VRF154FL VRF154FLMP 50V, 600W, 80MHz RF POWER VERTICAL MOSFET D The VRF154FL is a gold-metallized silicon n-channel RF power transistor designed for broadband commercial and military applications requiring high power and gain without compromising reliability, ruggedness, or intermodulation distortion. S S G FEATURES • Improved Ruggedness V(BR)DSS = 170V • Nitride Passivated • Designed for 2 - 100MHz Operation • Economical Flangeless Package • 600W with 17dB Typical Gain @ 30MHz, 50V • Refractory Gold Metallization • Excellent Stability & Low IMD • High Voltage Replacement for MRF154 • Common Source Configuration • RoHS Compliant • Available in Matched Pairs Maximum Ratings Symbol VDSS ID All Ratings: TC =25°C unless otherwise specified Parameter Drain-Source Voltage VRF154FL(MP) Unit 170 V Continuous Drain Current @ TC = 25°C 60 A VGS Gate-Source Voltage ±40 V PD Total Device dissipation @ TC = 25°C 1350 W TSTG TJ Storage Temperature Range -65 to 150 Operating Junction Temperature Max °C 200 Static Electrical Characteristics Symbol Parameter Min Typ V(BR)DSS Drain-Source Breakdown Voltage (VGS = 0V, ID = 100mA) 170 180 VDS(ON) On State Drain Voltage (ID(ON) = 40A, VGS = 10V) 3.0 Max 5.0 Unit V IDSS Zero Gate Voltage Drain Current (VDS = 100V, VGS = 0V) 4.0 mA IGSS Gate-Source Leakage Current (VDS = ±20V, VDS = 0V) 4.0 μA gfs Forward Transconductance (VDS = 10V, ID = 40A) 16 VGS(TH) Gate Threshold Voltage (VDS = 10V, ID = 100mA) 2.9 3.6 4.4 V Min Typ Max Unit 0.13 °C/W mhos Symbol RθJC RθJHS Characteristic Junction to Case Thermal Resistance Junction to Sink Thermal Resistance (Use High Efficiency Thermal Joint Compound and Planar Heat Sink Surface.) 0.22 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com 050-4939 Rev F 9-2010 Thermal Characteristics Dynamic Characteristics Symbol VRF154FL(MP) Parameter Test Conditions Min Typ Max CISS Input Capacitance VGS = 0V 1750 Coss Output Capacitance VDS = 50V 775 Crss Reverse Transfer Capacitance f = 1MHz 135 Unit pF Functional Characteristics Symbol Parameter Min Typ Max Unit GPS f = 30MHz, VDD = 50V, IDQ = 800mA, Pout = 600W 17 dB ηD f = 30MHz, VDD = 50V, IDQ = 800mA, Pout = 600WPEP 45 % -25 dBc f1 = 30MHz, f2 = 30.001MHz, VDD = 50V, IDQ = 800mA, Pout = 600WPEP IMD(d3) 1 1. To MIL-STD-1311 Version A, test method 2204B, Two Tone, Reference Each Tone Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves 140 160 14V 140 100 11V ID, DRAIN CURRENT (A) 100 9.0V 80 8.0V 60 7.0V 40 6.0V 20 5.0V VGS = 4.0V 0 5 10 15 20 25 20 0 2 4 6 8 10 VGS, GATE-TO-SOURCE VOLTAGE (V) FIGURE 2, Transfer Characteristics , DRAIN-TO-SOURCE VOLTAGE (V) FIGURE 1, Output Characteristics DS(ON) 100 ID, DRAIN CURRENT (V) C, CAPACITANCE (F) 050-4939 Rev F 9-2010 TJ= 125°C 40 30 1.0E−8 Ciss 1.0E−9 Coss Crss 1.0E−10 60 0 0 TJ= 25°C 80 0 25 50 75 100 VDS, DRAIN-TO-SOURCE VOLTAGE (V) FIGURE 3, Capacitance vs Drain-to-Source Voltage BVdss Line ID, DRAIN CURRENT (A) 120 TJ= -55°C 120 V 250μs PULSE TEST<0.5 % DUTY CYCLE IDMax 10 Rds(on) PD Max 1 TJ = 125°C TC = 75°C 1 10 100 800 VDS, DRAIN-TO-SOURCE VOLTAGE (V) FIGURE 4, Forward Safe Operating Area VRF154FL(MP) Typical Performance Curves D = 0.9 0.12 0.10 0.7 0.08 0.5 Note: 0.06 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.14 0.3 0.04 t1 t2 0.02 t1 = Pulse Duration t 0.1 0.05 SINGLE PULSE 0 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-4 10-3 0.1 10-2 1 10 RECTANGULAR PULSE DURATION (seconds) Figure 5. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration 1200 1200 Freq=30MHz Freq=65MHz 50V 1000 OUTPUT POWER (WPEP) VDS = 40V 800 600 400 VDS = 40V 800 600 400 200 200 0 5 10 15 Pout, INPUT POWER (WATTS PEP) Figure 6. POUT versus PIN 20 0 0 10 20 30 40 50 60 70 Pout, INPUT POWER (WATTS PEP) Figure 7. POUT versus PIN 80 050-4939 Rev F 9-2009 OUTPUT POWER (WPEP) 1000 0 50V VRF154FL(MP) 30MHz Test Circuit Vbias 50V R1 L6 L3 C12 R2 C10 C14 C11 C16 C15 R3 L4 L1 C1 Output L5 L2 C2 C9 C13 C4 C6 C5 C7 C8 C3 RF Input C1, C2, C6, C7 ARCO 465 mica trimmer C3 1800pF ATC700B ceramic C4 680pF metal clad 500V mica C5 390pF metal clad 500V mica C8 100pF ATC 700E ceramic C9 120pF ATC 700E ceramic C10 - C13 .01uF 100V ceramic SMT C14 - C16 .1uF 100V ceramic SMT 2-50MHz 1kW Wideband Amplifier BIAS - R13 D2 30 - 40 V + R9 C5 C2 R4 INPUT R11 IC1 R12 R7 C1 T1 R3 XTR XTR OUTPUT C6 C7 C9 T2 D3 R10 R2 C3 D.U.T. R14 C11 R8 050-4939 Rev F 9-2009 TEMP. TRACKING C1 - 1000pF Ceramic C2, C3, C4, C8, C9, C10, C11 -0.1μF Ceramic C5 - 10μF / 100 V Electrolytic C6, C7 - 0.1μF Ceramic, (ATC 200/823 or Equivalent) D1 - 28V Zener, 1N5362 or Equivalent D3 - 1N4148 IC1 - MC1723 L1, L2 - Fair-Rite Products Corp. Ferrite Beads #2673000801 R1, R2, R3 - 10k Trimpot R4 - 1.0 k /1.0W R5 - 10 Ohms R6 - 2.0k + + 40 V - C4 C8 R6 L2 D.U.T. R1 R5 D1 L1 C10 R7 - 10k R8 - Thermistor, 10k (25°C), 2.5k (75°C) R9, R10 - 100 Ohms R11, R12 - 1.0k R13, R14 - 50Ω, 2 x 100Ω 2W Carbon in Parallel T1 - 9:1 Transformer, Trifilar and Balun Wound on Separate Fair-Rite Products Corp. Balun Cores #286100012, 5 Turns Each. T2 - 1:9 Transformer Balun 50 Ohm CO-AX Cable RG-188,Low Impedance Lines W.L. Gore 16 Ohms CO-AX Type CXN 1837. Each Winding Threaded Through Two Fair-Rite Products Corp. #2661540001 Ferrite Sleeves (6 Each). XTR - VRF154 VRF154FL(MP) Adding MP at the end of P/N specifies a matched pair where VGS(TH) is matched between the two parts. VTH values are marked on the devices per the following table. Code Vth Range Code 2 Vth Range A 2.900 - 2.975 M 3.650 - 3.725 B 2.975 - 3.050 N 3.725 - 3.800 C 3.050 - 3.125 P 3.800 - 3.875 D 3.125 - 3.200 R 3.875 - 3.950 E 3.200 - 3.275 S 3.950 - 4.025 F 3.275 - 3.350 T 4.025 - 4.100 G 3.350 - 3.425 W 4.100 - 4.175 H 3.425 - 3.500 X 4.175 - 4.250 J 3.500 - 3.575 Y 4.250 - 4.325 K 3.575 - 3.650 Z 4.325 - 4.400 VTH values are based on Microsemi measurements at datasheet conditions with an accuracy of 1.0%. Thermal Considerations Mounting: and Package D .466 The rated 1350W power dissipation is only available when the package mounting surface is at 25°C and the junction temperature is 200 °C. The thermal resistance between junctions and case mounting surface is 0.13°C/W. When installed, an additional thermal impedance of 0.09°C/W between the package base and the mounting surface is smooth and flat. Thermal joint compound must be used to reduce the effects of small surface irregularities. The heatsink should incorporate a copper heat spreader to obtain best results. The lid maintains the required mounting pressure while allowing for thermal expansion of both the device and the heat sink. Four 6-32 (M3.5) screws provide the minimum 125 lb. required mounting force. T=4-6 in-lb. Please refer to App Note 1802 "Mounting Instructions for Flangeless Packages." .250 G .500 .150r S .750 .250 1.000 .125d .500 2 3 1.250 1.500 HAZARDOUS MATERIAL WARNING 1 4 .300 .200 050-4939 Rev F 9-2010 .005 .040 The ceramic portion of the device between leads and mounting flange is beryllium oxide. Beryllium oxide dust is highly toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area. These devices must never be thrown away with general industrial or domestic waste. PIN 1 - DRAIN PIN 2 - SOURCE PIN 3 - SOURCE PIN 4 - GATE Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.