AGILENT ATF

Low Noise Pseudomorphic HEMT
in a Surface Mount Plastic Package
Technical Data
ATF-34143
Features
• Low Noise Figure
Surface Mount Package
SOT-343
Description
Agilent’s ATF-34143 is a high
dynamic range, low noise,
PHEMT housed in a 4-lead SC-70
(SOT-343) surface mount plastic
package.
• Excellent Uniformity in
Product Specifications
• Low Cost Surface Mount
Small Plastic Package
SOT-343 (4 lead SC-70)
• Tape-and-Reel Packaging
Option Available
Pin Connections and
Package Marking
1.9 GHz; 4 V, 60 mA (Typ.)
DRAIN
• 0.5 dB Noise Figure
• 17.5 dB Associated Gain
• 20 dBm Output Power at
1␣ dB Gain Compression
• 31.5 dBm Output 3rd Order
Intercept
SOURCE
4Px
Specifications
SOURCE
Based on its featured performance, ATF-34143 is suitable for
applications in cellular and PCS
base stations, LEO systems,
MMDS, and other systems requiring super low noise figure with
good intercept in the 450␣ MHz to
10 GHz frequency range.
GATE
Note: Top View. Package marking
provides orientation and identification.
“4P” = Device code
“x” = Date code character. A new
character is assigned for each month, year.
Applications
• Low Noise Amplifier for
Cellular/PCS Base Stations
• LNA for WLAN, WLL/RLL,
LEO, and MMDS
Applications
• General Purpose Discrete
PHEMT for Other Ultra Low
Noise Applications
1
88759/05-3.PM6.5J
Page 1
2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC
ATF-34143 Absolute Maximum Ratings[1]
Symbol
VDS
VGS
VGD
ID
Pdiss
Pin max
TCH
TSTG
θjc
Parameter
Drain - Source Voltage[2]
Gate - Source Voltage[2]
Gate Drain Voltage[2]
Drain Current[2]
Total Power Dissipation [4]
RF Input Power
Channel Temperature
Storage Temperature
Thermal Resistance [5]
Notes:
1. Operation of this device above any one
of these parameters may cause
permanent damage.
2. Assumes DC quiescent conditions.
3. VGS = 0 volts.
4. Source lead temperature is 25°C.
Derate 6␣ mW/ °C for TL > 40°C.
5. Thermal resistance measured using
150°C Liquid Crystal Measurement
method.
6. Under large signal conditions, VGS may
swing positive and the drain current
may exceed Idss. These conditions are
acceptable as long as the maximum
Pdiss and Pin max ratings are not
exceeded.
Absolute
Maximum
5.5
-5
-5
Idss [3]
725
17
160
-65 to 160
165
Units
V
V
V
mA
mW
dBm
°C
°C
°C/W
Product Consistency Distribution Charts [7]
250
120
+0.6 V
Cpk = 1.37245
Std = 0.66
9 Wafers
Sample Size = 450
100
200
IDS (mA)
80
150
-3 Std
0V
+3 Std
60
100
40
50
20
–0.6 V
0
0
2
4
VDS (V)
6
0
29
8
30
31
32
33
34
35
OIP3 (dBm)
Figure 1. Typical/Pulsed I-V Curves [6].
(VGS = -0.2 V per step)
120
Figure 2. OIP3 @ 2 GHz, 4 V, 60 mA.
LSL=29.0, Nominal=31.8, USL=35.0
Cpk = 2.69167
Std = 0.04
9 Wafers
Sample Size = 450
100
120
Cpk = 2.99973
Std = 0.15
9 Wafers
Sample Size = 450
100
80
80
-3 Std
-3 Std
+3 Std
60
60
40
40
20
20
0
0
0.2
0.4
0.6
0.8
0
16
Notes:
7. Distribution data sample size is 450
samples taken from 9 different wafers.
Future wafers allocated to this product
may have nominal values anywhere
within the upper and lower spec limits.
17
17.5
18
18.5
19
GAIN (dB)
NF (dB)
Figure 3. NF @ 2 GHz, 4 V, 60 mA.
LSL=0.1, Nominal=0.47, USL=0.8
16.5
+3 Std
Figure 4. Gain @ 2 GHz, 4 V, 60 mA.
LSL=16.0, Nominal=17.5, USL=19.0
8. Measurements made on production
test board. This circuit represents a
trade-off between an optimal noise
match and a realizeable match based
on production test requirements.
Circuit losses have been de-embedded
from actual measurements.
2
88759/05-3.PM6.5J
Page 2
2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC
ATF-34143 Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol
Idss [1]
VP [1]
Id
gm[1]
IGDO
Igss
NF
Ga
OIP3
P1dB
Parameters and Test Conditions
Saturated Drain Current
VDS = 1.5 V, VGS = 0 V
Pinchoff Voltage
VDS = 1.5 V, IDS = 10% of Idss
Quiescent Bias Current
VGS = 0.34 V, VDS = 4 V
Transconductance
VDS = 1.5 V, gm = Idss /VP
Gate to Drain Leakage Current
VGD = 5 V
Gate Leakage Current
VGD = VGS = -4 V
Noise Figure
f = 2 GHz VDS = 4 V, IDS = 60 mA
VDS = 4 V, IDS = 30 mA
f = 900 MHz VDS = 4 V, IDS = 60 mA
Associated Gain
f = 2 GHz VDS = 4 V, IDS = 60 mA
VDS = 4 V, IDS = 30 mA
f = 900 MHz VDS = 4 V, IDS = 60 mA
Output 3rd Order
f = 2 GHz VDS = 4 V, IDS = 60 mA
Intercept Point [3] +5 dBm Pout /Tone VDS = 4 V, IDS = 30 mA
f = 900 MHz VDS = 4 V, IDS = 60 mA
+5 dBm Pout /Tone
1 dB Compressed
f = 2 GHz VDS = 4 V, IDS = 60 mA
Intercept Point [3]
VDS = 4 V, IDS = 30 mA
f = 900 MHz VDS = 4 V, IDS = 60 mA
Units
mA
V
mA
mmho
µA
µA
dB
Min. Typ.[2]
90
118
-0.65
-0.5
—
60
180
230
—
dB
dB
16
dB
dBm
29
dBm
dBm
dBm
30
0.5
0.5
0.4
17.5
17
21.5
31.5
30
31
Max.
145
-0.35
—
—
500
300
0.8
19
20
19
18.5
Notes:
1. Guaranteed at wafer probe level
2. Typical value determined from a sample size of 450 parts from 9 wafers.
3. Using production test board.
Input
50 Ohm
Transmission
Line Including
Gate Bias T
(0.5 dB loss)
Input
Matching Circuit
Γ_mag = 0.30
Γ_ang = 56°
(0.4 dB loss)
50 Ohm
Transmission
Line Including
Drain Bias T
(0.5 dB loss)
DUT
Output
Figure 5. Block diagram of 2 GHz producution test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and associated impedance matching circuit
losses. Circuit losses have been de-embedded from actual measurements.
3
88759/05-3.PM6.5J
Page 3
2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC
ATF-34143 Typical Performance Curves
35
1
20
OIP3
25
20
15
P1dB
10
NOISE FIGURE (dB)
ASSOCIATED GAIN (dB)
OIP3, P 1dB (dBm)
30
15
10
5
20
40
60
80
0.4
3V
4V
3V
4V
0
0
0.6
0.2
3V
4V
5
0.8
0
0
100 120 140
0
20
IDSQ (mA)
40
60
80
100
0
120
20
Figure 6. OIP3 and P1dB vs. IDS and
VDS Tuned for NF @ 4V, 60 mA at
2GHz. [1,2]
60
80
100
120
Figure 8. Noise Figure vs. Current
(Id) and Voltage (V DS) at 2 GHz. [1,2]
Figure 7. Associated Gain vs. Current
(Id) and Voltage (V D) at 2 GHz. [1,2]
35
40
CURRENT (mA)
CURRENT (mA)
25
0.7
OIP3
25
20
15
P1dB
10
3V
4V
5
0
0.6
20
NOISE FIGURE (dB)
ASSOCIATED GAIN (dB)
OIP3, P 1dB (dBm)
30
15
10
5
3V
4V
20
40
60
80
100
20
0.2
3V
4V
40
60
80
100
120
0
20
40
60
80
100
120
CURRENT (mA)
CURRENT (mA)
Figure 10. Associated Gain vs. Current
(Id) and Voltage (V D) at 900 MHz. [1,2]
Figure 11. Noise Figure vs. Current
(Id) and Voltage (V DS) at 900 MHz. [1,2]
IDSQ (mA)
Figure 9. OIP3 and P1dB vs. IDS and
VDS Tuned for NF @ 4 V, 60 mA at
900MHz. [1,2]
0.3
0
0
120
0.4
0.1
0
0
0.5
25
1.2
1.0
Ga (dB)
Fmin (dB)
20
0.8
0.6
15
0.4
60 mA
40 mA
20 mA
0.2
0
0
2.0
4.0
6.0
FREQUENCY (GHz)
Figure 12. Fmin vs. Frequency and
Current at 4 V.
10
60 mA
40 mA
20 mA
5
0
1.0
2.0
3.0
4.0
5.0
6.0
FREQUENCY (GHz)
Figure 13. Associated Gain vs.
Frequency and Current at 4 V.
Notes:
1. Measurements made on a fixed toned production test board that was tuned for optimal gain match with reasonable noise figure at 4 V,
60 mA bias. This circuit represents a trade-off between optimal noise match, maximum gain match, and a realizable match based on
production test board requirements. Circuit losses have been de-embedded from actual measurements.
2. P1dB measurements are performed with passive biasing. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is
approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device
is running closer to class B as power output approaches P1dB. This results in higher PAE (power added efficiency) when compared to
a device that is driven by a constant current source as is typically done with active biasing. As an example, at a VDS = 4 V and
IDSQ␣ =␣ 10␣ mA, Id increases to 62 mA as a P1dB of +19 dBm is approached.
4
88759/05-3.PM6.5J
Page 4
2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC
ATF-34143 Typical Performance Curves, continued
33
35
1.0
Ga (dB)
NF (dB)
20
15
0.5
P1dB, OIP3 (dBm)
31
29
OIP3
27
85 °C
25 °C
-40 °C
25
23
P1dB
21
19
10
0
2000
4000
6000
0
8000
5.0
4.5
30
Gain
OP1dB
OIP3
NF
25
20
4.0
3.5
3.0
2.5
15
2.0
1.5
10
1.0
5
0.5
0
0
17
0
2000
4000
6000
8000
0
20
40
60
80
100 120 140
Figure 15. P1dB, IP3 vs. Frequency and
Temperature at V DS = 4 V, IDS = 60 mA. [1]
Figure 16. NF, Gain, OP1dB and OIP3
vs. IDS at 4 V and 3.9 GHz Tuned for
Noise Figure. [1]
5.0
27
4.5
24
4.0
21
3.5
Gain
OP1dB
OIP3
NF
18
15
3.0
2.5
12
2.0
9
1.5
6
1.0
3
0.5
0
0
0
20
40
60
80
100
120
IDSQ (mA)
Figure 17. NF, Gain, OP1dB and OIP3
vs. IDS at 4 V and 5.8 GHz Tuned for
Noise Figure. [1]
25
25
20
20
15
15
P1dB (dBm)
30
P1dB (dBm)
IDSQ (mA)
NOISE FIGURE (dB)
FREQUENCY (MHz)
GAIN (dB), OP1dB, and OIP3 (dBm)
FREQUENCY (GHz)
Figure 14. Fmin and Ga vs. Frequency
and Temperature at V DS = 4 V, IDS = 60 mA.
10
5
10
5
3V
4V
0
3V
4V
0
-5
-5
0
50
100
150
IDS (mA)
0
50
100
150
IDS (mA)
Figure 18. P1dB vs. IDS Active Bias
Tuned for NF @ 4 V, 60 mA at 2 GHz.
Figure 19. P1dB vs. IDS Active Bias
Tuned for min NF @ 4 V, 60 mA at
900MHz.
Note:
1. P1dB measurements are performed with passive biasing. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is
approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device
is running closer to class B as power output approaches P1dB. This results in higher PAE (power added efficiency) when compared to
a device that is driven by a constant current source as is typically done with active biasing. As an example, at a VDS = 4 V and
IDSQ␣ =␣ 10␣ mA, Id increases to 62 mA as a P1dB of +19 dBm is approached.
5
88759/05-3.PM6.5J
Page 5
2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC
NOISE FIGURE (dB)
1.5
85 °C
25 °C
-40 °C
GAIN (dB), OP1dB, and OIP3 (dBm)
25
ATF-34143 Power Parameters tuned for Power, VDS = 4 V, IDSQ = 120 mA
Freq
(GHz)
P1dB
(dBm)
Id
(mA)
G1dB
(dB)
PAE1dB
(%)
P3dBm
(dBm)
Id
(mA)
PAE3dB
(%)
Gamma
Out_mag
(Mag)
Gamma
Out_ang
(Degrees)
0.9
1.5
1.8
2
4
6
20.9
21.7
21.3
22.0
22.7
23.3
114
115
111
106
110
115
25.7
21.9
20.5
19.5
12.7
9.2
27
32
30
37
40
41
22.8
23.1
23.0
23.7
23.6
24.2
108
95
105
115
111
121
44
53
47
50
47
44
0.34
0.31
0.30
0.28
0.26
0.24
136
152
164
171
-135
-66
ATF-34143 Power Parameters tuned for Power, VDS = 4 V, IDSQ = 60 mA
Freq
(GHz)
P1dB
(dBm)
Id
(mA)
G1dB
(dB)
PAE1dB
(%)
P3dBm
(dBm)
Id
(mA)
PAE3dB
(%)
Gamma
Out_mag
(Mag)
Gamma
Out_ang
(Degrees)
0.9
1.5
1.8
2
4
6
18.2
18.7
18.8
18.8
20.2
21.2
75
58
57
59
66
79
27.5
24.5
23.0
22.2
13.9
9.9
22
32
33
32
38
37
20.5
20.8
21.1
21.9
22.0
23.5
78
59
71
81
77
102
36
51
45
47
48
46
0.48
0.45
0.42
0.40
0.25
0.18
102
117
126
131
-162
-77
80
80
50
Pout (dBm), G (dB),
PAE (%)
Pout (dBm), G (dB),
PAE (%)
60
40
30
20
10
Pout
Gain
PAE
0
-10
-30
-20
-10
0
10
40
20
Pout
Gain
PAE
0
20
-20
-30
-20
Figure 20. Swept Power Tuned for
Power at 2 GHz, VDS = 4 V, I DSQ = 120 mA.
-10
0
10
20
Pin (dBm)
Pin (dBm)
Figure 21. Swept Power Tuned for
Power at 2 GHz, VDS = 4 V, I DSQ = 60 mA.
Notes:
1. P1dB measurements are performed with passive biasing. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is
approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device
is running closer to class B as power output approaches P1dB. This results in higher PAE (power added efficiency) when compared to
a device that is driven by a constant current source as is typically done with active biasing. As an example, at a VDS = 4 V and
IDSQ␣ =␣ 10␣ mA, Id increases to 62 mA as a P1dB of +19 dBm is approached.
2. PAE(%) = ((Pout – Pin) / Pdc) x 100
3. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device.
6
88759/05-3.PM6.5J
Page 6
2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC
ATF-34143 Typical Scattering Parameters, VDS = 3 V, IDS = 20 mA
Freq.
GHz
Mag.
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.96
0.91
0.87
0.81
0.78
0.75
0.72
0.69
0.65
0.64
0.65
0.66
0.69
0.72
0.75
0.77
0.80
0.83
0.85
0.86
0.85
0.85
0.88
S11
Ang.
-37
-60
-76
-104
-115
-126
-145
-162
166
139
114
89
67
48
30
10
-10
-29
-44
-55
-72
-88
-101
dB
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
Mag.
S22
Ang.
MSG/MAG
dB
20.07
19.68
18.96
17.43
16.70
16.00
14.71
13.56
11.61
10.01
8.65
7.33
6.09
4.90
3.91
2.88
1.74
0.38
-0.96
-2.06
-3.09
-4.22
-5.71
10.079
9.642
8.867
7.443
6.843
6.306
5.438
4.762
3.806
3.165
2.706
2.326
2.017
1.758
1.568
1.393
1.222
1.045
0.895
0.789
0.701
0.615
0.518
153
137
126
106
98
90
75
62
38
16
-5
-27
-47
-66
-86
-105
-126
-145
-161
-177
166
149
133
-29.12
-26.02
-24.29
-22.27
-21.62
-21.11
-20.45
-19.83
-19.09
-18.49
-18.06
-17.79
-17.52
-17.39
-17.08
-16.95
-16.95
-17.39
-17.86
-18.13
-18.13
-18.06
-18.94
0.035
0.050
0.061
0.077
0.083
0.088
0.095
0.102
0.111
0.119
0.125
0.129
0.133
0.135
0.140
0.142
0.142
0.135
0.128
0.124
0.124
0.125
0.113
68
56
48
34
28
23
15
7
-8
-21
-35
-49
-62
-75
-88
-103
-118
-133
-145
-156
-168
177
165
0.40
0.34
0.32
0.29
0.28
0.26
0.25
0.23
0.22
0.22
0.23
0.25
0.29
0.34
0.39
0.43
0.47
0.53
0.58
0.62
0.65
0.68
0.71
-35
-56
-71
-98
-110
-120
-140
-156
174
146
118
91
67
46
28
10
-10
-28
-42
-57
-70
-85
-103
24.59
22.85
21.62
19.85
19.16
18.55
17.58
16.69
15.35
14.25
13.35
10.91
9.71
8.79
8.31
7.56
6.83
6.18
5.62
5.04
3.86
3.00
2.52
ATF-34143 Typical Noise Parameters
Ang.
13
27
31
48
57
66
83
102
138
174
-151
-118
-88
-63
-43
Rn/50
0.16
0.14
0.13
0.11
0.10
0.09
0.07
0.06
0.03
0.03
0.05
0.10
0.18
0.30
0.46
Ga
dB
21.8
18.3
17.8
16.4
16.0
15.6
14.8
14.0
12.6
11.4
10.3
9.4
8.6
8.0
7.5
25
20
MSG
MSG/MAG and
S21 (dB)
VDS = 3 V, IDS = 20 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
0.5
0.10
0.90
0.9
0.11
0.85
1.0
0.11
0.84
1.5
0.14
0.77
1.8
0.17
0.74
2.0
0.19
0.71
2.5
0.23
0.65
3.0
0.29
0.59
4.0
0.42
0.51
5.0
0.54
0.45
6.0
0.67
0.42
7.0
0.79
0.42
8.0
0.92
0.45
9.0
1.04
0.51
10.0
1.16
0.61
15
10
MAG
S21
5
0
-5
-10
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 23. MSG/MAG and |S21|2 vs.
Frequency at 3 V, 20 mA.
Notes:
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values
are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
7
88759/05-3.PM6.5J
Page 7
2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC
ATF-34143 Typical Scattering Parameters, VDS = 3 V, IDS = 40 mA
Freq.
GHz
Mag.
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.96
0.89
0.85
0.79
0.76
0.74
0.70
0.67
0.64
0.64
0.65
0.66
0.69
0.73
0.76
0.78
0.80
0.83
0.86
0.87
0.86
0.86
0.88
S11
Ang.
-40
-64
-81
-109
-121
-131
-150
-167
162
135
111
87
65
46
28
9
-11
-30
-44
-56
-72
-88
-102
dB
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
Mag.
S22
Ang.
MSG/MAG
dB
21.32
20.79
19.96
18.29
17.50
16.75
15.39
14.19
12.18
10.54
9.15
7.80
6.55
5.33
4.33
3.30
2.15
0.79
-0.53
-1.61
-2.60
-3.72
-5.15
11.645
10.950
9.956
8.209
7.495
6.876
5.880
5.120
4.063
3.365
2.867
2.454
2.125
1.848
1.647
1.462
1.281
1.095
0.941
0.831
0.741
0.652
0.553
151
135
124
104
96
88
74
61
38
16
-5
-26
-46
-65
-84
-104
-123
-142
-158
-174
169
153
137
-30.46
-27.33
-25.68
-23.61
-22.97
-22.38
-21.51
-20.92
-19.83
-19.02
-18.34
-17.86
-17.46
-17.20
-16.83
-16.65
-16.65
-17.08
-17.52
-17.72
-17.72
-17.79
-18.64
0.030
0.043
0.052
0.066
0.071
0.076
0.084
0.090
0.102
0.112
0.121
0.128
0.134
0.138
0.144
0.147
0.147
0.140
0.133
0.130
0.130
0.129
0.117
68
56
49
36
32
27
19
12
-1
-14
-28
-42
-55
-69
-84
-99
-114
-130
-142
-154
-166
179
166
0.29
0.24
0.24
0.23
0.23
0.22
0.22
0.22
0.21
0.22
0.24
0.28
0.32
0.37
0.41
0.45
0.50
0.55
0.60
0.64
0.66
0.69
0.72
-43
-70
-88
-118
-130
-141
-160
-176
157
131
105
81
60
40
23
5
-14
-31
-45
-59
-73
-88
-105
25.89
24.06
22.82
20.95
20.24
19.57
18.45
17.55
16.00
14.78
12.91
11.03
9.93
9.07
8.59
7.84
7.15
6.50
5.96
5.39
4.21
3.43
2.95
ATF-34143 Typical Noise Parameters
Ang.
13
28
32
50
61
68
87
106
144
-178
-142
-109
-80
-56
-39
Rn/50
0.16
0.13
0.13
0.1
0.09
0.08
0.06
0.05
0.03
0.03
0.06
0.12
0.21
0.34
0.50
Ga
dB
23.0
19.6
19.2
17.7
17.1
16.7
15.8
14.9
13.4
12.1
10.9
9.9
9.1
8.4
8.0
30
25
20
MSG/MAG and
S21 (dB)
VDS = 3 V, IDS = 40 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
0.5
0.10
0.87
0.9
0.13
0.82
1.0
0.14
0.80
1.5
0.17
0.73
1.8
0.21
0.70
2.0
0.23
0.66
2.5
0.29
0.60
3.0
0.35
0.54
4.0
0.47
0.46
5.0
0.6
0.41
6.0
0.72
0.39
7.0
0.85
0.41
8.0
0.97
0.45
9.0
1.09
0.52
10.0
1.22
0.61
MSG
15
10
MAG
S21
5
0
-5
-10
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 24. MSG/MAG and |S21|2 vs.
Frequency at 3 V, 40 mA.
Notes:
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values
are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
8
88759/05-3.PM6.5J
Page 8
2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC
ATF-34143 Typical Scattering Parameters, VDS = 4 V, IDS = 40 mA
Freq.
GHz
Mag.
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.95
0.89
0.85
0.78
0.73
0.70
0.67
0.64
0.63
0.64
0.66
0.69
0.72
0.76
0.78
0.80
0.84
0.86
0.87
0.86
0.86
0.89
0.89
S11
Ang.
-40
-65
-82
-109
-131
-150
-167
162
135
111
87
65
47
28
9
-11
-29
-44
-56
-72
-88
-102
-101.85
dB
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
Mag.
S22
Ang.
MSG/MAG
dB
21.56
21.02
20.19
18.49
16.93
15.57
14.36
12.34
10.70
9.32
7.98
6.74
5.55
4.55
3.53
2.39
1.02
-0.30
-1.38
-2.40
-3.53
-4.99
-4.99
11.973
11.252
10.217
8.405
7.024
6.002
5.223
4.141
3.428
2.923
2.506
2.173
1.894
1.689
1.501
1.317
1.125
0.966
0.853
0.759
0.666
0.563
0.563
151
135
123
104
87
73
61
37
16
-6
-26
-46
-65
-85
-104
-124
-143
-160
-176
167
151
134
134
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.12
0.13
0.13
0.14
0.15
0.15
0.14
0.13
0.13
0.13
0.13
0.12
0.12
0.030
0.042
0.051
0.064
0.074
0.081
0.087
0.098
0.108
0.117
0.124
0.130
0.134
0.141
0.145
0.145
0.140
0.133
0.130
0.131
0.130
0.119
0.119
68
56
48
36
27
19
12
-1
-13
-27
-41
-54
-68
-82
-97
-113
-128
-141
-152
-165
-180
168
168
0.33
0.27
0.26
0.24
0.22
0.21
0.20
0.19
0.20
0.21
0.24
0.29
0.34
0.38
0.42
0.47
0.53
0.58
0.62
0.65
0.68
0.71
0.71
-39
-63
-80
-109
-131
-150
-167
165
138
111
86
63
42
26
8
-11
-29
-43
-58
-71
-86
-103
-103
26.01
24.28
23.02
21.18
20.46
19.77
18.70
17.75
16.26
15.02
12.93
11.14
10.09
9.24
8.79
8.09
7.35
6.76
6.19
5.62
4.43
3.60
3.15
ATF-34143 Typical Noise Parameters
Ang.
13
27
31
49
60
67
85
104
142
180
-144
-111
-82
-57
-40
Rn/50
0.16
0.14
0.13
0.11
0.10
0.09
0.07
0.05
0.03
0.03
0.05
0.11
0.20
0.32
0.47
Ga
dB
22.8
19.4
18.9
17.4
16.9
16.4
15.6
14.8
13.3
12.0
10.9
9.9
9.1
8.5
8.1
30
25
MSG/MAG and
S21 (dB)
VDS = 4 V, IDS = 40 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
0.5
0.10
0.87
0.9
0.13
0.82
1.0
0.14
0.80
1.5
0.17
0.73
1.8
0.20
0.70
2.0
0.22
0.66
2.5
0.28
0.60
3.0
0.34
0.54
4.0
0.45
0.45
5.0
0.57
0.40
6.0
0.69
0.38
7.0
0.81
0.39
8.0
0.94
0.43
9.0
1.06
0.51
10.0
1.19
0.62
MSG
20
15
10
MAG
S21
5
0
-5
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 25. MSG/MAG and |S21|2 vs.
Frequency at 4 V, 40 mA.
Notes:
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values
are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
9
88759/05-3.PM6.5J
Page 9
2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC
ATF-34143 Typical Scattering Parameters, VDS = 4 V, IDS = 60 mA
Freq.
GHz
Mag.
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.95
0.89
0.85
0.78
0.75
0.73
0.69
0.67
0.64
0.63
0.64
0.66
0.69
0.73
0.76
0.78
0.81
0.84
0.86
0.87
0.86
0.86
0.89
S11
Ang.
-41
-65
-83
-111
-122
-133
-151
-168
161
134
111
86
65
46
28
9
-11
-30
-44
-56
-72
-88
-101.99
dB
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
Mag.
S22
Ang.
MSG/MAG
dB
21.91
21.33
20.46
18.74
17.92
17.16
15.78
14.56
12.53
10.88
9.49
8.15
6.92
5.72
4.73
3.70
2.57
1.20
-0.12
-1.21
-2.21
-3.35
-4.81
12.454
11.654
10.549
8.646
7.873
7.207
6.149
5.345
4.232
3.501
2.983
2.557
2.217
1.932
1.723
1.531
1.344
1.148
0.986
0.870
0.775
0.680
0.575
150
134
123
103
95
87
73
60
37
16
-5
-26
-46
-65
-84
-104
-124
-143
-159
-175
168
151
135
-31.06
-28.18
-26.56
-24.44
-23.74
-23.22
-22.38
-21.62
-20.54
-19.58
-18.79
-18.27
-17.79
-17.46
-16.95
-16.71
-16.71
-17.02
-17.46
-17.59
-17.59
-17.65
-18.42
0.028
0.039
0.047
0.060
0.065
0.069
0.076
0.083
0.094
0.105
0.115
0.122
0.129
0.134
0.142
0.146
0.146
0.141
0.134
0.132
0.132
0.131
0.120
68
57
49
38
33
29
22
15
3
-10
-24
-38
-51
-65
-79
-94
-111
-126
-139
-150
-163
-178
169
0.29
0.24
0.23
0.21
0.21
0.20
0.19
0.19
0.18
0.19
0.21
0.24
0.28
0.33
0.38
0.42
0.47
0.52
0.58
0.62
0.65
0.68
0.71
-41
-67
-84
-114
-125
-136
-155
-171
162
135
109
84
62
42
25
7
-12
-29
-43
-58
-71
-86
-104
26.48
24.75
23.51
21.59
20.83
20.19
19.08
18.09
16.53
15.23
12.89
11.22
10.21
9.36
8.94
8.23
7.56
6.94
6.37
5.78
4.60
3.79
3.33
ATF-34143 Typical Noise Parameters
Ang.
15
30
34
53
62
72
91
111
149
-173
-137
-104
-76
-53
-37
Rn/50
0.14
0.12
0.12
0.10
0.10
0.09
0.07
0.05
0.03
0.04
0.07
0.14
0.26
0.41
0.60
Ga
dB
24.5
20.7
20.2
18.5
17.7
17.2
16.3
15.4
13.7
12.3
11.1
10.0
9.2
8.6
8.2
30
25
20
MSG/MAG and
S21 (dB)
VDS = 4 V, IDS = 60 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
0.5
0.11
0.84
0.9
0.14
0.78
1.0
0.15
0.77
1.5
0.20
0.69
1.8
0.23
0.66
2.0
0.26
0.62
2.5
0.33
0.55
3.0
0.39
0.50
4.0
0.53
0.43
5.0
0.67
0.39
6.0
0.81
0.39
7.0
0.96
0.42
8.0
1.10
0.47
9.0
1.25
0.54
10.0
1.39
0.62
MSG
15
10
MAG
S21
5
0
-5
-10
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 26. MSG/MAG and |S21|2 vs.
Frequency at 4 V, 60 mA.
Notes:
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values
are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
10
88759/05-3.PM6.5J
Page 10
2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC
Noise Parameter
Applications Information
Fmin values at 2␣ GHz and higher
are based on measurements while
the Fmins below 2 GHz have been
extrapolated. The Fmin values are
based on a set of 16 noise figure
measurements made at 16
different impedances using an
ATN NP5 test system. From these
measurements, a true Fmin is
calculated. Fmin represents the
true minimum noise figure of the
device when the device is presented with an impedance
matching network that transforms the source impedance,
typically 50Ω, to an impedance
represented by the reflection
coefficient Γo. The designer must
design a matching network that
will present Γo to the device with
minimal associated circuit losses.
The noise figure of the completed
amplifier is equal to the noise
figure of the device plus the
losses of the matching network
preceding the device. The noise
figure of the device is equal to
Fmin only when the device is
presented with Γo. If the reflection coefficient of the matching
network is other than Γo, then the
noise figure of the device will be
greater than Fmin based on the
following equation.
NF = Fmin + 4 Rn
|Γs – Γo | 2
Zo (|1 + Γo| 2) (1 – Γs| 2)
Where Rn /Zo is the normalized
noise resistance, Γo is the optimum reflection coefficient
required to produce Fmin and Γs is
the reflection coefficient of the
source impedance actually
presented to the device. The
losses of the matching networks
are non-zero and they will also
add to the noise figure of the
device creating a higher amplifier
noise figure. The losses of the
matching networks are related to
the Q of the components and
associated printed circuit board
loss. Γo is typically fairly low at
higher frequencies and increases
as frequency is lowered. Larger
gate width devices will typically
have a lower Γo as compared to
narrower gate width devices.
Typically for FETs, the higher Γo
usually infers that an impedance
much higher than 50Ω is required
for the device to produce Fmin. At
VHF frequencies and even lower
L Band frequencies, the required
impedance can be in the vicinity
of several thousand ohms.
Matching to such a high impedance requires very hi-Q components in order to minimize circuit
losses. As an example at 900 MHz,
when airwwound coils (Q > 100)
are used for matching networks,
the loss can still be up to 0.25 dB
which will add directly to the
noise figure of the device. Using
muiltilayer molded inductors with
Qs in the 30 to 50 range results in
additional loss over the airwound
coil. Losses as high as 0.5 dB or
greater add to the typical 0.15 dB
Fmin of the device creating an
amplifier noise figure of nearly
0.65 dB. A discussion concerning
calculated and measured circuit
losses and their effect on amplifier noise figure is covered in
Agilent Application 1085.
11
88759/05-3.PM6.5J
Page 11
2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC
ATF-34143 SC-70 4 Lead, High Frequency Nonlinear Model
Optimized for 0.1 – 6.0 GHz
R
EQUATION La=0.1 nH
EQUATION Lb=0.1 nH
EQUATION Lc=0.8 nH
EQUATION Ld=0.6 nH
EQUATION Rb=0.1 OH
EQUATION Ca=0.15 pF
EQUATION Cb=0.15 pF
L
R=0.1 OH
LOSSYL
L=Lb
R=Rb
SOURCE
L=Lb
R=Rb
L=Lc
C
L
LOSSYL
LOSSYL
GATE_IN
L=Lb
R=Rb
D
L=La *.5
C=Cb
C
C=Ca
G
S
L
SOURCE
DRAIN_OUT
L=Lb
R=Rb
L=La
L
LOSSYL
LOSSYL
L=Lb
R=Rb
This model can be used as a
design tool. It has been tested on
MDS for various specifications.
However, for more precise and
accurate design, please refer to
L=Ld
the measured data in this data
sheet. For future improvements
Agilent reserves the right to
change these models without
prior notice.
ATF-34143 Die Model
MESFET MODEL *
* STATZMODEL
= FET
IDS model
Gate model
NFET=yes
PFET=
IDSMOD=3
VTO=–0.95
BETA= Beta
LAMBDA=0.09
ALPHA=4.0
B=0.8
TNOM=27
IDSTC=
VBI=.7
Parasitics
DELTA=.2
GSCAP=3
CGS=cgs pF
GDCAP=3
GCD=Cgd pF
Breakdown
RG=1
RD=Rd
RS=Rs
LG=Lg nH
LD=Ld nH
LS=Ls nH
CDS=Cds pF
CRF=.1
RC=Rc
GSFWD=1
GSREV=0
GDFWD=1
GDREV=0
VJR=1
IS=1 nA
IR=1 nA
IMAX=.1
XTI=
N=
EG=
Noise
FNC=01e+6
R=.17
P=.65
C=.2
M o d e l s c a l fa c t o r s ( W = F E T w i d t h i n m i c r o n s )
XX
D
E QUAT I O N C d s = 0 . 0 1 * W / 2 0 0
E QUAT I O N B e t a = 0 . 0 6 * W / 2 0 0
E QUAT I O N R d = 2 0 0 / W
NFETMESFET
G
XX
E QUAT I O N R s = . 5 * 2 0 0 / W
E QUAT I O N C g s = 0 . 2 * W / 2 0 0
E QUAT I O N C g d = 0 . 0 4 * W / 2 0 0
E QUAT I O N L g = 0 . 0 3 * 2 0 0 / W
S
XX
E QUAT I O N L d = 0 . 0 3 * 2 0 0 / W
E QUAT I O N L s = 0 . 0 1 * 2 0 0 / W
E QUAT I O N R c = 5 0 0 * 2 0 0 / W
MODEL=FET
S
W=800 µm
12
88759/05-3.PM6.5J
Page 12
2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC
Part Number Ordering Information
No. of
Devices
3000
10000
100
Part Number
ATF-34143-TR1
ATF-34143-TR2
ATF-34143-BLK
Container
7" Reel
13" Reel
antistatic bag
Package Dimensions
Outline 43 (SOT-343/SC-70 4 lead)
1.30 (0.051)
BSC
1.30 (.051) REF
2.60 (.102)
E
1.30 (.051)
E1
0.85 (.033)
0.55 (.021) TYP
1.15 (.045) BSC
e
1.15 (.045) REF
D
h
A
A1
b TYP
L
C TYP
θ
DIMENSIONS
SYMBOL
A
A1
b
C
D
E
e
h
E1
L
θ
MIN.
MAX.
0.80 (0.031)
1.00 (0.039)
0 (0)
0.10 (0.004)
0.25 (0.010)
0.35 (0.014)
0.10 (0.004)
0.20 (0.008)
1.90 (0.075)
2.10 (0.083)
2.00 (0.079)
2.20 (0.087)
0.55 (0.022)
0.65 (0.025)
0.450 TYP (0.018)
1.15 (0.045)
1.35 (0.053)
0.10 (0.004)
0.35 (0.014)
0
10
DIMENSIONS ARE IN MILLIMETERS (INCHES)
13
88759/05-3.PM6.5J
Page 13
2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC
Device Orientation
REEL
END VIEW
TOP VIEW
4 mm
CARRIER
TAPE
8 mm
4PX
USER
FEED
DIRECTION
4PX
4PX
4PX
COVER TAPE
Tape Dimensions
For Outline 4T
P
P2
D
P0
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
Tt (COVER TAPE THICKNESS)
K0
8° MAX.
A0
DESCRIPTION
5° MAX.
B0
SYMBOL
SIZE (mm)
SIZE (INCHES)
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A0
B0
K0
P
D1
2.24 ± 0.10
2.34 ± 0.10
1.22 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.088 ± 0.004
0.092 ± 0.004
0.048 ± 0.004
0.157 ± 0.004
0.039 + 0.010
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.55 ± 0.05
4.00 ± 0.10
1.75 ± 0.10
0.061 ± 0.002
0.157 ± 0.004
0.069 ± 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 ± 0.30
0.255 ± 0.013
0.315 ± 0.012
0.010 ± 0.0005
COVER TAPE
WIDTH
TAPE THICKNESS
C
Tt
5.4 ± 0.10
0.062 ± 0.001
0.205 ± 0.004
0.0025 ± 0.00004
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
3.50 ± 0.05
0.138 ± 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 ± 0.05
0.079 ± 0.002
14
88759/05-3.PM6.5J
Page 14
2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC
当社半導体部品のご使用にあたって
仕様及び仕様書に関して
・本仕様は製品改善および技術改良等により予告なく変更する場合があります。ご使用の際には最
新の仕様を問い合わせの上、用途のご確認をお願いいたします。
・本仕様記載内容を無断で転載または複写することは禁じられております。
・本仕様内でご紹介している応用例(アプリケーション)は当社製品がご使用できる代表的なもの
です。ご使用において第三者の知的財産権などの保証または実施権の許諾に対して問題が発生し
た場合、当社はその責任を負いかねます。
・仕様書はメーカとユーザ間で交わされる製品に関する使用条件や誤使用防止事項を言及するもの
です。仕様書の条件外で保存、使用された場合に動作不良、機械不良が発生しても当社は責任を
負いかねます。ただし、当社は納品後 1 年以内に当社の責任に帰すべき理由で、不良或いは故障
が発生した場合、無償で製品を交換いたします。
・仕様書の製品が製造上および政策上の理由で満足できない場合には変更の権利を当社が有し、そ
の交渉は当社の要求によりすみやかに行われることとさせて頂きます。なお、基本的に変更は3ヶ
月前、廃止は 1 年前にご連絡致しますが、例外もございますので予めご了承ください。
ご使用用途に関して
・当社の製品は、一般的な電子機器(コンピュータ、OA 機器、通信機器、AV 機器、家電製品、ア
ミューズメント機器、計測機器、一般産業機器など)の一部に組み込まれて使用されるものです。
極めて高い信頼性と安全性が要求される用途(輸送機器、航空・宇宙機器、海底中継器、原子力
制御システム、生命維持のための医療機器などの財産・環境もしくは生命に悪影響を及ぼす可能
性を持つ用途)を意図し、設計も製造もされているものではありません。それゆえ、本製品の安
全性、品質および性能に関しては、仕様書(又は、カタログ)に記載してあること以外は明示的
にも黙示的にも一切の保証をするものではありません。
回路設計上のお願い
・当社は品質、信頼性の向上に努力しておりますが、一般的に半導体製品の誤動作や、故障の発生
は避けられません。本製品の使用に附随し、或いはこれに関連する誤動作、故障、寿命により、
他人の生命又は財産に被害や悪影響を及ぼし、或いは本製品を取り付けまたは使用した設備、施
設または機械器具に故障が生じ一般公衆に被害を起こしても、当社はその内容、程度を問わず、
一切の責任を負いかねます。
お客様の責任において、装置の安全設計をお願いいたします。
15
88759/05-3.PM6.5J
Page 15
2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC