DATA SHEET MOS INTEGRATED CIRCUIT µPD42S18165L, 4218165L 3.3 V OPERATION 16 M-BIT DYNAMIC RAM 1 M-WORD BY 16-BIT, EDO, BYTE READ/WRITE MODE Description The µPD42S18165L, 4218165L are 1,048,576 words by 16 bits CMOS dynamic RAMs with optional EDO. EDO is a kind of the page mode and is useful for the read operation. Besides, the µPD42S18165L can execute CAS before RAS self refresh. The µPD42S18165L, 4218165L are packaged in 50-pin plastic TSOP (II) and 42-pin plastic SOJ. Features • EDO (Hyper page mode) • 1,048,576 words by 16 bits organization • Single +3.3 V ±0.3 V power supply • Fast access and cycle time Part number Power consumption Active (MAX.) Access time (MAX.) R/W cycle time (MIN.) EDO (Hyper page mode) cycle time (MIN.) µPD42S18165L-A50, 4218165L-A50 612 mW 50 ns 84 ns 20 ns µPD42S18165L-A60, 4218165L-A60 540 mW 60 ns 104 ns 25 ns µPD42S18165L-A70, 4218165L-A70 504 mW 70 ns 124 ns 30 ns • The µPD42S18165L can execute CAS before RAS self refresh Part number Refresh cycle Refresh Power consumption at standby (MAX.) µPD42S18165L 1,024 cycles/128 ms CAS before RAS self refresh, CAS before RAS refresh, RAS only refresh, Hidden refresh 0.54 mW (CMOS level input) µPD4218165L 1,024 cycles/16 ms CAS before RAS refresh, RAS only refresh, Hidden refresh 1.8 mW (CMOS level input) The information in this document is subject to change without notice. Document No. M10562EJ8V0DS00 (8th edition) Date Published January 1997 N Printed in Japan The mark shows major revised points. © 1995 µPD42S18165L, 4218165L Ordering Information 2 Part number Access time (MAX.) µPD42S18165LG5-A50-7JF 50 ns µPD42S18165LG5-A60-7JF 60 ns µPD42S18165LG5-A70-7JF 70 ns µPD42S18165LLE-A50 50 ns µPD42S18165LLE-A60 60 ns µPD42S18165LLE-A70 70 ns µPD4218165LG5-A50-7JF 50 ns µPD4218165LG5-A60-7JF 60 ns µPD4218165LG5-A70-7JF 70 ns µPD4218165LLE-A50 50 ns µPD4218165LLE-A60 60 ns µPD4218165LLE-A70 70 ns Package 50-pin plastic TSOP (II) (400 mil) Refresh CAS before RAS self refresh CAS before RAS refresh RAS only refresh Hidden refresh 42-pin plastic SOJ (400 mil) 50-pin plastic TSOP (II) (400 mil) 42-pin plastic SOJ (400 mil) CAS before RAS refresh RAS only refresh Hidden refresh µPD42S18165L, 4218165L Pin Configurations (Marking Side) 50-pin Plastic TSOP (II) (400 mil) 42-pin Plastic SOJ (400 mil) 50 GND VCC 1 42 GND I/O1 2 49 I/O16 I/O1 2 41 I/O16 I/O2 3 48 I/O15 I/O2 3 40 I/O15 I/O3 4 47 I/O14 I/O3 4 39 I/O14 I/O4 5 46 I/O13 I/O4 5 38 I/O13 VCC 6 45 GND VCC 6 37 GND I/O5 7 44 I/O12 I/O5 7 36 I/O12 I/O6 8 43 I/O11 I/O6 8 35 I/O11 I/O7 9 42 I/O10 I/O7 9 34 I/O10 I/O8 10 41 I/O9 I/O8 10 33 I/O9 NC 11 40 NC NC 11 32 NC 31 LCAS 30 UCAS NC 12 WE 13 µ PD42S18165LLE µ PD4218165LLE 1 µ PD42S18165LG5-7JF µ PD4218165LG5-7JF VCC RAS 14 29 OE 36 NC NC 15 28 A9 35 LCAS NC 16 27 A8 34 UCAS A0 17 26 A7 18 33 OE A1 18 25 A6 NC 19 32 A9 A2 19 24 A5 NC 20 31 A8 A3 20 23 A4 A0 21 30 A7 VCC 21 22 GND A1 22 29 A6 A2 23 28 A5 A3 24 27 A4 VCC 25 26 GND NC 15 NC 16 WE 17 RAS A0 to A9 : Address Inputs I/O1 to I/O16 : Data Inputs/Outputs RAS : Row Address Strobe UCAS : Column Address Strobe (upper) LCAS : Column Address Strobe (lower) WE : Write Enable OE : Output Enable V CC : Power Supply GND : Ground NC : No Connection 3 µPD42S18165L, 4218165L Block Diagram RAS LCAS UCAS WE Lower Byte Control Clock Generator OE Data Output Buffer Upper Byte Control VCC A0 to A9 CAS before RAS Counter Row Address Buffer Column Address Buffer X0 to X9 1,024 Data Input Buffer Row Decoder GND Memory Cell Array 1,024 × 1,024 × 16 Data Output Buffer 1,024 × 16 Y0 to Y9 Sense Amplifier 1,024 Column Decoder 4 I/O1 to I/O8 (Lower Byte) I/O9 to I/O16 (Upper Byte) × 16 Data Input Buffer µPD42S18165L, 4218165L Input/Output Pin Functions The µPD42S18165L, 4218165L have input pins RAS, CASNote, WE, OE, A0 to A9 and input/output pins I/O1 to I/O16. Pin name RAS (Row address strobe) Input/Output Input Function RAS activates the sense amplifier by latching a row address and selecting a corresponding word line. It refreshes memory cell array of one line selected by the row address. It also selects the following function. • CAS before RAS refresh CAS (Column address strobe) CAS activates data input/output circuit by latching column address and selecting a digit line connected with the sense amplifier. A0 to A9 (Address inputs) Address bus. Input total 20-bit of address signal, upper 10-bit and lower 10-bit in sequence (address multiplex method). Therefore, one word is selected from 1,048,576-word by 16-bit memory cell array. In actual operation, latch row address by specifying row address and activating RAS. Then, switch the address bus to column address and activate CAS. Each address is taken into the device when RAS and CAS are activated. Therefore, the address input setup time (tASR, tASC) and hold time (tRAH, tCAH) are specified for the activation of RAS and CAS. WE (Write enable) Write control signal. OE (Output enable) Read control signal. Read operation can be executed by activating RAS, CAS and OE. If WE is activated during read operation, OE is to be ineffective in the device. Therefore, read operation cannot be executed. I/O1 to I/O16 (Data inputs/outputs) Note Write operation is executed by activating RAS, CAS and WE. Input/Output 16-bit data bus. I/O1 to I/O16 are used to input/output data. CAS means UCAS and LCAS. 5 µPD42S18165L, 4218165L Hyper Page Mode (EDO) The hyper page mode (EDO) is a kind of page mode with enhanced features. The two major features of the hyper page mode (EDO) are as follows. 1. Data output time is extended. In the hyper page mode (EDO), the output data is held to the next CAS cycle’s falling edge, instead of the rising edge. For this reason, valid data output time in the hyper page mode (EDO) is extended compared with the fast page mode (= data extend function). In the fast page mode, the data output time becomes shorter as the CAS cycle time becomes shorter. Therefore, in the hyper page mode (EDO), the timing margin in read cycle is larger than that of the fast page mode even if the CAS cycle time becomes shorter. 2. The CAS cycle time in the hyper page mode (EDO) is shorter than that in the fast page mode. In the hyper page mode (EDO), due to the data extend function, the CAS cycle time can be shorter than in the fast page mode if the timing margin is the same. Taking a device whose tRAC is 60 ns as an example, the CAS cycle time in the fast page mode is 25 ns while that in the fast page mode is 40 ns. In the hyper page mode (EDO), read (data out) and write (data in) cycles can be executed repeatedly during one RAS cycle. The hyper page mode (EDO) allows both read and write operations during one cycle. The following shows a part of the hyper page mode (EDO) read cycle. Specifications to be observed are described in the next page. Hyper Page Mode (EDO) Read Cycle RAS VIH – VIL – tOFR tHPC CAS VIH – VIL – tOFC Address VIH – VIL – Row Col.A Col.B tRAC tAA tCAC WE tRCH tAA tCAC tAA tCAC tWPZ tRRH VIH – VIL – tOCH tCHO tOCH tOEP tOEP tOEA OE Col.C tOEA tWEZ tCHO VIH – VIL – tOLZ tDHC tCLZ I/O 6 VOH – VOL – Hi - Z Data out A tOEZ Data out B tCLZ tOEZ Data out C tOEZ Data out C Hi - Z µPD42S18165L, 4218165L Cautions when using the hyper page mode (EDO) 1. CAS access should be used to operate t HPC at the MIN. value. 2. To make I/Os to Hi-Z in read cycle, it is necessary to control RAS, CAS, WE, OE as follows. The effective specification depends on the state of each signal. (1) Both RAS and CAS are inactive (at the end of read cycle) WE: inactive, OE: active t OFC is effective when RAS is inactivated before CAS is inactivated. t OFR is effective when CAS is inactivated before RAS is inactivated. The slower of t OFC and tOFR becomes effective. (2) Both RAS and CAS are active or either RAS or CAS is active (in read cycle) WE, OE: inactive ····· t OEZ is effective. Both RAS and CAS are inactive or RAS is active and CAS is inactive (at the end of read cycle) WE, OE: active and either t RRH or t RCH must be met ····· t WEZ and t WPZ are effective. The faster of t OEZ and t WEZ becomes effective. The faster of (1) and (2) becomes effective. 3. In read cycle, the effective specification depends on the state of CAS signal when controlling data output with the OE signal. (1) CAS: inactive, OE: active ····· t CHO is effective. (2) CAS, OE: active ····· t OCH is effective. 7 µPD42S18165L, 4218165L Electrical Specifications • CAS means UCAS and LCAS. • All voltages are referenced to GND. • After power up (V CC ≥ V CC(MIN.)), wait more than 100 µ s (RAS, CAS inactive) and then, execute eight CAS before RAS or RAS only refresh cycles as dummy cycles to initialize internal circuit. Absolute Maximum Ratings Parameter Symbol Condition Rating Unit Voltage on any pin relative to GND VT –0.5 to +4.6 V Supply voltage VCC –0.5 to +4.6 V Output current IO 20 mA Power dissipation PD 1 W Operating ambient temperature TA 0 to +70 ˚C Storage temperature Tstg –55 to +125 ˚C Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Recommended Operating Conditions Parameter Symbol Condition MIN. TYP. MAX. Unit 3.3 3.6 V Supply voltage VCC 3.0 High level input voltage VIH 2.0 VCC + 0.3 V Low level input voltage VIL –0.3 +0.8 V Operating ambient temperature TA 0 70 ˚C MAX. Unit pF Capacitance (TA = 25 ˚C, f = 1 MHZ) Parameter Input capacitance Data input/output capacitance 8 Symbol Test condition MIN. TYP. CI1 Address 5 CI2 RAS, CAS, WE, OE 7 CI/O I/O 7 pF µPD42S18165L, 4218165L DC Characteristics (Recommended operating conditions unless otherwise noted) Parameter Symbol Operating current Standby µPD42S18165L ICC1 ICC2 current µPD4218165L RAS only refresh current Operating current ICC3 ICC4 (Hyper page mode (EDO)) CAS before RAS ICC5 refresh current CAS before RAS ICC6 long refresh current (1,024 cycles / 128 ms, only for the µPD42S18165L) Test condition MIN. MAX. Unit Notes mA 1, 2, 3 RAS, CAS cycling tRAC = 50 ns 170 tRC = tRC (MIN.), IO = 0 mA tRAC = 60 ns 150 tRAC = 70 ns 140 RAS, CAS ≥ VIH (MIN.), IO = 0 mA 0.5 RAS, CAS ≥ VCC – 0.2 V, IO = 0 mA 0.15 RAS, CAS ≥ VIH (MIN.), IO = 0 mA 2.0 RAS, CAS ≥ VCC – 0.2 V, IO = 0 mA 0.5 RAS cycling, CAS ≥ VIH (MIN.) tRAC = 50 ns 170 tRC = tRC (MIN.), IO = 0 mA tRAC = 60 ns 150 tRAC = 70 ns 140 RAS ≤ VIL (MAX.), CAS cycling tRAC = 50 ns 120 tHPC = tHPC (MIN.), IO = 0 mA tRAC = 60 ns 110 tRAC = 70 ns 100 RAS cycling tRAC = 50 ns 170 tRC = tRC (MIN.) , IO = 0 mA tRAC = 60 ns 150 tRAC = 70 ns 140 CAS before RAS refresh : tRC = 125.0 µs RAS, CAS: VCC – 0.2 V ≤ VIH ≤ VIH (MAX.) 0 V ≤ VIL ≤ 0.2 V tRAS ≤ 300 ns Standby: RAS, CAS ≥ VCC – 0.2 V Address: VIH or VIL WE, OE: VIH IO = 0 mA tRAS ≤ 1 µs mA mA 1, 2, 3 ,4 mA 1, 2, 5 mA 1, 2 300 µA 1, 2 400 µA 1, 2 200 µA 2 CAS before RAS self refresh current (only for the µPD42S18165L) ICC7 RAS, CAS : tRASS = 5 ms VCC – 0.2 V ≤ VIH ≤ VIH (MAX.) 0 V ≤ VIL ≤ 0.2 V IO = 0 mA Input leakage current II (L) VI = 0 to 3.6 V All other pins not under test = 0 V –5 +5 µA Output leakage current IO (L) VO = 0 to 3.6 V Output is disabled (Hi-Z) –5 +5 µA High level output voltage VOH IO = –2.0 mA 2.4 Low level output voltage VOL IO = +2.0 mA V 0.4 V Notes 1. ICC1, ICC3, ICC4, ICC5 and ICC6 depend on cycle rates (tRC and tHPC). 2. Specified values are obtained with outputs unloaded. 3. ICC1 and ICC3 are measured assuming that address can be changed once or less during RAS ≤ VIL (MAX.) and CAS ≥ VIH (MIN.). 4. ICC3 is measured assuming that all column address inputs are held at either high or low. 5. ICC4 is measured assuming that all column address inputs are switched only once during each hyper page (EDO) cycle. 9 µPD42S18165L, 4218165L AC Characteristics (Recommended Operating Conditions unless otherwise noted) AC Characteristics Test Conditions (1) Input timing specification (2) Output timing specification VIH (MIN.) = 2.0 V VOH (MIN.) = 2.0 V VIL (MAX.) = 0.8 V VOL (MAX.) = 0.8 V tT = 2 ns tT = 2 ns (3) Output load condition VCC 1,180 Ω I/O 100 pF CL 870 Ω Common to Read, Write, Read Modify Write Cycle Parameter tRAC = 50 ns tRAC = 60 ns tRAC = 70 ns MIN. MAX. MIN. MAX. MIN. MAX. Symbol Unit Notes Read / Write cycle time tRC 84 – 104 – 124 – ns RAS precharge time tRP 30 – 40 – 50 – ns CAS precharge time tCPN 8 – 10 – 10 – ns RAS pulse width tRAS 50 10,000 60 10,000 70 10,000 ns CAS pulse width tCAS 8 10,000 10 10,000 12 10,000 ns RAS hold time tRSH 10 – 10 – 12 – ns CAS hold time tCSH 38 – 40 – 50 – ns RAS to CAS delay time tRCD 11 37 14 45 14 52 ns 2 RAS to column address delay time tRAD 9 25 12 30 12 35 ns 2 CAS to RAS precharge time tCRP 5 – 5 – 5 – ns 3 Row address setup time tASR 0 – 0 – 0 – ns Row address hold time tRAH 7 – 10 – 10 – ns Column address setup time tASC 0 – 0 – 0 – ns Column address hold time tCAH 7 – 10 – 12 – ns OE lead time referenced to RAS tOES 0 – 0 – 0 – ns CAS to data setup time tCLZ 0 – 0 – 0 – ns OE to data setup time tOLZ 0 – 0 – 0 – ns OE to data delay time tOED 10 – 13 – 15 – ns Masked byte write hold time referenced to RAS tMRH 0 – 0 – 0 – ns tT 1 50 1 50 1 50 ns tREF – 128 – 128 – 128 ms – 16 – 16 – 16 ms Transition time (rise and fall) Refresh time µPD42S18165L µPD4218165L 10 1 4 µPD42S18165L, 4218165L Notes 1. In CAS before RAS refresh cycles, tRAS(MAX.) is 100 µs. If 10 µs < tRAS < 100 µs, RAS precharge time for CAS before RAS self refresh (tRPS) is applied. 2. For read cycles, access time is defined as follows: Input conditions Access time Access time from RAS tRAD ≤ tRAD (MAX.) and tRCD ≤ tRCD (MAX.) tRAC (MAX.) tRAC (MAX.) tRAD > tRAD (MAX.) and tRCD ≤ tRCD (MAX.) tAA (MAX.) tRAD + tAA (MAX.) tRCD > tRCD (MAX.) tCAC (MAX.) tRCD + tCAC (MAX.) tRAD (MAX.) and tRCD (MAX.) are specified as reference points only ; they are not restrictive operating parameters. They are used to determine which access time (tRAC, tAA or tCAC) is to be used for finding out when output data will be available. Therefore, the input conditions tRAD ≥ tRAD (MAX.) and tRCD ≥ tRCD (MAX.) will not cause any operation problems. 3. tCRP (MIN.) requirement is applied to RAS, CAS cycles. 4. This specification is applied only to the µPD42S18165L. Read Cycle Parameter tRAC = 50 ns tRAC = 60 ns tRAC = 70 ns MIN. MAX. MIN. MAX. MIN. MAX. Symbol Unit Notes Access time from RAS tRAC – 50 – 60 – 70 ns 1 Access time from CAS tCAC – 15 – 17 – 18 ns 1 Access time from column address tAA – 25 – 30 – 35 ns 1 Access time from OE tOEA – 13 – 15 – 18 ns Column address lead time referenced to RAS tRAL 25 – 30 – 35 – ns Read command setup time tRCS 0 – 0 – 0 – ns Read command hold time referenced to RAS tRRH 0 – 0 – 0 – ns Read command hold time referenced to CAS tRCH 0 – 0 – 0 – ns 2 Output buffer turn-off delay time from OE tOEZ 0 10 0 13 0 15 ns 3 CAS hold time to OE t CHO 5 – 5 – 5 – ns 4 2 Notes 1. For read cycles, access time is defined as follows: Input conditions Access time Access time from RAS tRAD ≤ tRAD (MAX.) and tRCD ≤ tRCD (MAX.) tRAC (MAX.) tRAC (MAX.) tRAD > tRAD (MAX.) and tRCD ≤ tRCD (MAX.) tAA (MAX.) tRAD + tAA (MAX.) tRCD > tRCD (MAX.) tCAC (MAX.) tRCD + tCAC (MAX.) tRAD (MAX.) and tRCD (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (tRAC, tAA or tCAC) is to be used for finding out when output data will be available. Therefore, the input conditions tRAD ≥ tRAD (MAX.) and tRCD ≥ tRCD (MAX.) will not cause any operation problems. 2. Either tRCH (MIN.) or tRRH (MIN.) should be met in read cycles. 3. tOEZ(MAX.) defines the time when the output achieves the condition of Hi-Z and is not referenced to VOH or VOL. 4. WE: inactive (in read cycle) CAS: inactive, OE: active ····· tCHO is effective. CAS, OE: active ····· tOCH is effective. 11 µPD42S18165L, 4218165L Write Cycle Parameter tRAC = 50 ns tRAC = 60 ns tRAC = 70 ns MIN. MAX. MIN. MAX. MIN. MAX. Symbol Unit Notes WE hold time referenced to CAS tWCH 7 – 10 – 10 – ns 1 WE pulse width tWP 8 – 10 – 10 – ns 1 WE lead time referenced to RAS tRWL 10 – 10 – 12 – ns WE lead time referenced to CAS tCWL 8 – 10 – 12 – ns WE setup time tWCS 0 – 0 – 0 – ns OE hold time tOEH 0 – 0 – 0 – ns Data-in setup time tDS 0 – 0 – 0 – ns 3 Data-in hold time tDH 7 – 10 – 10 – ns 3 2 Notes 1. tWP (MIN.) is applied to late write cycles or read modify write cycles. In early write cycles, tWCH (MIN.) should be met. 2. If tWCS ≥ tWCS (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle. 3. tDS (MIN.) and tDH (MIN.) are referenced to the CAS falling edge in early write cycles. In late write cycles and read modify write cycles, they are referenced to the WE falling edge. Read Modify Write Cycle Parameter tRAC = 50 ns tRAC = 60 ns tRAC = 70 ns MIN. MAX. MIN. MAX. MIN. MAX. Symbol Unit Notes Read modify write cycle time tRWC 107 – 133 – 157 – ns RAS to WE delay time tRWD 64 – 77 – 89 – ns 1 CAS to WE delay time tCWD 27 – 32 – 37 – ns 1 Column address to WE delay time tAWD 39 – 47 – 54 – ns 1 Note 1. If tWCS ≥ tWCS (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle. If tRWD ≥ tRWD (MIN.), tCWD ≥ tCWD (MIN.), tAWD ≥ tAWD (MIN.) and tCPWD ≥ tCPWD (MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate. 12 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Parameter tRAC = 50 ns tRAC = 60 ns tRAC = 70 ns MIN. MAX. MIN. MAX. MIN. MAX. Symbol Unit Notes Read / Write cycle time tHPC 20 – 25 – 30 – ns RAS pulse width tRASP 50 125,000 60 125,000 70 125,000 ns CAS pulse width tHCAS 8 10,000 10 10,000 12 10,000 ns CAS precharge time tCP 8 – 10 – 10 – ns Access time from CAS precharge tACP – 30 – 35 – 40 ns CAS precharge to WE delay time tCPWD 41 – 52 – 59 – ns RAS hold time from CAS precharge tRHCP 30 – 35 – 40 – ns tHPRWC 52 – 66 – 75 – ns Data output hold time tDHC 5 – 5 – 5 – ns OE to CAS hold time tOCH 5 – 5 – 5 – ns OE precharge time tOEP 5 – 5 – 5 – ns Output buffer turn-off delay from WE tWEZ 0 10 0 13 0 15 ns 4,5 WE pulse width tWPZ 7 – 10 – 10 – ns 5 Output buffer turn-off delay from RAS tOFR 0 10 0 13 0 15 ns 4,5 Output buffer turn-off delay from CAS tOFC 0 10 0 13 0 15 ns 4,5 Read modify write cycle time 1 2 3 Notes 1. tHPC (MIN.) is applied to CAS access. 2. If tWCS ≥ tWCS (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle. If tRWD ≥ tRWD (MIN.), tCWD ≥ tCWD (MIN.), tAWD ≥ tAWD (MIN.) and tCPWD ≥ tCPWD (MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate. 3. WE: inactive (in read cycle) CAS: inactive, OE: active ······ tCHO is effective. CAS, OE: active ······ tOCH is effective. 4. tOFC (MAX.), tOFR (MAX.) and tWEZ (MAX.) define the time when the output achieves the conditions of Hi-Z and is not referenced to VOH or VOL. 5. To make I/Os to Hi-Z in read cycle, it is necessary to control RAS, CAS, WE, OE as follows. The effective specification depends on state of each signal. (1) Both RAS and CAS are inactive (at the end of the read cycle) WE: inactive, OE: active tOFC is effective when RAS is inactivated before CAS is inactivated. tOFR is effective when CAS is inactivated before RAS is inactivated. The slower of tOFC and tOFR becomes effective. (2) Both RAS and CAS are active or either RAS or CAS is active (in read cycle) WE, OE: inactive ······ tOEZ is effective. Both RAS and CAS are inactive or RAS is active and CAS is inactive (at the end of read cycle) WE, OE: active and either tRRH or tRCH must be met ······ tWEZ and tWPZ are effective. The faster of tOEZ and tWEZ becomes effective. The faster of (1) and (2) becomes effective. 13 µPD42S18165L, 4218165L Refresh Cycle Parameter tRAC = 50 ns tRAC = 60 ns tRAC = 70 ns MIN. MAX. MIN. MAX. MIN. MAX. Symbol Unit Notes CAS setup time tCSR 5 – 5 – 5 – ns CAS hold time (CAS before RAS refresh) tCHR 10 – 10 – 10 – ns RAS precharge CAS hold time tRPC 5 – 5 – 5 – ns RAS pulse width (CAS before RAS self refresh) tRASS 100 – 100 – 100 – µs 1 RAS precharge time (CAS before RAS self refresh) tRPS 90 – 110 – 130 – ns 1 CAS hold time (CAS before RAS self refresh) tCHS –50 – –50 – –50 – ns 1 WE hold time tWHR 15 – 15 – 15 – ns Note 1. This specification is applied only to the µPD42S18165L. 14 µPD42S18165L, 4218165L Read Cycle tRC tRAS RAS tRP VIH – VIL – tCSH tCRP UCAS LCAS tRCD tRSH tCAS VIH – VIL – tRAD tASR Address tCPN VIH – VIL – tRAH tRAL tCAH tASC Row Col. tRCH tRCS WE tRRH VIH – VIL – tWPZ tOCH tOES tCHO tWEZ tOEA OE VIH – VIL – tRAC tAA tCAC tOLZ tCLZ U I/O L I/O VOH – VOL – Hi - Z tOFC tOEZ tOFR Data out Hi - Z 15 µPD42S18165L, 4218165L Upper Byte Read Cycle tRC tRAS RAS tRP VIH – VIL – tCSH tCRP UCAS tRCD tRSH tCAS tCPN VIH – VIL – tCRP LCAS tMRH VIH – VIL – tRAD tASR Address VIH – VIL – tRAH tRAL tCAH tASC Row Col. tRCH tRCS WE tRRH VIH – VIL – tWPZ tOCH tOES tOEA OE tCHO tWEZ VIH – VIL – tRAC tAA tCAC tOLZ tOFC tOEZ tOFR tCLZ U I/O VOH – VOL – Remark L I/O: Hi-Z 16 Hi - Z Data out Hi - Z µPD42S18165L, 4218165L Lower Byte Read Cycle tRC tRAS RAS tRP VIH – VIL – tCRP UCAS tMRH VIH – VIL – tCSH tCRP LCAS tRCD tRSH tCAS VIH – VIL – tRAD tASR Address tCPN VIH – VIL – tRAH tRAL tCAH tASC Row Col. tRCH tRCS WE tRRH VIH – VIL – tWPZ tOCH tOES tOEA OE tCHO tWEZ VIH – VIL – tRAC tAA tCAC tOLZ tOFC tOEZ tOFR tCLZ L I/O VOH – VOL – Hi - Z Data out Hi - Z Remark U I/O: Hi-Z 17 µPD42S18165L, 4218165L Early Write Cycle tRC tRP tRAS RAS VIH– VIL– tCSH tCRP UCAS LCAS tRSH tRCD tCAS VIH– VIL– tRAD tASR Address WE U I/O L I/O VIH– VIL– tASC Row tCAH Col. tWCS tWCH tDS tDH VIH– VIL– VIH– VIL– Remark OE: Don’t care 18 tRAH Data in tCPN µPD42S18165L, 4218165L Upper Byte Early Write Cycle tRC tRAS RAS tRP VIH – VIL – tCSH tRCD tCRP UCAS VIH – VIL – tCRP LCAS tMRH VIH – VIL – tASR Address VIH – VIL – WE VIH – VIL – tRAD tRAH tASC Row tCAH Col. tWCS tWCH tDS U I/O tCPN tRSH tCAS VIH – VIL – tDH Data in Remark OE, L I/O: Don’t care 19 µPD42S18165L, 4218165L Lower Byte Early Write Cycle tRC tRAS RAS tRP VIH – VIL – tCRP UCAS tMRH VIH – VIL – tCSH tCRP LCAS tRCD tRSH tCAS VIH – VIL – tRAD tASR Address VIH – VIL – WE VIH – VIL – tRAH tASC Row tCAH Col. tWCS tWCH tDS L I/O VIH – VIL – Remark OE, U I/O: Don’t care 20 tDH Data in tCPN µPD42S18165L, 4218165L Late Write Cycle t RC t RAS RAS t RP VIH– VIL– t CSH t CRP UCAS LCAS t RCD t RSH t CPN t CAS VIH– VIL– t RAD t ASR Address VIH– VIL– t RAH t ASC Row t CAH Col. t CWL t RWL t RCS WE t WP VIH– VIL– t OEH OE VIH– VIL– t OED U I/O L I/O VIH– VIL– Hi-Z t DS t DH Data in 21 µPD42S18165L, 4218165L Upper Byte Late Write Cycle tRC tRAS RAS tRP VIH – VIL – tCSH tCRP tRCD tRSH tCPN tCAS UCAS VIH – VIL – tCRP LCAS tMRH VIH – VIL – tRAD tRAH tASR Address VIH – VIL – tASC Row tCAH Col. tCWL tRWL tRCS WE tWP VIH – VIL – tOEH OE VIH – VIL – tOED U I/O VIH – VIL – Remark L I/O: Don’t care 22 tDS tDH Hi - Z Data in µPD42S18165L, 4218165L Lower Byte Late Write Cycle tRC tRAS RAS tRP VIH – VIL – tCRP UCAS tMRH VIH – VIL – tCSH tCRP LCAS tRCD VIH – VIL – tCPN tCAS VIH – VIL – tRAD tRAH tASR Address tRSH tASC Row tCAH Col. tCWL tRWL tRCS WE tWP VIH – VIL – tOEH OE VIH – VIL – tOED L I/O VIH – VIL – Hi - Z tDS tDH Data in Remark U I/O: Don’t care 23 µPD42S18165L, 4218165L Read Modify Write Cycle t RWC t RAS RAS t RP VIH– VIL– t CSH t CRP UCAS LCAS t RCD t RSH t CPN t CAS VIH– VIL– t RAD t ASR Address VIH– VIL– t RAH t ASC Row t CAH Col. t RWD t AWD t CWD t RCS WE t CWL t RWL t WP VIH– VIL– t OEA OE VIH– VIL– t RAC t AA t CAC U I/O L I/O t OEH t OED VIH– VIL– t DS t DH Data in t OLZ t CLZ U I/O VOH– L I/O VOL– 24 Hi-Z t OEZ Data out Hi-Z µPD42S18165L, 4218165L Upper Byte Read Modify Write Cycle tRWC tRAS RAS tRP VIH – VIL – tCSH tCRP UCAS tRCD tCPN tRSH tCAS VIH – VIL – tCRP LCAS tMRH VIH – VIL – tRAD tASR Address VIH – VIL – tRAH tASC Row tCAH Col. tRWD tAWD tCWD tRCS WE tCWL tRWL tWP VIH – VIL – tOEA OE VIH – VIL – tRAC tAA tCAC U I/O tOEH tOED tDS VIH – VIL – tDH Data in tOLZ tCLZ U I/O VOH – VOL – Hi - Z tOEZ Data out Hi - Z Remark In this cycle, the input data to Lower I/O is ineffective. The data out of that remains Hi-Z. 25 µPD42S18165L, 4218165L Lower Byte Read Modify Write Cycle tRWC tRAS RAS tRP VIH – VIL – tCRP UCAS tMRH VIH – VIL – tCSH tCRP tRCD tCPN tRSH tCAS LCAS VIH – VIL – tRAD tASR Address VIH – VIL – tRAH tASC Row tCAH Col. tRWD tAWD tCWD tRCS WE tCWL tRWL tWP VIH – VIL – tOEA OE VIH – VIL – tRAC tAA tCAC L I/O tOEH tOED tDS VIH – VIL – tDH Data in tOLZ tCLZ L I/O VOH – VOL – Hi - Z tOEZ Data out Hi - Z Remark In this cycle, the input data to Upper I/O is ineffective. The data out of that remains Hi-Z. 26 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Read Cycle tRASP RAS VIH – VIL – tCSH tCRP UCAS LCAS tRCD tRSH tHCAS tHPC tHCAS tCP tHCAS tCP VIH – VIL – tRAD tRAH tASC Row tCAH tASC Col. tCAH Col. tRAL tCAH tASC tOFR tOFC Col. tRCH tRRH tRCS WE tCPN VIH – VIL – tASR Address tRP tRHCP tWPZ VIH – VIL – tWEZ tACP tAA tCAC tOCH OE tOEA tOLZ VIH – VIL – tRAC tAA tCAC tCLZ U I/O L I/O VOH – VOL – Hi - Z tDHC Data out tACP tAA tCAC tDHC Data out tCHO tOEZ Data out Remark In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 27 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Byte Read Cycle tRASP tRP tRHCP VIH – RAS VIL – tHPC tCSH tCRP UCAS tRCD tCP tHCAS tCP tMRH VIH – VIL – tRAD tASR Address VIH – VIL – tRAL tRAH tASC Row tASC tCAH Col. tCAH Col. tASC tCAH tOFR tOFC Col. tRCH tRRH tWPZ tRCS WE tCPN VIH – VIL – tCRP LCAS tRSH tHCAS tHCAS VIH – VIL – tWEZ tACP tAA tCAC tOCH OE tOEA tOLZ VIH – VIL – tRAC tAA tCAC tCLZ U I/O VOH – VOL – tACP tAA tCAC tCHO tCLZ tDHC tOEZ Hi - Z Data out Data out tDHC L I/O VOH – VOL – Hi - Z Data out Remarks 1. In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 2. This cycle can be used to control either UCAS or LCAS only. Or, it can be used to control UCAS or LCAS simultaneously, or at random. 28 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Read Cycle (WE Control) t RASP RAS t RP t RHCP VIH – VIL – t RSH t HCAS t CSH t CRP UCAS LCAS t HCAS t HCAS t CPN VIH – VIL – t ASR Address t RCD VIH – VIL – t RAD t RAH t ASC Row Col. t RAL t ASC tCAH t ASC t CAH Col. tCAH Col. t RCH t WPZ t RCS WE t RCS t RCH t RCH t WPZ t RRH t RCS t WPZ VIH – VIL – t OCH tCHO t OEA tWEZ t OLZ OE VIH – VIL – t RAC t AA t CAC t CLZ U I/O L I/O VOH – VOL – Hi - Z t OFR t AA t CAC t CLZ t WEZ Data out t OFC t AA Hi - Z t WEZ t CAC t OEZ t CLZ Data out Hi - Z Data out Remark In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 29 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Read Cycle (OE Control) tRASP RAS tRP tRHCP VIH – VIL – tCSH tCRP tRSH tHPC tRCD tHCAS tCP tHCAS tCP tHCAS tCPN UCAS VIH – LCAS VIL – tRAD tASR Address VIH – VIL – tRAH Row WE tASC tCAH tASC Col.A tRCS tASC tCAH Col.B tRAC tAA tCAC VIH – VIL – Col.C tRCH tOES tCHO tOEA tOFR tCAH tAA tCAC tRRH tCAC tAA tOCH tOCH OE tOFC tRAL tCHO tACP tACP tOEP tOEP tOEP tOCH tCHO VIH – VIL – tCLZ U I/O VOH – L I/O VOL – Hi - Z tOEA tOLZ tOEA tOLZ tOLZ tOEZ Data out A tCLZ tOEZ Data out B tOEZ Data out B tOEZ Data out C Hi - Z Remark In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 30 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Early Write Cycle tRASP RAS tRP VIH– VIL– tRHCP tCSH tCRP UCAS LCAS tHPC tRCD tHCAS tCP tHCAS tRSH tCP tHCAS VIH– VIL– tRAL tRAD tASR Address VIH– VIL– WE VIH– VIL– U I/O L I/O tCPN tRAH tASC Row tCAH tASC Col. tASC Col. tWCS tWCH tDS tDH VIH– VIL– tCAH Data in tWCS tDS tCAH Col. tWCH tWCS tWCH tDH tDS tDH Data in Data in Remarks 1. OE: Don’t care 2. In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 31 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Byte Early Write Cycle tRP tRASP RAS tRHCP VIH– VIL– tCSH tCRP UCAS tHPC tRCD tCP WE U I/O VIH– VIL– tRAD tRAH tASC Row tCAH tASC Col. tCP tMRH tCAH tWCS tWCH tDS tDH tWCS tRAL tCAH tASC Col. Col. tWCH tWCS tWCH VIH– VIL– VIH– VIL– tDS Data in tDH Data in tDS L I/O tHCAS VIH– VIL– tASR Address tCPN VIH– VIL– tCRP LCAS tRSH tHCAS tHCAS VIH– VIL– tDH Data in Remarks 1. OE: Don’t care 2. In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 3. This cycle can be used to control either UCAS or LCAS only. Or, it can be used to control UCAS or LCAS simultaneously, or at random. 32 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Late Write Cycle t RASP RAS VIH– VIL– t CSH t CRP UCAS LCAS t RP t RHCP t RCD t HCAS t HPC t HCAS t CP t RSH t HCAS t CP VIH– VIL– t RAD t ASR t RAH Address VIH– VIL– t RAL t ASC Row t CAH t ASC Col. t RCS Col. t WP Col. t RCS t WP t CWL t RWL t RCS t WP VIH– VIL– t OEH t OEH VIH– VIL– t OED U I/O L I/O t CAH t CWL t OEH OE t ASC t CAH t CWL WE t CPN VIH– VIL– Hi-Z t DS t DH Data in t OED Hi-Z t DS t DH Data in t OED Hi-Z t DS t DH Data in Remark In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 33 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Byte Late Write Cycle tRP tRASP tRHCP RAS VIH– VIL– UCAS tHPC tCSH tCRP tRCD tCP tHCAS tCP tMRH VIH– VIL– tRAD tASR Address VIH– VIL– tRAH tASC Row tASC tCAH Col. tCAH tRCS tWP tCWL tRWL tRCS tWP tRCS tWP VIH– VIL– tOEH tOEH VIH– VIL– tOED U I/O Col. tCWL tOEH OE tRAL tCAH tASC Col. tCWL WE tCPN VIH– VIL– tCRP LCAS tRSH tHCAS tHCAS VIH– VIL– Hi - Z Hi - Z tDH Data in tOED VIH– L I/O VIL– tDS tOED tOED Hi - Z tOED Hi - Z Hi - Z tDS tDH Data in tDS tDH Data in tOED Hi - Z Remarks 1. In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 2. This cycle can be used to control either UCAS or LCAS only. Or, it can be used to control UCAS or LCAS simultaneously, or at random. 34 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Read Modify Write Cycle t RASP RAS VIH– VIL– t CRP UCAS LCAS t RP t HPRWC t HCAS t RCD t CP t HCAS t CP t HCAS t RAD t ASR t RAH Address VIH– VIL– t RAL t ASC Row t CAH t ASC t ACP t RWD t AWD t CWD t CWL t WP t RCS t CAH Col. t ACP t CPWD t AWD t CWD t CWL t WP t RCS t CWL t RWL t WP t CPWD t AWD t CWD VIH– VIL– t AA t CAC t OEH t OEA t AA t CAC t OEH t OEH t CAC t OEA t OEA VIH– VIL– t CLZ t OLZ U I/O VOH– L I/O VOL– Hi-Z t CLZ t OED t OEZ VIH– VIL– t OED out t CLZ t OEZ t OLZ Hi-Z t DS U I/O L I/O t ASC Col. t RAC t AA OE t CAH Col. t RCS WE t CPN VIH– VIL– t OLZ Hi-Z out t DH in t DS t DH in t OED t OEZ Hi-Z out t DS t DH in Remark In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 35 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Byte Read Modify Write Cycle tRP tRASP RAS VIH– VIL– tCRP UCAS tHPRWC tHCAS tRCD VIH– VIL– tCRP LCAS tHCAS tCP tCP tMRH VIH– VIL– tRAD tRAL tCAH tASR tRAH tASC Address VIH– VIL– Row tASC Col. tCAH tASC Col. tCAH Col. tACP tRWD tAWD tCWD tRCS WE tWP tRCS tCWL tWP tCWL tRWL tWP VIH– VIL– tOEH tOEA tCLZ VOH– U I/O VOL– Hi - Z VOH– VOL– Hi - Z tOEH tCAC tCAC tOED tCLZ tOEZ tOLZ tCLZ tOED tOLZ tOEZ Hi - Z out tOEH tOEA tOEA tOED tOEZ Hi - Z out Hi - Z out tDS VIH– U I/O VIL– tAA tAA tOLZ tDS tDH tDH in in tDS L I/O tRCS tCPWD tAWD tCWD VIH– VIL– tCAC L I/O tACP tCPWD tAWD tCWD tCWL tRAC tAA OE tCPN tHCAS VIH– VIL– tDH in Remarks 1. In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 2. This cycle can be used to control either UCAS or LCAS only. Or, it can be used to control UCAS or LCAS simultaneously, or at random. 36 µPD42S18165L, 4218165L Hyper Page Mode (EDO) Read and Write Cycle tRASP RAS tRP tRHCP VIH – VIL – tCSH tCRP UCAS LCAS tHCAS tHCAS tCP VIH – VIL – tRAD tRAH tASC Row tCAH Col. tASC OE Col. Col. tRCH tWCS VIH – VIL – VIH – VIL – VOH – VOL – Hi - Z tOEZ tDHC Data out tWEZ Hi - Z Data out tDS U I/O L I/O tWCH tCHO tACP tAA tCAC tOCH tOEA tOLZ tRAC tAA tCAC tCLZ U I/O L I/O tCPN tRAL tCAH tASC tCAH tRCS WE tCP VIH – VIL – tASR Address tRSH tHCAS tHPC tRCD VIH – VIL – tDH Data in Remark In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle. 37 µPD42S18165L, 4218165L CAS Before RAS Self Refresh Cycle (Only for the µPD42S18165L) tRASS RAS tRPS VIH – VIL – tCRP tRPC tCHS UCAS LCAS VIH – VIL – tCPN t CSR Remark Address, WE, OE: Don’t care L I/O, U I/O: Hi-Z Cautions on Use of CAS Before RAS Self Refresh CAS before RAS self refresh can be used independently when used in combination with distributed CAS before RAS long refresh; However, when used in combination with burst CAS before RAS long refresh or with long RAS only refresh (both distributed and burst), the following cautions must be observed. (1) Normal Combined Use of CAS Before RAS Self Refresh and Burst CAS Before RAS Long Refresh When CAS before RAS self refresh and burst CAS before RAS long refresh are used in combination, please perform CAS before RAS refresh 1,024 times within a 16 ms interval just before and after setting CAS before RAS self refresh. (2) Normal Combined Use of CAS Before RAS Self Refresh and Long RAS Only Refresh When CAS before RAS self refresh and RAS only refresh are used in combination, please perform RAS only refresh 1,024 times within a 16 ms interval just before and after setting CAS before RAS self refresh. (3) If tRASS (MIN.) is not satisfied at the beginning of CAS before RAS self refresh cycles (tRAS < 100 µs), CAS before RAS refresh cycles will be executed one time. If 10 µs < tRAS < 100 µs, RAS precharge time for CAS before RAS self refresh (tRPS) is applied. And refresh cycles (1,024/128 ms) should be met. For details, please refer to How to use DRAM User’s Manual. 38 µPD42S18165L, 4218165L CAS Before RAS Refresh Cycle tRC tRC tRAS RAS tRAS tRP VIH– VIL– tCRP tCSR UCAS LCAS tRP tCHR tRPC tCSR tCHR tRPC tCPN VIH– VIL– Remark Address, WE, OE: Don’t care L I/O, U I/O: Hi-Z RAS Only Refresh Cycle tRC tRAS RAS tRC tRP tRAS tRP VIH– VIL– tCRP tRPC tCRP tCPN UCAS VIH– LCAS VIL– tASR Address VIH– VIL– tRAH Row Remark WE, OE: Don’t care tASR tRAH Row L I/O, U I/O: Hi-Z 39 µPD42S18165L, 4218165L Hidden Refresh Cycle (Read) tRC tRC tRAS tRP tRAS tRP VIH – RAS VIL – tCRP tRCD tCHR tRSH tCPN UCAS VIH – LCAS VIL – tASR Address VIH – VIL – tRAD tRAH tRAL tCAH tASC Row Col. tRCH tRCS WE tWPZ tWHR VIH – VIL – tWEZ tOES tOEA OE tCHO VIH – VIL – tRAC tAA tCAC tOLZ tCLZ U I/O VOH – L I/O VOL – 40 Hi - Z tOFR tOFC tOEZ Data out Hi - Z PD42S18165L, 4218165L Hidden Refresh Cycle (Write) tRC tRC tRAS RAS tRP tRAS tRP VIH– VIL– tCRP tRCD tRSH tCHR tCPN UCAS VIH– LCAS VIL– tRAD tASR Address VIH– VIL– WE VIH– VIL– tRAH tASC Row tCAH Col. tWCS tWCH tDS U I/O L I/O VIH– VIL– tDH Data in Remark OE: Don’t care 41 PD42S18165L, 4218165L Package Drawings 50PIN PLASTIC TSOP(II) (400 mil) 50 26 1 P E F detail of lead end 25 A H J K G I N C D M B L M NOTE Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 21.17 MAX. 0.834 MAX. B 1.0 MAX. 0.040 MAX. C 0.8 (T.P.) 0.031 (T.P.) D 0.32 +0.08 –0.07 0.013±0.003 E 0.1±0.05 0.004±0.002 F 1.2 MAX. 0.048 MAX. G 0.97 0.038 H 11.76±0.2 0.463±0.008 I 10.16±0.1 0.400±0.004 J 0.8±0.2 0.031 +0.009 –0.008 K 0.145 +0.025 –0.015 0.006±0.001 L 0.5±0.1 0.020 +0.004 –0.005 M 0.13 0.005 N 0.10 0.004 P 3 +7 –3 3 +7 –3 S50G5-80-7JF4 42 PD42S18165L, 4218165L 42 PIN PLASTIC SOJ (400 mil) 22 1 21 F E G U J C 42 D B H I T P Q K M N M P42LE-400A NOTE Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES B 27.56 +0.2 –0.35 1.085+0.008 –0.014 C 10.16 0.400 D 11.18 ± 0.2 0.440 ± 0.008 E 1.08 ± 0.15 0.043+0.006 –0.007 F 0.74 0.029 G 3.5 ± 0.2 0.138 ± 0.008 H 2.545 ± 0.2 0.100 ± 0.008 I 0.8 MIN. 0.031 MIN. J 2.6 0.102 K 1.27 (T.P.) 0.050 (T.P.) M 0.40 ± 0.10 0.016 +0.004 –0.005 N 0.12 0.005 P 9.4 ± 0.20 0.370 ± 0.008 Q 0.10 0.004 T R 0.85 U 0.20 +0.10 –0.05 R 0.033 0.008 +0.004 –0.002 43 PD42S18165L, 4218165L Recommended Soldering Conditions The following conditions (see tables below and next page) must be met for soldering conditions of the µ PD42S18165L, 4218165L. For more details, refer to our document “SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL” (C10535E). Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions. Types of Surface Mount Device µ PD42S18165LG5-7JF, 4218165LG5-7JF: 50-pin plastic TSOP (II) (400 mil) Soldering process Infrared ray reflow Soldering conditions Peak temperature of package surface: 235 °C or lower, Reflow time: 30 seconds or less (210 °C or higher), Symbol IR35-107-3 Number of reflow processes: MAX. 3 Exposure limit: 7 daysNote (10 hours pre-baking is required at 125 °C afterwards) Peak temperature of package: 215 °C or lower, VPS VP15-107-3 Reflow time: 40 seconds or less (200 °C or higher), Number of reflow processes: MAX. 3 Exposure limit: 7 daysNote (10 hours pre-baking is required at 125 °C afterwards) Partial heating method Terminal temperature: 300 °C or lower, – Time: 3 seconds or lower (Per side of the package). Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less. Caution Do not apply more than one soldering method at any one time, except for “Partial heating method”. 44 PD42S18165L, 4218165L µ PD42S18165LLE, 4218165LLE: 42-pin plastic SOJ (400 mil) Soldering process Soldering conditions Symbol Infrared ray reflow Peak temperature of package surface: 235 °C or lower, Reflow time: 30 seconds or less (210 °C or higher), Number of reflow processes: MAX. 3 Exposure limit: 7 daysNote (20 hours pre-baking is required at 125 °C afterwards) IR35-207-3 VPS Peak temperature of package: 215 °C or lower, Reflow time: 40 seconds or less (200 °C or higher), Number of reflow processes: MAX. 3 Exposure limit: 7 daysNote (20 hours pre-baking is required at 125 °C afterwards) VP15-207-3 Partial heating method Terminal temperature: 300 °C or lower, Time: 3 seconds or less (Per side of the package). Note – Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less. Caution Do not apply more than one soldering method at any one time, except for “Partial heating method”. 45 PD42S18165L, 4218165L [MEMO] 46 PD42S18165L, 4218165L NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. 47 µPD42S18165L, 4218165L [MEMO] No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96.5 48