DATA SHEET MOS INTEGRATED CIRCUIT µPD16724 480-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 256-GRAY SCALE) DESCRIPTION The µPD16724 is a source driver for TFT-LCDs capable of dealing with displays with 256-gray scale. Data input is based on digital input configured as 8 bits by 6 dots (2 pixels), which can realize a full-color display of 16,777,216 colors by output of 256 values γ -corrected by an internal D/A converter and 9-by-2 external power modules. Because the output dynamic range is as large as VSS2 + 0.2 V to VDD2 − 0.2 V, level inversion operation of the LCD’s common electrode is rendered unnecessary. It corresponds to the 2 x 2-dot inversion drive at the time of singlesided mounting. The maximum clock frequency is 55 MHz when driving at 3.0 V. FEATURES • CMOS level input • 480 outputs • Input of 8 bits (gray scale data) by 6 dots • Capable of outputting 256 values by means of 9-by-2 external power modules (18 units) and a D/A converter ★ • Logic power supply voltage (VDD1): 2.3 to 3.6 V • Driver power supply voltage (VDD2): 12.0 to 15.0 V (switchable: LPC) • Output dynamic range: VSS2 + 0.2 V to VDD2 − 0.2 V • High-speed data transfer: fCLK = 55 MHz MAX. (internal data transfer speed when operating at VDD1 = 3.0 V) • Apply for 2 x 2 dot-line inversion • Output voltage polarity inversion function (POL) • Input data inversion function (POL21, POL22) • Output reset control (MODE1) • Slew rate control mode switching (MODE2) • Slew rate control (SRC1, SRC2) • Bias current control (LPC) ORDERING INFORMATION Part Number Package µPD16724N-xxx TCP (TAB package) Remark The TCP’s external shape is customized. To order the required shape, so please contact one of our sales representatives. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information. Document No. S16086EJ1V0DS00 (1st edition) Date Published March 2003 NS CP (K) Printed in Japan The mark ★ shows major revised points. 2002 µPD16724 ★ 1. BLOCK DIAGRAM STHR R,/L CLK STB STHL VDD1 VSS1 80-bit bidirectional shift register C1 C2 C79 C80 D00-D07 D10-D17 D20-D27 D30-D37 D40-D47 D50-D57 POL21, POL22 MODE1, MODE2 SRC1, SRC2 LPC Data register Latch POL VDD2 Level shifter VSS2 D/A converter V0-V17 Voltage follower output S1 S2 S3 S480 Remark /xxx indicates active low signal. 2 Data Sheet S16086EJ1V0DS µPD16724 2. PIN CONFIGURATION (µPD16724N-xxx) (Copper Foil Surface, Face-up) STHL D57 D56 : D51 D50 D47 D46 : D41 D40 D37 D36 : D31 D30 SRC2 MODE2 VDD1 R,/L V17 V16 V15 V14 V13 V12 V11 V10 V9 VDD2 VSS2 V8 V7 V6 V5 V4 V3 V2 V1 V0 MODE1 VSS1 LPC CLK SRC1 STB POL POL22 POL21 D27 D26 : D21 D20 D17 D16 : D11 D10 D07 D06 : D01 D00 STHR S480 S479 S478 Copper Foil Surface S3 S2 S1 Remark This figure does not specify the TCP package. Data Sheet S16086EJ1V0DS 3 µPD16724 3. PIN FUNCTIONS (1/3) Pin Symbol Pin Name S1 to S480 Driver D00 to D07 Port 1 display data I/O Output Input Description The D/A converted 256-gray-scale analog voltage is output. The display data is input with a width of 48 bits, viz., the gray scale data D10 to D17 (8 bits) by 6 dots (2 pixels). D20 to D27 DX0: LSB, DX7: MSB D30 to D37 Port 2 display data Input Shift direction control Input D40 to D47 D50 to D57 R,/L The shift direction control pin of shift register. The shift directions of the shift registers are as follows. R,/L = H (right shift) : STHR (input) →S1→S480→STHL (output) R,/L = L (left shift) : STHL (input) →S480→S1→STHR (output) STHR Right shift start pulse I/O These are the start pulse input/output pins when connected in cascade. Loading of display data starts when a high level is read at the rising edge of CLK. A high level should be input as the pulse of one cycle of the clock signal. If the start pulse input is more than 2 CLK, the first 1 CLK of the high-level input is valid. STHL Left shift start pulse I/O At the rising edge of the 80th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. The high-level width outputted is 1 CLK. For right shift, STHR is input and STHL is output. For left shift, STHL is input and STHR is output. CLK Shift clock Input The shift clock input pin of shift register. The display data is loaded into the data register at the rising edge. If 82 clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB’s rising edge. STB Latch Input The contents of the data register are transferred to the latch circuit at the rising edge. In addition, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period. SRC1 Slew rate control 1 Input SRC1 is good at the time of MODE2 = H. SRC1 is pulled up to the VDD1 in the IC. SRC1 = H: High slew rate mode (large current consumption) SRC1 = L: Low slew rate mode (small current consumption) Refer to 6. RELATIONSHIP BETWEEN MODE2, SRC1 AND SRC2 for details. SRC2 Slew rate control 2 Input SRC2 is good at the time of MODE2 = L or open. SRC2 is pulled down to the VSS1 in the IC. SRC2 = H: High slew rate period is twice the STB width from STB rising. SRC2 = L or open: High slew rate period is 3 times the STB width from STB rising. Refer to 6. RELATIONSHIP BETWEEN MODE2, SRC1 AND SRC2 for details. 4 Data Sheet S16086EJ1V0DS µPD16724 (2/3) Pin Symbol POL Pin Name Polarity input I/O Input Description The relation between POL and output is as follows. POL S12n, S12n −3, S12n −4, S12n −7, S12n −8, S12n −11 Note S12n −1, S12n −2, S12n −5, S12n −6, S12n −9, S12n −10 Note L V0 to V8 V9 to V17 H V9 to V17 V0 to V8 Note n = 1,2, ..., 80 Input of the POL signal is allowed the setup time (tPOL-STB) with respect to STB’s rising edge. MODE1 = H or open: When it switches such as POL = H→L or L→H, all output pins are output reset during STB = H. When it does not switch, all output pins become Hi-Z during STB = H. Refer to 7. RELATIONSHIP BETWEEN MODE, STB, SRC, ORC, POL AND OUTPUT WAVEFORM for details. MODE1 Output reset control Input MODE1 is pulled up to the VDD1 in the IC. MODE1 = H or open: During an STB = H period, output is reset between alloutput pins. MODE1 = L: During an STB = H period, output is Hi-Z between all-output pins. MODE2 Slew rate control Input mode switching MODE2 is pulled down to the VSS1 in the IC. MODE2 = H: High slew rate period is controlled from the outside (SRC1 is good). MODE2 = L or open: High slew rate period is formed inside the IC (SRC2 is good). POL21, Data inversion Input POL22 Select of inversion or no inversion for input data. POL21: Data inversion or no inversion of Port1 POL22: Data inversion or no inversion of Port2 POL21, POL22 = H: Data are inverted in the IC. POL21, POL22 = L: Data are not inverted in the IC. LPC Bias current control Input LPC is pulled up to the VDD1 in the IC. LPC = H or open: VDD2 = 12.0 V to (13.0 V) normal static-current-consumption mode LPC = L: VDD2 = (13.0 V) to 15.0 V static-current-consumption cut mode V0 to V17 γ -corrected power supplies Input Input the γ -corrected power supplies from outside by using operational amplifier. During the gray-scale-voltage output, be sure to keep the gray scale level power supply at a constant level. Make sure to maintain the following relationships. VDD2 − 0.2 V ≥ V0 > V1 > V2 > ... ... > V7 > V8 ≥ 0.5 VDD2 + 0.5 V 0.5 VDD2 − 0.5 V ≥ V9 > V10 > V11 > ... ..., > V16 > V17 ≥ 0.5 VSS2 + 0.2 V or VDD2 − 0.2 V ≥ V8 > V7 > V6 > ... ... > V1 > V0 ≥ 0.5 VDD2 + 0.5 V 0.5 VDD2 − 0.5 V ≥ V17 > V16 > V15 > ... ... > V10 > V9 ≥ 0.5 VSS2 + 0.2 V Remark Hi-Z: High impedance Data Sheet S16086EJ1V0DS 5 µPD16724 (3/3) Pin Symbol Pin Name I/O Description VDD1 Logic power supply − 2.3 to 3.6 V VDD2 Driver power supply − 12.0 to 15.0 V VSS1 Logic ground − Grounding VSS2 Driver ground − Grounding Cautions 1. The power start sequence must be VDD1, logic input, VDD2 and V0-V17 in that order. Reverse this sequence to shut down. 2. To stabilize the supply voltage, please be sure to insert a 0.47 µF bypass capacitor between VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.1 µF is also advised between the γ-corrected power supply terminals (V0, V1, V2, ....., V17) and VSS2. 6 Data Sheet S16086EJ1V0DS µPD16724 4. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE The µPD16724 incorporates a 8-bit D/A converter which can output respectively gray scale voltages of differing polarity with respect to the LCD’s counter electrode voltage as shown in Figure 4−1. The D/A converter consists of ladder resistors and switches. The ladder resistors (r0 to r253) are designed so that the ratio of LCD panel (γ -compensated voltages to V0’-V255’ and V0”-V255” is almost equivalent. For the 2 sets of nine γ -compensated power supplies, V0-V8 and V9-V17, respectively, input gray scale voltages of the same polarity with respect to the 0.5 VDD2. Figure 4−1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2, VSS2 and 0.5 VDD2, and γ -corrected voltages V0-V17 and the input data. Be sure to maintain the voltage relationships below. VDD2 − 0.2 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2 + 0.5 V 0.5 VDD2 − 0.5 V ≥ V9 > V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 ≥ 0.5 VSS2 + 0.2 V or VDD2 − 0.2 V ≥ V8 > V7 > V6 > V5 > V4 > V3 > V2 > V1 > V0 ≥ 0.5 VDD2 + 0.5 V 0.5 VDD2 − 0.5 V ≥ V17 > V16 > V15 > V14 > V13 > V12 > V11 > V10 > V9 ≥ 0.5 VSS2 + 0.2 V Also, V7-V8, V8-V9 and V9-V10 are left open in the IC. Be sure to input the gray scale level power supply at a constant level to the all pins. Figures 4−2 and 4−3 show the relation ship between the input data and the output voltage and the resistance values of the resistor strings. ★ Figure 4− −1. Relationship between Input Data and γ -corrected Power Supplies VDD2 0.2 V V0 V1 15 V2 48 V3 64 V4 64 V5 32 V6 31 V7 V8 0.5 V 0.5 VDD2 0.5 V V9 V10 31 V11 32 V12 64 V13 64 V14 48 V15 15 V16 V17 0.2 V VSS2 00 01 20 40 80 C0 F0 FE FF Input Data (HEX) Data Sheet S16086EJ1V0DS 7 µPD16724 Figure 4− −2. γ -corrected Voltages and Ladder Resistors Ratio ★ V0 V255’ V9 V0’’ V254’ V10 V1’’ r253 V1 r252 r0 V253’ V2’’ r251 r1 V252’ V3’’ r250 r2 r240 r29 V241’ V31’’ r239 V2 r30 V240’ V11 r238 V32’’ r31 V239’ V33’’ r237 r32 r32 r237 V33’ V239’’ r31 V6 r238 V32’ V15 r30 V240’’ r239 V31’ V241’’ r240 r2 V3’ r1 r251 V2’ V253’’ r0 r252 V7 V1’ V16 V8 V0’ V17 V254’’ r253 V255’’ rn Ratio 1 Ratio 2 Value rn Ratio 1 Ratio 2 Value rn Ratio 1 Ratio 2 Value rn Ratio 1 Ratio 2 Value r0 3.58 0.0084 129 r64 1.33 0.0031 48 r128 1.08 0.0025 39 r192 1.25 0.0029 45 r1 3.58 0.0084 129 r65 1.33 0.0031 48 r129 1.08 0.0025 39 r193 1.25 0.0029 45 r2 3.58 0.0084 129 r66 1.33 0.0031 48 r130 1.00 0.0023 36 r194 1.33 0.0031 48 r3 3.58 0.0084 129 r67 1.33 0.0031 48 r131 1.00 0.0023 36 r195 1.33 0.0031 48 r4 3.58 0.0084 129 r68 1.33 0.0031 48 r132 1.00 0.0023 36 r196 1.33 0.0031 48 r5 3.50 0.0082 126 r69 1.33 0.0031 48 r133 1.00 0.0023 36 r197 1.33 0.0031 48 r6 3.50 0.0082 126 r70 1.25 0.0029 45 r134 1.08 0.0025 39 r198 1.33 0.0031 48 r7 3.42 0.0080 123 r71 1.25 0.0029 45 r135 1.08 0.0025 39 r199 1.33 0.0031 48 r8 3.42 0.0080 123 r72 1.25 0.0029 45 r136 1.08 0.0025 39 r200 1.33 0.0031 48 r9 3.33 0.0078 120 r73 1.25 0.0029 45 r137 1.08 0.0025 39 r201 1.42 0.0033 51 r10 3.25 0.0076 117 r74 1.25 0.0029 45 r138 1.08 0.0025 39 r202 1.42 0.0033 51 r11 3.25 0.0076 117 r75 1.25 0.0029 45 r139 1.08 0.0025 39 r203 1.42 0.0033 51 r12 3.17 0.0074 114 r76 1.25 0.0029 45 r140 1.08 0.0025 39 r204 1.42 0.0033 51 r13 3.08 0.0072 111 r77 1.25 0.0029 45 r141 1.08 0.0025 39 r205 1.42 0.0033 51 r14 3.08 0.0072 111 r78 1.25 0.0029 45 r142 1.08 0.0025 39 r206 1.42 0.0033 51 r15 3.00 0.0070 108 r79 1.25 0.0029 45 r143 1.08 0.0025 39 r207 1.50 0.0035 54 r16 2.92 0.0068 105 r80 1.17 0.0027 42 r144 1.08 0.0025 39 r208 1.50 0.0035 54 r17 2.83 0.0066 102 r81 1.17 0.0027 42 r145 1.08 0.0025 39 r209 1.50 0.0035 54 r18 2.83 0.0066 102 r82 1.17 0.0027 42 r146 1.08 0.0025 39 r210 1.50 0.0035 54 r19 2.75 0.0064 99 r83 1.17 0.0027 42 r147 1.08 0.0025 39 r211 1.50 0.0035 54 r20 2.67 0.0062 96 r84 1.17 0.0027 42 r148 1.08 0.0025 39 r212 1.58 0.0037 57 r21 2.67 0.0062 96 r85 1.17 0.0027 42 r149 1.08 0.0025 39 r213 1.58 0.0037 57 r22 2.58 0.0060 93 r86 1.17 0.0027 42 r150 1.08 0.0025 39 r214 1.58 0.0037 57 r23 2.50 0.0058 90 r87 1.17 0.0027 42 r151 1.08 0.0025 39 r215 1.58 0.0037 57 r24 2.50 0.0058 90 r88 1.17 0.0027 42 r152 1.08 0.0025 39 r216 1.67 0.0039 60 r25 2.42 0.0056 87 r89 1.17 0.0027 42 r153 1.08 0.0025 39 r217 1.67 0.0039 60 r26 2.33 0.0054 84 r90 1.17 0.0027 42 r154 1.08 0.0025 39 r218 1.67 0.0039 60 r27 2.33 0.0054 84 r91 1.17 0.0027 42 r155 1.08 0.0025 39 r219 1.75 0.0041 63 r28 2.25 0.0053 81 r92 1.17 0.0027 42 r156 1.08 0.0025 39 r220 1.75 0.0041 63 r29 2.25 0.0053 81 r93 1.08 0.0025 39 r157 1.08 0.0025 39 r221 1.75 0.0041 63 r30 2.17 0.0051 78 r94 1.08 0.0025 39 r158 1.08 0.0025 39 r222 1.83 0.0043 66 r31 2.17 0.0051 78 r95 1.08 0.0025 39 r159 1.08 0.0025 39 r223 1.83 0.0043 66 r32 2.08 0.0049 75 r96 1.08 0.0025 39 r160 1.08 0.0025 39 r224 1.83 0.0043 66 r33 2.08 0.0049 75 r97 1.08 0.0025 39 r161 1.08 0.0025 39 r225 1.92 0.0045 69 r34 2.00 0.0047 72 r98 1.08 0.0025 39 r162 1.08 0.0025 39 r226 1.92 0.0045 69 r35 2.00 0.0047 72 r99 1.08 0.0025 39 r163 1.08 0.0025 39 r227 2.00 0.0047 72 r36 1.92 0.0045 69 r100 1.08 0.0025 39 r164 1.08 0.0025 39 r228 2.00 0.0047 72 r37 1.92 0.0045 69 r101 1.08 0.0025 39 r165 1.08 0.0025 39 r229 2.08 0.0049 75 r38 1.92 0.0045 69 r102 1.08 0.0025 39 r166 1.08 0.0025 39 r230 2.08 0.0049 75 r39 1.83 0.0043 66 r103 1.08 0.0025 39 r167 1.08 0.0025 39 r231 2.17 0.0051 78 r40 1.83 0.0043 66 r104 1.08 0.0025 39 r168 1.08 0.0025 39 r232 2.17 0.0051 78 r41 1.83 0.0043 66 r105 1.08 0.0025 39 r169 1.08 0.0025 39 r233 2.25 0.0053 81 r42 1.75 0.0041 63 r106 1.08 0.0025 39 r170 1.17 0.0027 42 r234 2.33 0.0054 84 r43 1.75 0.0041 63 r107 1.08 0.0025 39 r171 1.17 0.0027 42 r235 2.33 0.0054 84 r44 1.75 0.0041 63 r108 1.08 0.0025 39 r172 1.17 0.0027 42 r236 2.42 0.0056 87 r45 1.67 0.0039 60 r109 1.08 0.0025 39 r173 1.17 0.0027 42 r237 2.50 0.0058 90 r46 1.67 0.0039 60 r110 1.08 0.0025 39 r174 1.17 0.0027 42 r238 2.58 0.0060 93 r47 1.67 0.0039 60 r111 1.08 0.0025 39 r175 1.17 0.0027 42 r239 2.67 0.0062 96 r48 1.67 0.0039 60 r112 1.08 0.0025 39 r176 1.17 0.0027 42 r240 2.75 0.0064 99 r49 1.58 0.0037 57 r113 1.08 0.0025 39 r177 1.17 0.0027 42 r241 2.83 0.0066 102 r50 1.58 0.0037 57 r114 1.08 0.0025 39 r178 1.17 0.0027 42 r242 2.92 0.0068 105 r51 1.58 0.0037 57 r115 1.08 0.0025 39 r179 1.17 0.0027 42 r243 3.00 0.0070 108 r52 1.58 0.0037 57 r116 1.08 0.0025 39 r180 1.17 0.0027 42 r244 3.17 0.0074 114 r53 1.50 0.0035 54 r117 1.08 0.0025 39 r181 1.17 0.0027 42 r245 3.33 0.0078 120 r54 1.50 0.0035 54 r118 1.08 0.0025 39 r182 1.17 0.0027 42 r246 3.42 0.0080 123 r55 1.50 0.0035 54 r119 1.08 0.0025 39 r183 1.17 0.0027 42 r247 3.58 0.0084 129 r56 1.50 0.0035 54 r120 1.08 0.0025 39 r184 1.25 0.0029 45 r248 3.83 0.0089 138 r57 1.42 0.0033 51 r121 1.08 0.0025 39 r185 1.25 0.0029 45 r249 4.08 0.0095 147 r58 1.42 0.0033 51 r122 1.08 0.0025 39 r186 1.25 0.0029 45 r250 4.33 0.0101 156 r59 1.42 0.0033 51 r123 1.08 0.0025 39 r187 1.25 0.0029 45 r251 4.67 0.0109 168 r60 1.42 0.0033 51 r124 1.08 0.0025 39 r188 1.25 0.0029 45 r252 5.00 0.0117 180 r61 1.42 0.0033 51 r125 1.08 0.0025 39 r189 1.25 0.0029 45 r253 5.50 0.0128 r62 1.42 0.0033 51 r126 1.08 0.0025 39 r190 1.25 0.0029 45 Total resistance r63 1.33 0.0031 48 r127 1.08 0.0025 39 r191 1.25 0.0029 45 Minimum resistance value 198 15423 36 Remark The resistance ratio1 is a relative ratio in the case of setting the minimum resistance value to 1. The resistance ratio2 is a relative ratio in the case of setting the total resistance to 1. 8 Data Sheet S16086EJ1V0DS µPD16724 ★ Figure 4− −3. Relationship between Input Data and Output Voltage (Positive side 1/2) VDD2 − 0.2 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2 + 0.5 V (POL21, POL22 = L) Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Output Voltage V0' V1' V2' V3' V4' V5' V6' V7' V8' V9' V10' V11' V12' V13' V14' V15' V16' V17' V18' V19' V20' V21' V22' V23' V24' V25' V26' V27' V28' V29' V30' V31' V32' V33' V34' V35' V36' V37' V38' V39' V40' V41' V42' V43' V44' V45' V46' V47' V48' V49' V50' V51' V52' V53' V54' V55' V56' V57' V58' V59' V60' V61' V62' V63' V8 V7 V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V7+(V6-V7) X V6 V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X V6+(V5-V6) X 129 258 387 516 645 771 897 1020 1143 1263 1380 1497 1611 1722 1833 1941 2046 2148 2250 2349 2445 2541 2634 2724 2814 2901 2985 3069 3150 3231 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 78 153 228 300 372 441 510 579 645 711 777 840 903 966 1026 1086 1146 1206 1263 1320 1377 1434 1488 1542 1596 1650 1701 1752 1803 1854 1905 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 Data 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH 5BH 5CH 5DH 5EH 5FH 60H 61H 62H 63H 64H 65H 66H 67H 68H 69H 6AH 6BH 6CH 6DH 6EH 6FH 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH Output Voltage V64' V65' V66' V67' V68' V69' V70' V71' V72' V73' V74' V75' V76' V77' V78' V79' V80' V81' V82' V83' V84' V85' V86' V87' V88' V89' V90' V91' V92' V93' V94' V95' V96' V97' V98' V99' V100' V101' V102' V103' V104' V105' V106' V107' V108' V109' V110' V111' V112' V113' V114' V115' V116' V117' V118' V119' V120' V121' V122' V123' V124' V125' V126' V127' Data Sheet S16086EJ1V0DS V5 V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X V5+(V4-V5) X 48 96 144 192 240 288 336 381 426 471 516 561 606 651 696 741 786 828 870 912 954 996 1038 1080 1122 1164 1206 1248 1290 1332 1371 1410 1449 1488 1527 1566 1605 1644 1683 1722 1761 1800 1839 1878 1917 1956 1995 2034 2073 2112 2151 2190 2229 2268 2307 2346 2385 2424 2463 2502 2541 2580 2619 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 9 µPD16724 Figure 4− −3. Relationship between Input Data and Output Voltage (Positive side 2/2) ★ VDD2 − 0.2 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2 + 0.5 V (POL21, POL22 = L) Data 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9AH 9BH 9CH 9DH 9EH 9FH A0H A1H A2H A3H A4H A5H A6H A7H A8H A9H AAH ABH ACH ADH AEH AFH B0H B1H B2H B3H B4H B5H B6H B7H B8H B9H BAH BBH BCH BDH BEH BFH 10 Output Voltage V128' V129' V130' V131' V132' V133' V134' V135' V136' V137' V138' V139' V140' V141' V142' V143' V144' V145' V146' V147' V148' V149' V150' V151' V152' V153' V154' V155' V156' V157' V158' V159' V160' V161' V162' V163' V164' V165' V166' V167' V168' V169' V170' V171' V172' V173' V174' V175' V176' V177' V178' V179' V180' V181' V182' V183' V184' V185' V186' V187' V188' V189' V190' V191' V4 V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X V4+(V3-V4) X 39 78 117 153 189 225 261 300 339 378 417 456 495 534 573 612 651 690 729 768 807 846 885 924 963 1002 1041 1080 1119 1158 1197 1236 1275 1314 1353 1392 1431 1470 1509 1548 1587 1626 1665 1707 1749 1791 1833 1875 1917 1959 2001 2043 2085 2127 2169 2211 2253 2298 2343 2388 2433 2478 2523 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 Data C0H C1H C2H C3H C4H C5H C6H C7H C8H C9H CAH CBH CCH CDH CEH CFH D0H D1H D2H D3H D4H D5H D6H D7H D8H D9H DAH DBH DCH DDH DEH DFH E0H E1H E2H E3H E4H E5H E6H E7H E8H E9H EAH EBH ECH EDH EEH EFH F0H F1H F2H F3H F4H F5H F6H F7H F8H F9H FAH FBH FCH FDH FEH FFH Output Voltage V192' V193' V194' V195' V196' V197' V198' V199' V200' V201' V202' V203' V204' V205' V206' V207' V208' V209' V210' V211' V212' V213' V214' V215' V216' V217' V218' V219' V220' V221' V222' V223' V224' V225' V226' V227' V228' V229' V230' V231' V232' V233' V234' V235' V236' V237' V238' V239' V240' V241' V242' V243' V244' V245' V246' V247' V248' V249' V250' V251' V252' V253' V254' V255' Data Sheet S16086EJ1V0DS V3 V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V2 V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V1 V0 45 90 135 183 231 279 327 375 423 471 522 573 624 675 726 777 831 885 939 993 1047 1104 1161 1218 1275 1335 1395 1455 1518 1581 1644 1710 1776 1842 1911 1980 2052 2124 2199 2274 2352 2430 2511 2595 2679 2766 2856 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 96 195 297 402 510 624 744 867 996 1134 1281 1437 1605 / / / / / / / / / / / / / 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 µPD16724 ★ Figure 4− −3. Relationship between Input Data and Output Voltage (Negative side 1/2) 0.5 VDD2 − 0.5 V ≥ V9 > V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 ≥ VSS2 + 0.2 V (POL21, POL22 = L) Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Output Voltage V0" V1" V2" V3" V4" V5" V6" V7" V8" V9" V10" V11" V12" V13" V14" V15" V16" V17" V18" V19" V20" V21" V22" V23" V24" V25" V26" V27" V28" V29" V30" V31" V32" V33" V34" V35" V36" V37" V38" V39" V40" V41" V42" V43" V44" V45" V46" V47" V48" V49" V50" V51" V52" V53" V54" V55" V56" V57" V58" V59" V60" V61" V62" V63" V9 V10 V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11 V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X 3180 3051 2922 2793 2664 2538 2412 2289 2166 2046 1929 1812 1698 1587 1476 1368 1263 1161 1059 960 864 768 675 585 495 408 324 240 159 78 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 3309 1878 1803 1728 1656 1584 1515 1446 1377 1311 1245 1179 1116 1053 990 930 870 810 750 693 636 579 522 468 414 360 306 255 204 153 102 51 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 1956 Data 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH 5BH 5CH 5DH 5EH 5FH 60H 61H 62H 63H 64H 65H 66H 67H 68H 69H 6AH 6BH 6CH 6DH 6EH 6FH 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH Output Voltage V64" V65" V66" V67" V68" V69" V70" V71" V72" V73" V74" V75" V76" V77" V78" V79" V80" V81" V82" V83" V84" V85" V86" V87" V88" V89" V90" V91" V92" V93" V94" V95" V96" V97" V98" V99" V100" V101" V102" V103" V104" V105" V106" V107" V108" V109" V110" V111" V112" V113" V114" V115" V116" V117" V118" V119" V120" V121" V122" V123" V124" V125" V126" V127" Data Sheet S16086EJ1V0DS V12 V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X 2610 2562 2514 2466 2418 2370 2322 2277 2232 2187 2142 2097 2052 2007 1962 1917 1872 1830 1788 1746 1704 1662 1620 1578 1536 1494 1452 1410 1368 1326 1287 1248 1209 1170 1131 1092 1053 1014 975 936 897 858 819 780 741 702 663 624 585 546 507 468 429 390 351 312 273 234 195 156 117 78 39 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 2658 11 µPD16724 Figure 4− −3. Relationship between Input Data and Output Voltage (Negative side 2/2) ★ 0.5 VDD2 − 0.5 V ≥ V9 > V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 ≥ VSS2 + 0.2 V (POL21, POL22 = L) Data 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9AH 9BH 9CH 9DH 9EH 9FH A0H A1H A2H A3H A4H A5H A6H A7H A8H A9H AAH ABH ACH ADH AEH AFH B0H B1H B2H B3H B4H B5H B6H B7H B8H B9H BAH BBH BCH BDH BEH BFH 12 Output Voltage V128" V129" V130" V131" V132" V133" V134" V135" V136" V137" V138" V139" V140" V141" V142" V143" V144" V145" V146" V147" V148" V149" V150" V151" V152" V153" V154" V155" V156" V157" V158" V159" V160" V161" V162" V163" V164" V165" V166" V167" V168" V169" V170" V171" V172" V173" V174" V175" V176" V177" V178" V179" V180" V181" V182" V183" V184" V185" V186" V187" V188" V189" V190" V191" V13 V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X 2529 2490 2451 2415 2379 2343 2307 2268 2229 2190 2151 2112 2073 2034 1995 1956 1917 1878 1839 1800 1761 1722 1683 1644 1605 1566 1527 1488 1449 1410 1371 1332 1293 1254 1215 1176 1137 1098 1059 1020 981 942 903 861 819 777 735 693 651 609 567 525 483 441 399 357 315 270 225 180 135 90 45 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 2568 Data C0H C1H C2H C3H C4H C5H C6H C7H C8H C9H CAH CBH CCH CDH CEH CFH D0H D1H D2H D3H D4H D5H D6H D7H D8H D9H DAH DBH DCH DDH DEH DFH E0H E1H E2H E3H E4H E5H E6H E7H E8H E9H EAH EBH ECH EDH EEH EFH F0H F1H F2H F3H F4H F5H F6H F7H F8H F9H FAH FBH FCH FDH FEH FFH Output Voltage V192" V193" V194" V195" V196" V197" V198" V199" V200" V201" V202" V203" V204" V205" V206" V207" V208" V209" V210" V211" V212" V213" V214" V215" V216" V217" V218" V219" V220" V221" V222" V223" V224" V225" V226" V227" V228" V229" V230" V231" V232" V233" V234" V235" V236" V237" V238" V239" V240" V241" V242" V243" V244" V245" V246" V247" V248" V249" V250" V251" V252" V253" V254" V255" Data Sheet S16086EJ1V0DS V14 V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15 V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16 V17 2904 2859 2814 2766 2718 2670 2622 2574 2526 2478 2427 2376 2325 2274 2223 2172 2118 2064 2010 1956 1902 1845 1788 1731 1674 1614 1554 1494 1431 1368 1305 1239 1173 1107 1038 969 897 825 750 675 597 519 438 354 270 183 93 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 1689 1590 1488 1383 1275 1161 1041 918 789 651 504 348 180 / / / / / / / / / / / / / 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 µPD16724 5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN Data format: 8 bits x 2 RGBs (6 dots) Input width: 48 bits (2-pixel data) (1) R,/L = H (right shift) Output S1 S2 S3 S4 … S479 S480 Data D00 to D07 D10 to D17 D20 to D27 D30 to D37 … D40 to D47 D50 to D57 (2) R,/L = L (left shift) Output S1 S2 S3 S4 … S479 S480 Data D00 to D07 D10 to D17 D20 to D27 D30 to D37 … D40 to D47 D50 to D57 POL S12n, S12n −3, S12n −4, S12n −7, S12n −1, S12n −2, S12n −5, S12n −6, S12n −8, S12n −11 Note S12n −9, S12n −10 Note L V0 to V8 V9 to V17 H V9 to V17 V0 to V8 Note n = 1, 2, ..., 80 Figure 5− −1. Relationship between POL and Output POL S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 ... S477 S478 S479 S480 L + − − + + − − + + − − + ... + − − + L + − − + + − − + + − − + ... + − − + H − + + − − + + − − + + − ... − + + − H − + + − − + + − − + + − ... − + + − L + − − + + − − + + − − + ... + − − + L + − − + + − − + + − − + ... + − − + H − + + − − + + − − + + − ... − + + − H − + + − − + + − − + + − ... − + + − Data Sheet S16086EJ1V0DS 13 µPD16724 6. RELATIONSHIP BETWEEN MODE1, SRC1 AND SRC2 The µPD16724’s IC can control the slew rate of output amplifier. High slew rate period can be chosen from “control from the IC outside”, or “forming inside the IC” with MODE2 pin. (1) MODE2 = H SRC1 pin is good and can control a high slew rate period from the outside. SRC1 = H: High slew rate period SRC1 = L: Low slew rate period We recommend setting as “SRC1 = H” from 1 µs or more before STB falling. STB SRC1 Over 1 µ s (2) MODE2 = L or open SRC2 pin is good and forms high slew rate period inside the IC. STB CLK The number of clocks during STB = H period PWhp Internal bias current In this mode, clock stop is prohibition during the STB = H. SRC2, the CLK number in STB = H period, and the relation of high slew rate period are as follows. The number of clocks PWhp (the number of clocks) during STB = H period SRC2 = H SRC2 = L or open 2 to 15 16 32 16 to 31 32 64 32 to 47 48 96 48 to 63 64 128 64 to 79 80 160 80 to 95 96 192 96 to 111 112 224 from 112 128 256 14 Data Sheet S16086EJ1V0DS µPD16724 7. RELATIONSHIP BETWEEN MODE, STB, SRC, ORC, POL AND OUTPUT WAVEFORM MODE1 = H or open: When it switches such as POL = H→L or L→H, all output pins are output reset during STB = H and synchronizing with falling of STB, gray-scale voltage is output to LCD. When it does not switch, all output pins become Hi-Z during STB = H. MODE1 = L: Regardless of POL changing, all output is Hi-Z during the STB = H and synchronizing with falling of STB, gray-scale voltage is outputted to LCD. Figure 7− −1. MODE1 = H or open STB POL S12n, S12n −3, S12n −4, S12n −7, S12n −8, S12n −11 Selected voltage V0-V8 Selected voltage V9-V17 Selected voltage V9-V17 S12n −1, S12n −2, S12n −5, S12n −6, S12n −9, S12n −10 Selected voltage V9-V17 Reset Selected voltage V0-V8 Reset Selected voltage V0-V8 Hi-Z Figure 7− −2. MODE1 = L STB POL S12n, S12n −3, S12n −4, S12n −7, S12n −8, S12n −11 Selected voltage V0-V8 Selected voltage V9-V17 Selected voltage V0-V8 S12n −1, S12n −2, S12n −5, S12n −6, S12n −9, S12n −10 Selected voltage V9-V17 Hi-Z Selected voltage V0-V8 Hi-Z Data Sheet S16086EJ1V0DS Selected voltage V9-V17 Hi-Z 15 µPD16724 8. RELATIONSHIP BETWEEN STB, CLK, AND OUTPUT WAVEFORM (MODE1 = L) At the time of MODE1 = L, synchronizing with the falling edge of STB, it is begun to output gray-scale voltage. Figure 8− −1. Output Circuit Block Diagram Output Amp. − DAC + SW1 Sn (Vx) SW1 switches according to the level of STB. STB = L: SW1 = ON STB = H: SW1 = OFF Figure 8− −2. Output Circuit Timing Waveform [1] [1'] CLK tSTB-CLK STB SW1: OFF Hi-Z Sn (VX) STB = H is loaded with the rising edge of CLK [1]. However, when not satisfying the specification of tSTB-CLK, STB = H is loaded with the rising edge of the next CLK [1’]. Latch operation of display data is completed with the falling edge of the next CLK which loaded STB= H. Therefore, in order to complete latch operation of display data, it is necessary to input at least 2 CLK in STB = H period. In MORE2 = L or open, please input the CLK number according to the high slew period. 16 Data Sheet S16086EJ1V0DS µPD16724 ★ 9. CURRENT CONSUMPTION REDUCTION FUNCTION The µPD16724 has a low power control function (LPC) which can switch the bias current of the output amplifier between two levels. <Low power control function (LPC)> The bias current of the output amplifier can be switched between two levels using this pin. LPC = H or open: Normal power mode LPC = L: Low power mode The VDD2 of static current consumption can be reduced to two thirds of that in normal mode (LPC = H or open). Input a stable DC current (VDD1/VSS1) to this pin. Caution Because the low-power control function controls the bias current in the output amplifier and regulate the over-all current consumption of the driver IC, when this occurs, the characteristics of the output amplifier will simultaneously change. Therefore, when using this function, be sure to sufficiently evaluate the picture quality. Data Sheet S16086EJ1V0DS 17 µPD16724 10. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = 25°°C, VSS1 = VSS2 = 0 V) Parameter Symbol Ratings Unit Logic part supply voltage VDD1 −0.5 to + 4.0 V Driver part supply voltage VDD2 −0.5 to + 17.0 V Logic part input voltage VI1 −0.5 to VDD1 + 0.5 V Driver part input voltage VI2 −0.5 to VDD2 + 0.5 V Logic part output voltage VO1 −0.5 to VDD1 + 0.5 V Driver part output voltage VO2 −0.5 to VDD2 + 0.5 V Operating ambient temperature TA −10 to + 75 °C Storage temperature Tstg −55 to + 125 °C Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended Operating Range (TA = −10 to +75°C, VSS1 = VSS2 = 0 V) Parameter Symbol Logic part supply voltage VDD1 Driver part supply voltage VDD2 Condition MIN. TYP. 2.3 3.3 3.6 V LPC = H or open 12.0 (13.0) V (13.0) 15.0 V 0.7 VDD1 VDD1 V LPC = L MAX. Unit High-level input voltage VIH Low-level input voltage VIL 0 0.3 VDD1 V γ -corrected voltage V0-V8 0.5 VDD2 + 0.5 VDD2 − 0.2 V V9-V17 0.2 0.5 VDD2 − 0.5 V 0.2 Driver part output voltage VO Clock frequency fCLK VDD2 − 0.2 V 2.3 V ≤ VDD1 < 3.0 V 50 MHz 3.0 V ≤ VDD1 ≤ 3.6 V 55 MHz Remark The value enclosed in parentheses is a reference value. 18 Data Sheet S16086EJ1V0DS µPD16724 Electrical Characteristics (TA = −10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 12.0 to 15.0 V, VSS1 = VSS2 = 0 V) Parameter Symbol Condition Input leakage current IIL High-level output voltage VOH STHR (STHL), IOH = 0 mA Low-level output voltage VOL STHR (STHL), IOL = 0 mA Pull-up/pull-down resistance RPU VDD1 = 3.3 V, MIN. TYP. MAX. Unit ±1.0 µA VDD1 − 0.1 V 0.1 V 80 200 500 kΩ 7.9 15.8 31.6 kΩ −40 mA MODE1, MODE2, SRC1, SRC2, LPC γ -corrected resistance Rγ TA = 25°C, VDD2 = 15.0 V, V0 to V8 = V9 to V17 = 7.0 V Driver output current VX = 11.0 V, VOUT = 10.0 V IVOH Output voltage deviation IVOL VX = 1.0 V, VOUT = 2.0 V ∆VO TA = 25°C, VSS2 + 1.0 V to VDD2 − 1.0 V Output swing voltage difference ∆VP-P1 deviation Logic part dynamic current Note1 Note1 VDD1 = 3.3 V, 40 VX = 7.0 to 8.0 V mA Note1 ±10 ±20 mV ±5 ±10 mV mV ∆VP-P2 VDD2 = 15.0 V, VX = 4.0 to 11.0 V Note1 ±7 ±15 ∆VP-P3 TA = 25°C Note1 ±10 ±20 mV IDD1 VDD1 1.0 15.0 mA IDD2 VDD2, with no load 12.5 40.0 mA VX = 1.0 to 14.0 V Note2 consumption Driver part dynamic current Note2 consumption Notes 1. VX refers to the output voltage of analog output pins S1 to S480. VOUT refers to the voltage applied to analog output pins S1 to S480 2. fSTB = 77 kHz, fCLK = 40 MHz The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern. Switching Characteristics (TA = −10 to +75°°C, VDD1 = 2.3 to 3.6 V, VDD2 = 12.0 to 15.0 V, VSS1 = VSS2 = 0 V) Parameter Symbol Start pulse delay time tPLH1 Driver output delay time tPLH2 tPLH3 tPHL2 tPHL3 Input capacitance Note Note MAX. Unit CL = 15 pF, 2.3 V ≤ VDD1 < 3.0 V Condition MIN. TYP. 15 ns CL = 15 pF, 3.0 V ≤ VDD1 ≤ 3.6 V 12 ns VDD2 = 15.0 V, TA = 25°C, 5 µs CL = 100 pF, RL = 10 kΩ 10 µs 5 µs Note Note CI1 logic input, except STHR (STHL), 10 µs 5 10 pF 10 15 pF TA = 25°C CI2 STHR (STHL), TA = 25°C Note tPLH2, tPHL2 refer to the arrival time from falling edge of STB to target voltage ±10% (condition: VO = 0.2 V ↔14.8 V) tPLH3, tPHL3 refer to the arrival time from falling edge of STB to target voltage ±0.02 V (condition: VO = 3.0 V ↔13.0 V) ★ <Test Condition> Measurement point RL1 RL2 RL3 RL4 RL5 Output RLn = 2 kΩ CLn = 20 pF CL1 CL2 CL3 CL4 CL5 GND Data Sheet S16086EJ1V0DS 19 µPD16724 Timing Requirements (TA = −10 to +75°°C, VDD1 = 2.3 to 3.6 V, VSS1 = 0 V, tr = tf = 5.0 ns) Parameter Clock pulse width Clock pulse high period Clock pulse low period Symbol PW CLK PW CLK(H) PW CLK(L) Condition MIN. TYP. MAX. Unit 2.3 V ≤ VDD1 < 3.0 V 20 ns 3.0 V ≤ VDD1 ≤ 3.6 V 17 ns 2.3 V ≤ VDD1 < 3.0 V 5 ns 3.0 V ≤ VDD1 ≤ 3.6 V 3 ns 2.3 V ≤ VDD1 < 3.0 V 5 ns 3.0 V ≤ VDD1 ≤ 3.6 V 3 ns Data setup time tSETUP1 0 ns Data hold time tHOLD1 3 ns Start pulse setup time tSETUP2 0 ns Start pulse hold time tHOLD2 3 ns POL21, POL22 setup time tSETUP3 0 ns POL21, POL22 hold time tHOLD3 3 ns STB pulse width PW STB 1.0 µs 2 CLK Last data timing tLDT 2 CLK STB-CLK time tSTB-CLK STB ↑→ CLK↑ 4 ns Time between STB and start pulse tSTB-STH STB ↑→ STHR (STHL) ↑ 2 CLK POL-STB time tPOL-STB POL ↑ or ↓→ STB ↑ 4 ns STB-POL time tSTB-POL STB ↓→ POL ↓ or ↑ 4 ns STB-SRC time tSTB-SRC1 STB ↑ → SRC1 ↑ 0 ns ★ Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1. 20 Data Sheet S16086EJ1V0DS tSETUP2 2 3 1 80 81 82 801 tr 2 VDD1 90 % 802 10 % tSTB-CLK tHOLD2 tf VDD1 STHR (1st Dr.) VSS1 tSETUP1 Dn0 to Dn5 INVALID D1 to D6 tHOLD1 D7 to D12 tSETUP3 POL21, POL22 VSS1 tSTB-STH D469 to D474 D475 to D480 D481 to D486 VDD1 D4795 to D4800 INVALID D1 to D6 D7 to D12 VSS1 tHOLD3 VDD1 INVALID INVALID VSS1 tPLH1 Data Sheet S16086EJ1V0DS VDD1 STHL (1st Dr.) VSS1 tLDT PWSTB VDD1 STB VSS1 tSTB-SRC1 VDD1 SRC1 VSS1 tPOL-STB tSTB-POL VDD1 POL Switching Characteristic Waveform (R,/L= H, MODE1 = L, MODE2 = H) 1 CLK PWCLK(H) Unless otherwise specified, VIH, VIL are defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1. PWCLK(L) PWCLK VSS1 tPLH3 Hi-Z tPLH2 Target voltage ±10% Vx Target voltage ±20 mV tPHL3 21 µPD16724 tPHL2 µPD16724 ★ 11. RECOMMENDED MOUNTING CONDITIONS The following conditions must be met for mounting conditions of the µPD16724. For more details, refer to the Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html). Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions. µPD16724N-xxx: TCP (TAB Package) Mounting Condition Thermocompression Mounting Method Condition Soldering Heating tool 300 to 350°C, heating for 2 to 3 sec, pressure 100 g (per solder). ACF Temporary bonding 70 to 100°C, pressure 3 to 8 kg/cm2, time 3 to 5 (Adhesive Conductive sec. Real bonding 165 to 180°C pressure 25 to 45 kg/cm2, time 30 to Film) 40 sec. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.) Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time. 22 Data Sheet S16086EJ1V0DS µPD16724 NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Data Sheet S16086EJ1V0DS 23 µPD16724 Reference Documents NEC Semiconductor Device Reliability/Quality Control System (C10983E) Quality Grades On NEC Semiconductor Devices (C11531E) ★ Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html) • The information in this document is current as of March, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document. • NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others. • Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. • While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features. • NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots. "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support). "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application. (Note) (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries. (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above). M8E 02. 11-1