MICROSEMI VRF154FL_10

VRF154FL
VRF154FLMP
50V, 600W, 80MHz
RF POWER VERTICAL MOSFET
D
The VRF154FL is a gold-metallized silicon n-channel RF power transistor designed for broadband commercial and military applications requiring
high power and gain without compromising reliability, ruggedness, or intermodulation distortion.
S
S
G
FEATURES
• Improved Ruggedness V(BR)DSS = 170V
• Nitride Passivated
• Designed for 2 - 100MHz Operation
• Economical Flangeless Package
• 600W with 17dB Typical Gain @ 30MHz, 50V
• Refractory Gold Metallization
• Excellent Stability & Low IMD
• High Voltage Replacement for MRF154
• Common Source Configuration
• RoHS Compliant
• Available in Matched Pairs
Maximum Ratings
Symbol
VDSS
ID
All Ratings: TC =25°C unless otherwise specified
Parameter
Drain-Source Voltage
VRF154FL(MP)
Unit
170
V
Continuous Drain Current @ TC = 25°C
60
A
VGS
Gate-Source Voltage
±40
V
PD
Total Device dissipation @ TC = 25°C
1350
W
TSTG
TJ
Storage Temperature Range
-65 to 150
Operating Junction Temperature Max
°C
200
Static Electrical Characteristics
Symbol
Parameter
Min
Typ
V(BR)DSS
Drain-Source Breakdown Voltage (VGS = 0V, ID = 100mA)
170
180
VDS(ON)
On State Drain Voltage (ID(ON) = 40A, VGS = 10V)
3.0
Max
5.0
Unit
V
IDSS
Zero Gate Voltage Drain Current (VDS = 100V, VGS = 0V)
4.0
mA
IGSS
Gate-Source Leakage Current (VDS = ±20V, VDS = 0V)
4.0
μA
gfs
Forward Transconductance (VDS = 10V, ID = 40A)
16
VGS(TH)
Gate Threshold Voltage (VDS = 10V, ID = 100mA)
2.9
3.6
4.4
V
Min
Typ
Max
Unit
0.13
°C/W
mhos
Symbol
RθJC
RθJHS
Characteristic
Junction to Case Thermal Resistance
Junction to Sink Thermal Resistance (Use High Efficiency Thermal Joint Compound and Planar Heat Sink
Surface.)
0.22
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
050-4939 Rev F 9-2010
Thermal Characteristics
Dynamic Characteristics
Symbol
VRF154FL(MP)
Parameter
Test Conditions
Min
Typ
Max
CISS
Input Capacitance
VGS = 0V
1750
Coss
Output Capacitance
VDS = 50V
775
Crss
Reverse Transfer Capacitance
f = 1MHz
135
Unit
pF
Functional Characteristics
Symbol
Parameter
Min
Typ
Max
Unit
GPS
f = 30MHz, VDD = 50V, IDQ = 800mA, Pout = 600W
17
dB
ηD
f = 30MHz, VDD = 50V, IDQ = 800mA, Pout = 600WPEP
45
%
-25
dBc
f1 = 30MHz, f2 = 30.001MHz, VDD = 50V, IDQ = 800mA, Pout = 600WPEP
IMD(d3)
1
1. To MIL-STD-1311 Version A, test method 2204B, Two Tone, Reference Each Tone
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
140
160
14V
140
100
11V
ID, DRAIN CURRENT (A)
100
9.0V
80
8.0V
60
7.0V
40
6.0V
20
5.0V
VGS = 4.0V
0
5
10
15
20
25
20
0
2
4
6
8
10
VGS, GATE-TO-SOURCE VOLTAGE (V)
FIGURE 2, Transfer Characteristics
, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 1, Output Characteristics
DS(ON)
100
ID, DRAIN CURRENT (V)
C, CAPACITANCE (F)
050-4939 Rev F 9-2010
TJ= 125°C
40
30
1.0E−8
Ciss
1.0E−9
Coss
Crss
1.0E−10
60
0
0
TJ= 25°C
80
0
25
50
75
100
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 3, Capacitance vs Drain-to-Source Voltage
BVdss Line
ID, DRAIN CURRENT (A)
120
TJ= -55°C
120
V
250μs PULSE
TEST<0.5 % DUTY
CYCLE
IDMax
10
Rds(on)
PD Max
1
TJ = 125°C
TC = 75°C
1
10
100
800
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 4, Forward Safe Operating Area
VRF154FL(MP)
Typical Performance Curves
D = 0.9
0.12
0.10
0.7
0.08
0.5
Note:
0.06
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.14
0.3
0.04
t1
t2
0.02
t1 = Pulse Duration
t
0.1
0.05
SINGLE PULSE
0
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-4
10-3
0.1
10-2
1
10
RECTANGULAR PULSE DURATION (seconds)
Figure 5. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
1200
1200
Freq=30MHz
Freq=65MHz
50V
1000
OUTPUT POWER (WPEP)
VDS = 40V
800
600
400
VDS = 40V
800
600
400
200
200
0
5
10
15
Pout, INPUT POWER (WATTS PEP)
Figure 6. POUT versus PIN
20
0
0
10
20 30
40 50 60 70
Pout, INPUT POWER (WATTS PEP)
Figure 7. POUT versus PIN
80
050-4939 Rev F 9-2009
OUTPUT POWER (WPEP)
1000
0
50V
VRF154FL(MP)
30MHz Test Circuit
Vbias
50V
R1
L6
L3
C12
R2
C10
C14
C11
C16
C15
R3
L4
L1
C1
Output
L5
L2
C2
C9
C13
C4
C6
C5
C7
C8
C3
RF
Input
C1, C2, C6, C7 ARCO 465 mica trimmer
C3 1800pF ATC700B ceramic
C4 680pF metal clad 500V mica
C5 390pF metal clad 500V mica
C8 100pF ATC 700E ceramic
C9 120pF ATC 700E ceramic
C10 - C13 .01uF 100V ceramic SMT
C14 - C16 .1uF 100V ceramic SMT
2-50MHz 1kW Wideband Amplifier
BIAS
-
R13
D2
30 - 40 V
+
R9
C5
C2
R4
INPUT
R11
IC1
R12
R7
C1
T1
R3
XTR
XTR
OUTPUT
C6
C7
C9
T2
D3
R10
R2
C3
D.U.T.
R14
C11
R8
050-4939 Rev F 9-2009
TEMP. TRACKING
C1 - 1000pF Ceramic
C2, C3, C4, C8, C9, C10, C11 -0.1μF Ceramic
C5 - 10μF / 100 V Electrolytic
C6, C7 - 0.1μF Ceramic, (ATC 200/823 or Equivalent)
D1 - 28V Zener, 1N5362 or Equivalent
D3 - 1N4148
IC1 - MC1723
L1, L2 - Fair-Rite Products Corp. Ferrite Beads
#2673000801
R1, R2, R3 - 10k Trimpot
R4 - 1.0 k /1.0W
R5 - 10 Ohms
R6 - 2.0k
+
+
40 V
-
C4
C8
R6
L2
D.U.T.
R1
R5
D1
L1
C10
R7 - 10k
R8 - Thermistor, 10k (25°C), 2.5k (75°C)
R9, R10 - 100 Ohms
R11, R12 - 1.0k
R13, R14 - 50Ω, 2 x 100Ω 2W Carbon in Parallel
T1 - 9:1 Transformer, Trifilar and Balun Wound on
Separate Fair-Rite Products Corp. Balun Cores
#286100012, 5 Turns Each.
T2 - 1:9 Transformer Balun 50 Ohm CO-AX Cable
RG-188,Low Impedance Lines W.L. Gore
16 Ohms CO-AX Type CXN 1837. Each Winding
Threaded Through Two Fair-Rite Products Corp.
#2661540001 Ferrite Sleeves (6 Each).
XTR - VRF154
VRF154FL(MP)
Adding MP at the end of P/N specifies a matched pair where VGS(TH) is matched between the two parts. VTH values
are marked on the devices per the following table.
Code
Vth Range
Code 2
Vth Range
A
2.900 - 2.975
M
3.650 - 3.725
B
2.975 - 3.050
N
3.725 - 3.800
C
3.050 - 3.125
P
3.800 - 3.875
D
3.125 - 3.200
R
3.875 - 3.950
E
3.200 - 3.275
S
3.950 - 4.025
F
3.275 - 3.350
T
4.025 - 4.100
G
3.350 - 3.425
W
4.100 - 4.175
H
3.425 - 3.500
X
4.175 - 4.250
J
3.500 - 3.575
Y
4.250 - 4.325
K
3.575 - 3.650
Z
4.325 - 4.400
VTH values are based on Microsemi measurements at datasheet conditions with an accuracy of 1.0%.
Thermal Considerations
Mounting:
and
Package
D
.466
The rated 1350W power dissipation is only available
when the package mounting surface is at 25°C and
the junction temperature is 200 °C. The thermal resistance between junctions and case mounting surface
is 0.13°C/W. When installed, an additional thermal impedance of 0.09°C/W between the package base and
the mounting surface is smooth and flat. Thermal joint
compound must be used to reduce the effects of small
surface irregularities. The heatsink should incorporate
a copper heat spreader to obtain best results.
The lid
maintains the required mounting pressure while allowing for thermal expansion of both the device and
the heat sink. Four 6-32 (M3.5) screws provide the
minimum 125 lb. required mounting force. T=4-6 in-lb.
Please refer to App Note 1802 "Mounting Instructions
for Flangeless Packages."
.250
G
.500
.150r
S
.750
.250
1.000
.125d
.500
2
3
1.250
1.500
HAZARDOUS MATERIAL WARNING
1
4
.300
.200
050-4939 Rev F 9-2010
.005 .040
The ceramic portion of the device between leads and
mounting flange is beryllium oxide. Beryllium oxide dust
is highly toxic when inhaled. Care must be taken during
handling and mounting to avoid damage to this area.
These devices must never be thrown away with general
industrial or domestic waste.
PIN 1 - DRAIN
PIN 2 - SOURCE
PIN 3 - SOURCE
PIN 4 - GATE
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.