125°C 20 40 60 80 100 125 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 11-2008 250 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 20 052-6359 Rev B 300 0 0 tf, FALL TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 V = 400V CE V = +15V GE R = 5Ω G Eoff,100A 3,000 2,000 Eon2,50A Eoff,50A 1,000 Eon2,25A Eon2,25A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance Eon2,100A 4,000 0 Eoff,25A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) Cies P C, CAPACITANCE ( F) APT50GT60BRDL(G) 160 4,000 1,000 500 140 120 100 80 60 40 Coes 20 Cres 100 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.25 0.20 0.7 0.15 0.5 0.10 0.3 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 SINGLE PULSE 0.05 t1 t2 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 0 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.0057 0.113 0.0276 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf 10 2 T = 125°C J T = 75°C C D = 50 % = 400V V CE R = 5Ω f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC G 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Rev B 11-2008 0.114 Power (watts) 50 052-6359 RC MODEL Junction temp. (°C) FMAX, OPERATING FREQUENCY (kHz) 120 APT50GT60BRDL(G) Gate Voltage 10% APT50DL60 TJ = 125°C td(on) tr IC V CC Collector Current 90% V CE 5% 10% 5% Collector Voltage A D.U.T. Switching Energy Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) 90% Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6359 Rev B 11-2008 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT50GT60BRDL(G) ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Characteristic / Test Conditions IF (AV) APT50GT60BRDL(G) Maximum Average Forward Current (TC = 100°C, Duty Cycle = 0.5) IF (RMS) IFSM UNIT 50 RMS Forward Current (Square wave, 50% duty) 150 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) 320 Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions MIN Forward Voltage VF TYP MAX IF = 50A 1.25 1.6 IF = 100A 2.0 IF = 50A, TJ = 125°C UNIT Volts 1.25 DYNAMIC CHARACTERISTICS Characteristic Symbol Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 52 trr Reverse Recovery Time - 399 Qrr Reverse Recovery Charge - 1498 - 9 - 649 ns - 3734 nC - 13 - 284 ns - 5134 nC - 34 Amps IRRM IF = 50A, diF/dt = -200A/µs VR = 400V, TC = 25°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr IF = 50A, diF/dt = -200A/µs Reverse Recovery Charge IRRM VR = 400V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr IF = 50A, diF/dt = -1000A/µs Reverse Recovery Charge IRRM VR = 400V, TC = 125°C Maximum Reverse Recovery Current ns nC - - Amps Amps 0.6 0.5 0.3 Note: 0.2 PDM 0.4 t1 t2 0.1 0 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-5 10-4 10-3 10-2 10-1 1.0 TC (°C) 0.316 Dissipated Power (Watts) 0.0046 0.312 0.1483 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL 052-6359 TJ (°C) Rev B 11-2008 RECTANGULAR PULSE DURATION (seconds) FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION ZEXT ZθJC, THERMAL IMPEDANCE (°C/W) 0.7 APT50GT60BRDL(G) TYPICAL PERFORMANCE CURVES 700 120 TJ= 125°C trr, COLLECTOR CURRENT (A) IF, FORWARD CURRENT (A) 100 TJ= 55°C 80 TJ= 25°C 60 40 20 0 0.5 1.0 1.5 2.0 2.5 3.0 VF, ANODE-TO-CATHODE VOLTAGE (V) FIGURE 2, Forward Current vs. Forward Voltage 100A R 7000 6000 50A 5000 25A 4000 3000 2000 1000 0 0.8 CJ, JUNCTION CAPACITANCE (pF) 11-2008 40 T = 125°C J V = 400V R 50A 100A 35 30 25A 25 20 15 10 5 0 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 5, Reverse Recovery Current vs. Current Rate of Change 70 50 40 30 20 10 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 6, Dynamic Parameters vs Junction Temperature 500 052-6359 Rev B 100 IRRM 0.2 0 200 60 0.4 25A 300 tRR QRR 0.6 50A 400 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 3, Reverse Recovery Time vs. Current Rate of Change IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/μs) 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change 1.2 1.0 500 45 T = 125°C J V = 400V R 600 0 IRRM, REVERSE RECOVERY CURRENT (A) Qrr, REVERSE RECOVERY CHARGE (nC) 0 8000 T = 125°C J V = 400V 100A TJ= 150°C 450 400 350 300 250 200 150 100 50 0 0 10 100 400 VR, REVERSE VOLTAGE (V) FIGURE 8, Junction Capacitance vs. Reverse Voltage 0 Duty cycle = 0.5 TJ = 126°C 25 50 75 100 125 150 175 Case Temperature (°C) FIGURE 7, Maximum Average Forward Current vs. Case Temperature Vr TYPICAL PERFORMANCE CURVES APT50GT60BRDL(G) diF /dt Adjust +18V 0V D.U.T. trr/Qrr Waveform CURRENT TRANSFORMER Figure 9. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 1 4 6 Zero 5 5 Qrr - Area Under the Curve Defined by IRRM and trr. 6 diM/dt - Maximum Rate of Current Increase During the Trailing Portion of trr. 3 2 0.25 IRRM Slope = diM/dt Figure 10, Diode Reverse Recovery Waveform and Definitions TO-247 (B) Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector (Cathode) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) Emitter (Anode) 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. Rev B 11-2008 19.81 (.780) 20.32 (.800) 052-6359 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123)