ETC UPD16724

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD16724
480-OUTPUT TFT-LCD SOURCE DRIVER
(COMPATIBLE WITH 256-GRAY SCALE)
DESCRIPTION
The µPD16724 is a source driver for TFT-LCDs capable of dealing with displays with 256-gray scale. Data input is
based on digital input configured as 8 bits by 6 dots (2 pixels), which can realize a full-color display of 16,777,216
colors by output of 256 values γ -corrected by an internal D/A converter and 9-by-2 external power modules.
Because the output dynamic range is as large as VSS2 + 0.2 V to VDD2 − 0.2 V, level inversion operation of the LCD’s
common electrode is rendered unnecessary. It corresponds to the 2 x 2-dot inversion drive at the time of singlesided mounting. The maximum clock frequency is 55 MHz when driving at 3.0 V.
FEATURES
• CMOS level input
• 480 outputs
• Input of 8 bits (gray scale data) by 6 dots
• Capable of outputting 256 values by means of 9-by-2 external power modules (18 units) and a D/A converter
★ • Logic power supply voltage (VDD1): 2.3 to 3.6 V
• Driver power supply voltage (VDD2): 12.0 to 15.0 V (switchable: LPC)
• Output dynamic range: VSS2 + 0.2 V to VDD2 − 0.2 V
• High-speed data transfer: fCLK = 55 MHz MAX. (internal data transfer speed when operating at VDD1 = 3.0 V)
• Apply for 2 x 2 dot-line inversion
• Output voltage polarity inversion function (POL)
• Input data inversion function (POL21, POL22)
• Output reset control (MODE1)
• Slew rate control mode switching (MODE2)
• Slew rate control (SRC1, SRC2)
• Bias current control (LPC)
ORDERING INFORMATION
Part Number
Package
µPD16724N-xxx
TCP (TAB package)
Remark The TCP’s external shape is customized. To order the required shape, so please contact one of our sales
representatives.
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all products and/or types are available in every country. Please check with an NEC Electronics
sales representative for availability and additional information.
Document No. S16086EJ1V0DS00 (1st edition)
Date Published March 2003 NS CP (K)
Printed in Japan
The mark ★ shows major revised points.
2002
µPD16724
★ 1. BLOCK DIAGRAM
STHR
R,/L
CLK
STB
STHL
VDD1
VSS1
80-bit bidirectional shift register
C1 C2
C79 C80
D00-D07
D10-D17
D20-D27
D30-D37
D40-D47
D50-D57
POL21, POL22
MODE1, MODE2
SRC1, SRC2
LPC
Data register
Latch
POL
VDD2
Level shifter
VSS2
D/A converter
V0-V17
Voltage follower output
S1
S2
S3
S480
Remark /xxx indicates active low signal.
2
Data Sheet S16086EJ1V0DS
µPD16724
2. PIN CONFIGURATION (µPD16724N-xxx) (Copper Foil Surface, Face-up)
STHL
D57
D56
:
D51
D50
D47
D46
:
D41
D40
D37
D36
:
D31
D30
SRC2
MODE2
VDD1
R,/L
V17
V16
V15
V14
V13
V12
V11
V10
V9
VDD2
VSS2
V8
V7
V6
V5
V4
V3
V2
V1
V0
MODE1
VSS1
LPC
CLK
SRC1
STB
POL
POL22
POL21
D27
D26
:
D21
D20
D17
D16
:
D11
D10
D07
D06
:
D01
D00
STHR
S480
S479
S478
Copper Foil
Surface
S3
S2
S1
Remark This figure does not specify the TCP package.
Data Sheet S16086EJ1V0DS
3
µPD16724
3. PIN FUNCTIONS
(1/3)
Pin Symbol
Pin Name
S1 to S480
Driver
D00 to D07
Port 1 display data
I/O
Output
Input
Description
The D/A converted 256-gray-scale analog voltage is output.
The display data is input with a width of 48 bits, viz., the gray scale data
D10 to D17
(8 bits) by 6 dots (2 pixels).
D20 to D27
DX0: LSB, DX7: MSB
D30 to D37
Port 2 display data
Input
Shift direction control
Input
D40 to D47
D50 to D57
R,/L
The shift direction control pin of shift register. The shift directions of the shift
registers are as follows.
R,/L = H (right shift) : STHR (input) →S1→S480→STHL (output)
R,/L = L (left shift) : STHL (input) →S480→S1→STHR (output)
STHR
Right shift start pulse
I/O
These are the start pulse input/output pins when connected in cascade.
Loading of display data starts when a high level is read at the rising edge of
CLK.
A high level should be input as the pulse of one cycle of the clock signal.
If the start pulse input is more than 2 CLK, the first 1 CLK of the high-level
input is valid.
STHL
Left shift start pulse
I/O
At the rising edge of the 80th clock after the start pulse input, the start pulse
output reaches the high level, thus becoming the start pulse of the next-level
driver. The high-level width outputted is 1 CLK.
For right shift, STHR is input and STHL is output.
For left shift, STHL is input and STHR is output.
CLK
Shift clock
Input
The shift clock input pin of shift register. The display data is loaded into the
data register at the rising edge.
If 82 clock pulses are input after input of the start pulse, input of display data
is halted automatically. The contents of the shift register are cleared at the
STB’s rising edge.
STB
Latch
Input
The contents of the data register are transferred to the latch circuit at the
rising edge. In addition, at the falling edge, the gray scale voltage is supplied
to the driver. It is necessary to ensure input of one pulse per horizontal
period.
SRC1
Slew rate control 1
Input
SRC1 is good at the time of MODE2 = H. SRC1 is pulled up to the VDD1 in the
IC.
SRC1 = H: High slew rate mode (large current consumption)
SRC1 = L: Low slew rate mode (small current consumption)
Refer to 6. RELATIONSHIP BETWEEN MODE2, SRC1 AND SRC2 for
details.
SRC2
Slew rate control 2
Input
SRC2 is good at the time of MODE2 = L or open. SRC2 is pulled down to the
VSS1 in the IC.
SRC2 = H: High slew rate period is twice the STB width from STB rising.
SRC2 = L or open: High slew rate period is 3 times the STB width from STB
rising.
Refer to 6. RELATIONSHIP BETWEEN MODE2, SRC1 AND SRC2 for
details.
4
Data Sheet S16086EJ1V0DS
µPD16724
(2/3)
Pin Symbol
POL
Pin Name
Polarity input
I/O
Input
Description
The relation between POL and output is as follows.
POL
S12n, S12n −3, S12n −4, S12n −7,
S12n −8, S12n −11
Note
S12n −1, S12n −2, S12n −5, S12n −6,
S12n −9, S12n −10 Note
L
V0 to V8
V9 to V17
H
V9 to V17
V0 to V8
Note n = 1,2, ..., 80
Input of the POL signal is allowed the setup time (tPOL-STB) with respect to STB’s
rising edge.
MODE1 = H or open:
When it switches such as POL = H→L or L→H, all output pins are output reset
during STB = H. When it does not switch, all output pins become Hi-Z during
STB = H. Refer to 7. RELATIONSHIP BETWEEN MODE, STB, SRC, ORC,
POL AND OUTPUT WAVEFORM for details.
MODE1
Output reset control
Input
MODE1 is pulled up to the VDD1 in the IC.
MODE1 = H or open: During an STB = H period, output is reset between alloutput pins.
MODE1 = L: During an STB = H period, output is Hi-Z between all-output pins.
MODE2
Slew rate control
Input
mode switching
MODE2 is pulled down to the VSS1 in the IC.
MODE2 = H: High slew rate period is controlled from the outside (SRC1 is
good).
MODE2 = L or open: High slew rate period is formed inside the IC (SRC2 is
good).
POL21,
Data inversion
Input
POL22
Select of inversion or no inversion for input data.
POL21: Data inversion or no inversion of Port1
POL22: Data inversion or no inversion of Port2
POL21, POL22 = H: Data are inverted in the IC.
POL21, POL22 = L: Data are not inverted in the IC.
LPC
Bias current control
Input
LPC is pulled up to the VDD1 in the IC.
LPC = H or open: VDD2 = 12.0 V to (13.0 V) normal static-current-consumption
mode
LPC = L: VDD2 = (13.0 V) to 15.0 V static-current-consumption cut mode
V0 to V17
γ -corrected power
supplies
Input
Input the γ -corrected power supplies from outside by using operational
amplifier. During the gray-scale-voltage output, be sure to keep the gray scale
level power supply at a constant level. Make sure to maintain the following
relationships.
VDD2 − 0.2 V ≥ V0 > V1 > V2 > ... ... > V7 > V8 ≥ 0.5 VDD2 + 0.5 V
0.5 VDD2 − 0.5 V ≥ V9 > V10 > V11 > ... ..., > V16 > V17 ≥ 0.5 VSS2 + 0.2 V
or
VDD2 − 0.2 V ≥ V8 > V7 > V6 > ... ... > V1 > V0 ≥ 0.5 VDD2 + 0.5 V
0.5 VDD2 − 0.5 V ≥ V17 > V16 > V15 > ... ... > V10 > V9 ≥ 0.5 VSS2 + 0.2 V
Remark Hi-Z: High impedance
Data Sheet S16086EJ1V0DS
5
µPD16724
(3/3)
Pin Symbol
Pin Name
I/O
Description
VDD1
Logic power supply
−
2.3 to 3.6 V
VDD2
Driver power supply
−
12.0 to 15.0 V
VSS1
Logic ground
−
Grounding
VSS2
Driver ground
−
Grounding
Cautions 1. The power start sequence must be VDD1, logic input, VDD2 and V0-V17 in that order.
Reverse this sequence to shut down.
2. To stabilize the supply voltage, please be sure to insert a 0.47 µF bypass capacitor between
VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion
of a bypass capacitor of about 0.1 µF is also advised between the γ-corrected power supply
terminals (V0, V1, V2, ....., V17) and VSS2.
6
Data Sheet S16086EJ1V0DS
µPD16724
4. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE
The µPD16724 incorporates a 8-bit D/A converter which can output respectively gray scale voltages of differing
polarity with respect to the LCD’s counter electrode voltage as shown in Figure 4−1. The D/A converter consists of
ladder resistors and switches.
The ladder resistors (r0 to r253) are designed so that the ratio of LCD panel (γ -compensated voltages to V0’-V255’ and
V0”-V255” is almost equivalent. For the 2 sets of nine γ -compensated power supplies, V0-V8 and V9-V17, respectively,
input gray scale voltages of the same polarity with respect to the 0.5 VDD2.
Figure 4−1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2, VSS2 and
0.5 VDD2, and γ -corrected voltages V0-V17 and the input data. Be sure to maintain the voltage relationships below.
VDD2 − 0.2 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2 + 0.5 V
0.5 VDD2 − 0.5 V ≥ V9 > V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 ≥ 0.5 VSS2 + 0.2 V
or
VDD2 − 0.2 V ≥ V8 > V7 > V6 > V5 > V4 > V3 > V2 > V1 > V0 ≥ 0.5 VDD2 + 0.5 V
0.5 VDD2 − 0.5 V ≥ V17 > V16 > V15 > V14 > V13 > V12 > V11 > V10 > V9 ≥ 0.5 VSS2 + 0.2 V
Also, V7-V8, V8-V9 and V9-V10 are left open in the IC. Be sure to input the gray scale level power supply at a
constant level to the all pins.
Figures 4−2 and 4−3 show the relation ship between the input data and the output voltage and the resistance values
of the resistor strings.
★
Figure 4−
−1. Relationship between Input Data and γ -corrected Power Supplies
VDD2
0.2 V
V0
V1
15
V2
48
V3
64
V4
64
V5
32
V6
31
V7
V8
0.5 V
0.5 VDD2
0.5 V
V9
V10
31
V11
32
V12
64
V13
64
V14
48
V15
15
V16
V17
0.2 V
VSS2
00 01
20
40
80
C0
F0 FE FF
Input Data (HEX)
Data Sheet S16086EJ1V0DS
7
µPD16724
Figure 4−
−2. γ -corrected Voltages and Ladder Resistors Ratio
★
V0
V255’
V9
V0’’
V254’
V10
V1’’
r253
V1
r252
r0
V253’
V2’’
r251
r1
V252’
V3’’
r250
r2
r240
r29
V241’
V31’’
r239
V2
r30
V240’
V11
r238
V32’’
r31
V239’
V33’’
r237
r32
r32
r237
V33’
V239’’
r31
V6
r238
V32’
V15
r30
V240’’
r239
V31’
V241’’
r240
r2
V3’
r1
r251
V2’
V253’’
r0
r252
V7
V1’
V16
V8
V0’
V17
V254’’
r253
V255’’
rn
Ratio 1
Ratio 2
Value
rn
Ratio 1
Ratio 2
Value
rn
Ratio 1
Ratio 2
Value
rn
Ratio 1
Ratio 2
Value
r0
3.58
0.0084
129
r64
1.33
0.0031
48
r128
1.08
0.0025
39
r192
1.25
0.0029
45
r1
3.58
0.0084
129
r65
1.33
0.0031
48
r129
1.08
0.0025
39
r193
1.25
0.0029
45
r2
3.58
0.0084
129
r66
1.33
0.0031
48
r130
1.00
0.0023
36
r194
1.33
0.0031
48
r3
3.58
0.0084
129
r67
1.33
0.0031
48
r131
1.00
0.0023
36
r195
1.33
0.0031
48
r4
3.58
0.0084
129
r68
1.33
0.0031
48
r132
1.00
0.0023
36
r196
1.33
0.0031
48
r5
3.50
0.0082
126
r69
1.33
0.0031
48
r133
1.00
0.0023
36
r197
1.33
0.0031
48
r6
3.50
0.0082
126
r70
1.25
0.0029
45
r134
1.08
0.0025
39
r198
1.33
0.0031
48
r7
3.42
0.0080
123
r71
1.25
0.0029
45
r135
1.08
0.0025
39
r199
1.33
0.0031
48
r8
3.42
0.0080
123
r72
1.25
0.0029
45
r136
1.08
0.0025
39
r200
1.33
0.0031
48
r9
3.33
0.0078
120
r73
1.25
0.0029
45
r137
1.08
0.0025
39
r201
1.42
0.0033
51
r10
3.25
0.0076
117
r74
1.25
0.0029
45
r138
1.08
0.0025
39
r202
1.42
0.0033
51
r11
3.25
0.0076
117
r75
1.25
0.0029
45
r139
1.08
0.0025
39
r203
1.42
0.0033
51
r12
3.17
0.0074
114
r76
1.25
0.0029
45
r140
1.08
0.0025
39
r204
1.42
0.0033
51
r13
3.08
0.0072
111
r77
1.25
0.0029
45
r141
1.08
0.0025
39
r205
1.42
0.0033
51
r14
3.08
0.0072
111
r78
1.25
0.0029
45
r142
1.08
0.0025
39
r206
1.42
0.0033
51
r15
3.00
0.0070
108
r79
1.25
0.0029
45
r143
1.08
0.0025
39
r207
1.50
0.0035
54
r16
2.92
0.0068
105
r80
1.17
0.0027
42
r144
1.08
0.0025
39
r208
1.50
0.0035
54
r17
2.83
0.0066
102
r81
1.17
0.0027
42
r145
1.08
0.0025
39
r209
1.50
0.0035
54
r18
2.83
0.0066
102
r82
1.17
0.0027
42
r146
1.08
0.0025
39
r210
1.50
0.0035
54
r19
2.75
0.0064
99
r83
1.17
0.0027
42
r147
1.08
0.0025
39
r211
1.50
0.0035
54
r20
2.67
0.0062
96
r84
1.17
0.0027
42
r148
1.08
0.0025
39
r212
1.58
0.0037
57
r21
2.67
0.0062
96
r85
1.17
0.0027
42
r149
1.08
0.0025
39
r213
1.58
0.0037
57
r22
2.58
0.0060
93
r86
1.17
0.0027
42
r150
1.08
0.0025
39
r214
1.58
0.0037
57
r23
2.50
0.0058
90
r87
1.17
0.0027
42
r151
1.08
0.0025
39
r215
1.58
0.0037
57
r24
2.50
0.0058
90
r88
1.17
0.0027
42
r152
1.08
0.0025
39
r216
1.67
0.0039
60
r25
2.42
0.0056
87
r89
1.17
0.0027
42
r153
1.08
0.0025
39
r217
1.67
0.0039
60
r26
2.33
0.0054
84
r90
1.17
0.0027
42
r154
1.08
0.0025
39
r218
1.67
0.0039
60
r27
2.33
0.0054
84
r91
1.17
0.0027
42
r155
1.08
0.0025
39
r219
1.75
0.0041
63
r28
2.25
0.0053
81
r92
1.17
0.0027
42
r156
1.08
0.0025
39
r220
1.75
0.0041
63
r29
2.25
0.0053
81
r93
1.08
0.0025
39
r157
1.08
0.0025
39
r221
1.75
0.0041
63
r30
2.17
0.0051
78
r94
1.08
0.0025
39
r158
1.08
0.0025
39
r222
1.83
0.0043
66
r31
2.17
0.0051
78
r95
1.08
0.0025
39
r159
1.08
0.0025
39
r223
1.83
0.0043
66
r32
2.08
0.0049
75
r96
1.08
0.0025
39
r160
1.08
0.0025
39
r224
1.83
0.0043
66
r33
2.08
0.0049
75
r97
1.08
0.0025
39
r161
1.08
0.0025
39
r225
1.92
0.0045
69
r34
2.00
0.0047
72
r98
1.08
0.0025
39
r162
1.08
0.0025
39
r226
1.92
0.0045
69
r35
2.00
0.0047
72
r99
1.08
0.0025
39
r163
1.08
0.0025
39
r227
2.00
0.0047
72
r36
1.92
0.0045
69
r100
1.08
0.0025
39
r164
1.08
0.0025
39
r228
2.00
0.0047
72
r37
1.92
0.0045
69
r101
1.08
0.0025
39
r165
1.08
0.0025
39
r229
2.08
0.0049
75
r38
1.92
0.0045
69
r102
1.08
0.0025
39
r166
1.08
0.0025
39
r230
2.08
0.0049
75
r39
1.83
0.0043
66
r103
1.08
0.0025
39
r167
1.08
0.0025
39
r231
2.17
0.0051
78
r40
1.83
0.0043
66
r104
1.08
0.0025
39
r168
1.08
0.0025
39
r232
2.17
0.0051
78
r41
1.83
0.0043
66
r105
1.08
0.0025
39
r169
1.08
0.0025
39
r233
2.25
0.0053
81
r42
1.75
0.0041
63
r106
1.08
0.0025
39
r170
1.17
0.0027
42
r234
2.33
0.0054
84
r43
1.75
0.0041
63
r107
1.08
0.0025
39
r171
1.17
0.0027
42
r235
2.33
0.0054
84
r44
1.75
0.0041
63
r108
1.08
0.0025
39
r172
1.17
0.0027
42
r236
2.42
0.0056
87
r45
1.67
0.0039
60
r109
1.08
0.0025
39
r173
1.17
0.0027
42
r237
2.50
0.0058
90
r46
1.67
0.0039
60
r110
1.08
0.0025
39
r174
1.17
0.0027
42
r238
2.58
0.0060
93
r47
1.67
0.0039
60
r111
1.08
0.0025
39
r175
1.17
0.0027
42
r239
2.67
0.0062
96
r48
1.67
0.0039
60
r112
1.08
0.0025
39
r176
1.17
0.0027
42
r240
2.75
0.0064
99
r49
1.58
0.0037
57
r113
1.08
0.0025
39
r177
1.17
0.0027
42
r241
2.83
0.0066
102
r50
1.58
0.0037
57
r114
1.08
0.0025
39
r178
1.17
0.0027
42
r242
2.92
0.0068
105
r51
1.58
0.0037
57
r115
1.08
0.0025
39
r179
1.17
0.0027
42
r243
3.00
0.0070
108
r52
1.58
0.0037
57
r116
1.08
0.0025
39
r180
1.17
0.0027
42
r244
3.17
0.0074
114
r53
1.50
0.0035
54
r117
1.08
0.0025
39
r181
1.17
0.0027
42
r245
3.33
0.0078
120
r54
1.50
0.0035
54
r118
1.08
0.0025
39
r182
1.17
0.0027
42
r246
3.42
0.0080
123
r55
1.50
0.0035
54
r119
1.08
0.0025
39
r183
1.17
0.0027
42
r247
3.58
0.0084
129
r56
1.50
0.0035
54
r120
1.08
0.0025
39
r184
1.25
0.0029
45
r248
3.83
0.0089
138
r57
1.42
0.0033
51
r121
1.08
0.0025
39
r185
1.25
0.0029
45
r249
4.08
0.0095
147
r58
1.42
0.0033
51
r122
1.08
0.0025
39
r186
1.25
0.0029
45
r250
4.33
0.0101
156
r59
1.42
0.0033
51
r123
1.08
0.0025
39
r187
1.25
0.0029
45
r251
4.67
0.0109
168
r60
1.42
0.0033
51
r124
1.08
0.0025
39
r188
1.25
0.0029
45
r252
5.00
0.0117
180
r61
1.42
0.0033
51
r125
1.08
0.0025
39
r189
1.25
0.0029
45
r253
5.50
0.0128
r62
1.42
0.0033
51
r126
1.08
0.0025
39
r190
1.25
0.0029
45
Total resistance
r63
1.33
0.0031
48
r127
1.08
0.0025
39
r191
1.25
0.0029
45
Minimum resistance value
198
15423
36
Remark The resistance ratio1 is a relative ratio in the case of setting the minimum resistance value to 1.
The resistance ratio2 is a relative ratio in the case of setting the total resistance to 1.
8
Data Sheet S16086EJ1V0DS
µPD16724
★
Figure 4−
−3. Relationship between Input Data and Output Voltage (Positive side 1/2)
VDD2 − 0.2 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2 + 0.5 V (POL21, POL22 = L)
Data
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
Output Voltage
V0'
V1'
V2'
V3'
V4'
V5'
V6'
V7'
V8'
V9'
V10'
V11'
V12'
V13'
V14'
V15'
V16'
V17'
V18'
V19'
V20'
V21'
V22'
V23'
V24'
V25'
V26'
V27'
V28'
V29'
V30'
V31'
V32'
V33'
V34'
V35'
V36'
V37'
V38'
V39'
V40'
V41'
V42'
V43'
V44'
V45'
V46'
V47'
V48'
V49'
V50'
V51'
V52'
V53'
V54'
V55'
V56'
V57'
V58'
V59'
V60'
V61'
V62'
V63'
V8
V7
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V7+(V6-V7) X
V6
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
V6+(V5-V6) X
129
258
387
516
645
771
897
1020
1143
1263
1380
1497
1611
1722
1833
1941
2046
2148
2250
2349
2445
2541
2634
2724
2814
2901
2985
3069
3150
3231
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
78
153
228
300
372
441
510
579
645
711
777
840
903
966
1026
1086
1146
1206
1263
1320
1377
1434
1488
1542
1596
1650
1701
1752
1803
1854
1905
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
Data
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
50H
51H
52H
53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH
60H
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
7EH
7FH
Output Voltage
V64'
V65'
V66'
V67'
V68'
V69'
V70'
V71'
V72'
V73'
V74'
V75'
V76'
V77'
V78'
V79'
V80'
V81'
V82'
V83'
V84'
V85'
V86'
V87'
V88'
V89'
V90'
V91'
V92'
V93'
V94'
V95'
V96'
V97'
V98'
V99'
V100'
V101'
V102'
V103'
V104'
V105'
V106'
V107'
V108'
V109'
V110'
V111'
V112'
V113'
V114'
V115'
V116'
V117'
V118'
V119'
V120'
V121'
V122'
V123'
V124'
V125'
V126'
V127'
Data Sheet S16086EJ1V0DS
V5
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
V5+(V4-V5) X
48
96
144
192
240
288
336
381
426
471
516
561
606
651
696
741
786
828
870
912
954
996
1038
1080
1122
1164
1206
1248
1290
1332
1371
1410
1449
1488
1527
1566
1605
1644
1683
1722
1761
1800
1839
1878
1917
1956
1995
2034
2073
2112
2151
2190
2229
2268
2307
2346
2385
2424
2463
2502
2541
2580
2619
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
9
µPD16724
Figure 4−
−3. Relationship between Input Data and Output Voltage (Positive side 2/2)
★
VDD2 − 0.2 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2 + 0.5 V (POL21, POL22 = L)
Data
80H
81H
82H
83H
84H
85H
86H
87H
88H
89H
8AH
8BH
8CH
8DH
8EH
8FH
90H
91H
92H
93H
94H
95H
96H
97H
98H
99H
9AH
9BH
9CH
9DH
9EH
9FH
A0H
A1H
A2H
A3H
A4H
A5H
A6H
A7H
A8H
A9H
AAH
ABH
ACH
ADH
AEH
AFH
B0H
B1H
B2H
B3H
B4H
B5H
B6H
B7H
B8H
B9H
BAH
BBH
BCH
BDH
BEH
BFH
10
Output Voltage
V128'
V129'
V130'
V131'
V132'
V133'
V134'
V135'
V136'
V137'
V138'
V139'
V140'
V141'
V142'
V143'
V144'
V145'
V146'
V147'
V148'
V149'
V150'
V151'
V152'
V153'
V154'
V155'
V156'
V157'
V158'
V159'
V160'
V161'
V162'
V163'
V164'
V165'
V166'
V167'
V168'
V169'
V170'
V171'
V172'
V173'
V174'
V175'
V176'
V177'
V178'
V179'
V180'
V181'
V182'
V183'
V184'
V185'
V186'
V187'
V188'
V189'
V190'
V191'
V4
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
V4+(V3-V4) X
39
78
117
153
189
225
261
300
339
378
417
456
495
534
573
612
651
690
729
768
807
846
885
924
963
1002
1041
1080
1119
1158
1197
1236
1275
1314
1353
1392
1431
1470
1509
1548
1587
1626
1665
1707
1749
1791
1833
1875
1917
1959
2001
2043
2085
2127
2169
2211
2253
2298
2343
2388
2433
2478
2523
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
Data
C0H
C1H
C2H
C3H
C4H
C5H
C6H
C7H
C8H
C9H
CAH
CBH
CCH
CDH
CEH
CFH
D0H
D1H
D2H
D3H
D4H
D5H
D6H
D7H
D8H
D9H
DAH
DBH
DCH
DDH
DEH
DFH
E0H
E1H
E2H
E3H
E4H
E5H
E6H
E7H
E8H
E9H
EAH
EBH
ECH
EDH
EEH
EFH
F0H
F1H
F2H
F3H
F4H
F5H
F6H
F7H
F8H
F9H
FAH
FBH
FCH
FDH
FEH
FFH
Output Voltage
V192'
V193'
V194'
V195'
V196'
V197'
V198'
V199'
V200'
V201'
V202'
V203'
V204'
V205'
V206'
V207'
V208'
V209'
V210'
V211'
V212'
V213'
V214'
V215'
V216'
V217'
V218'
V219'
V220'
V221'
V222'
V223'
V224'
V225'
V226'
V227'
V228'
V229'
V230'
V231'
V232'
V233'
V234'
V235'
V236'
V237'
V238'
V239'
V240'
V241'
V242'
V243'
V244'
V245'
V246'
V247'
V248'
V249'
V250'
V251'
V252'
V253'
V254'
V255'
Data Sheet S16086EJ1V0DS
V3
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V3+(V2-V3) X
V2
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V2+(V1-V2) X
V1
V0
45
90
135
183
231
279
327
375
423
471
522
573
624
675
726
777
831
885
939
993
1047
1104
1161
1218
1275
1335
1395
1455
1518
1581
1644
1710
1776
1842
1911
1980
2052
2124
2199
2274
2352
2430
2511
2595
2679
2766
2856
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
96
195
297
402
510
624
744
867
996
1134
1281
1437
1605
/
/
/
/
/
/
/
/
/
/
/
/
/
1785
1785
1785
1785
1785
1785
1785
1785
1785
1785
1785
1785
1785
µPD16724
★
Figure 4−
−3. Relationship between Input Data and Output Voltage (Negative side 1/2)
0.5 VDD2 − 0.5 V ≥ V9 > V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 ≥ VSS2 + 0.2 V (POL21, POL22 = L)
Data
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
Output Voltage
V0"
V1"
V2"
V3"
V4"
V5"
V6"
V7"
V8"
V9"
V10"
V11"
V12"
V13"
V14"
V15"
V16"
V17"
V18"
V19"
V20"
V21"
V22"
V23"
V24"
V25"
V26"
V27"
V28"
V29"
V30"
V31"
V32"
V33"
V34"
V35"
V36"
V37"
V38"
V39"
V40"
V41"
V42"
V43"
V44"
V45"
V46"
V47"
V48"
V49"
V50"
V51"
V52"
V53"
V54"
V55"
V56"
V57"
V58"
V59"
V60"
V61"
V62"
V63"
V9
V10
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
3180
3051
2922
2793
2664
2538
2412
2289
2166
2046
1929
1812
1698
1587
1476
1368
1263
1161
1059
960
864
768
675
585
495
408
324
240
159
78
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
3309
1878
1803
1728
1656
1584
1515
1446
1377
1311
1245
1179
1116
1053
990
930
870
810
750
693
636
579
522
468
414
360
306
255
204
153
102
51
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
Data
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
50H
51H
52H
53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH
60H
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
7EH
7FH
Output Voltage
V64"
V65"
V66"
V67"
V68"
V69"
V70"
V71"
V72"
V73"
V74"
V75"
V76"
V77"
V78"
V79"
V80"
V81"
V82"
V83"
V84"
V85"
V86"
V87"
V88"
V89"
V90"
V91"
V92"
V93"
V94"
V95"
V96"
V97"
V98"
V99"
V100"
V101"
V102"
V103"
V104"
V105"
V106"
V107"
V108"
V109"
V110"
V111"
V112"
V113"
V114"
V115"
V116"
V117"
V118"
V119"
V120"
V121"
V122"
V123"
V124"
V125"
V126"
V127"
Data Sheet S16086EJ1V0DS
V12
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
2610
2562
2514
2466
2418
2370
2322
2277
2232
2187
2142
2097
2052
2007
1962
1917
1872
1830
1788
1746
1704
1662
1620
1578
1536
1494
1452
1410
1368
1326
1287
1248
1209
1170
1131
1092
1053
1014
975
936
897
858
819
780
741
702
663
624
585
546
507
468
429
390
351
312
273
234
195
156
117
78
39
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
2658
11
µPD16724
Figure 4−
−3. Relationship between Input Data and Output Voltage (Negative side 2/2)
★
0.5 VDD2 − 0.5 V ≥ V9 > V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 ≥ VSS2 + 0.2 V (POL21, POL22 = L)
Data
80H
81H
82H
83H
84H
85H
86H
87H
88H
89H
8AH
8BH
8CH
8DH
8EH
8FH
90H
91H
92H
93H
94H
95H
96H
97H
98H
99H
9AH
9BH
9CH
9DH
9EH
9FH
A0H
A1H
A2H
A3H
A4H
A5H
A6H
A7H
A8H
A9H
AAH
ABH
ACH
ADH
AEH
AFH
B0H
B1H
B2H
B3H
B4H
B5H
B6H
B7H
B8H
B9H
BAH
BBH
BCH
BDH
BEH
BFH
12
Output Voltage
V128"
V129"
V130"
V131"
V132"
V133"
V134"
V135"
V136"
V137"
V138"
V139"
V140"
V141"
V142"
V143"
V144"
V145"
V146"
V147"
V148"
V149"
V150"
V151"
V152"
V153"
V154"
V155"
V156"
V157"
V158"
V159"
V160"
V161"
V162"
V163"
V164"
V165"
V166"
V167"
V168"
V169"
V170"
V171"
V172"
V173"
V174"
V175"
V176"
V177"
V178"
V179"
V180"
V181"
V182"
V183"
V184"
V185"
V186"
V187"
V188"
V189"
V190"
V191"
V13
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
2529
2490
2451
2415
2379
2343
2307
2268
2229
2190
2151
2112
2073
2034
1995
1956
1917
1878
1839
1800
1761
1722
1683
1644
1605
1566
1527
1488
1449
1410
1371
1332
1293
1254
1215
1176
1137
1098
1059
1020
981
942
903
861
819
777
735
693
651
609
567
525
483
441
399
357
315
270
225
180
135
90
45
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
2568
Data
C0H
C1H
C2H
C3H
C4H
C5H
C6H
C7H
C8H
C9H
CAH
CBH
CCH
CDH
CEH
CFH
D0H
D1H
D2H
D3H
D4H
D5H
D6H
D7H
D8H
D9H
DAH
DBH
DCH
DDH
DEH
DFH
E0H
E1H
E2H
E3H
E4H
E5H
E6H
E7H
E8H
E9H
EAH
EBH
ECH
EDH
EEH
EFH
F0H
F1H
F2H
F3H
F4H
F5H
F6H
F7H
F8H
F9H
FAH
FBH
FCH
FDH
FEH
FFH
Output Voltage
V192"
V193"
V194"
V195"
V196"
V197"
V198"
V199"
V200"
V201"
V202"
V203"
V204"
V205"
V206"
V207"
V208"
V209"
V210"
V211"
V212"
V213"
V214"
V215"
V216"
V217"
V218"
V219"
V220"
V221"
V222"
V223"
V224"
V225"
V226"
V227"
V228"
V229"
V230"
V231"
V232"
V233"
V234"
V235"
V236"
V237"
V238"
V239"
V240"
V241"
V242"
V243"
V244"
V245"
V246"
V247"
V248"
V249"
V250"
V251"
V252"
V253"
V254"
V255"
Data Sheet S16086EJ1V0DS
V14
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16
V17
2904
2859
2814
2766
2718
2670
2622
2574
2526
2478
2427
2376
2325
2274
2223
2172
2118
2064
2010
1956
1902
1845
1788
1731
1674
1614
1554
1494
1431
1368
1305
1239
1173
1107
1038
969
897
825
750
675
597
519
438
354
270
183
93
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
2949
1689
1590
1488
1383
1275
1161
1041
918
789
651
504
348
180
/
/
/
/
/
/
/
/
/
/
/
/
/
1785
1785
1785
1785
1785
1785
1785
1785
1785
1785
1785
1785
1785
µPD16724
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN
Data format: 8 bits x 2 RGBs (6 dots)
Input width: 48 bits (2-pixel data)
(1) R,/L = H (right shift)
Output
S1
S2
S3
S4
…
S479
S480
Data
D00 to D07
D10 to D17
D20 to D27
D30 to D37
…
D40 to D47
D50 to D57
(2) R,/L = L (left shift)
Output
S1
S2
S3
S4
…
S479
S480
Data
D00 to D07
D10 to D17
D20 to D27
D30 to D37
…
D40 to D47
D50 to D57
POL
S12n, S12n −3, S12n −4, S12n −7,
S12n −1, S12n −2, S12n −5, S12n −6,
S12n −8, S12n −11 Note
S12n −9, S12n −10 Note
L
V0 to V8
V9 to V17
H
V9 to V17
V0 to V8
Note n = 1, 2, ..., 80
Figure 5−
−1. Relationship between POL and Output
POL
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
...
S477
S478
S479
S480
L
+
−
−
+
+
−
−
+
+
−
−
+
...
+
−
−
+
L
+
−
−
+
+
−
−
+
+
−
−
+
...
+
−
−
+
H
−
+
+
−
−
+
+
−
−
+
+
−
...
−
+
+
−
H
−
+
+
−
−
+
+
−
−
+
+
−
...
−
+
+
−
L
+
−
−
+
+
−
−
+
+
−
−
+
...
+
−
−
+
L
+
−
−
+
+
−
−
+
+
−
−
+
...
+
−
−
+
H
−
+
+
−
−
+
+
−
−
+
+
−
...
−
+
+
−
H
−
+
+
−
−
+
+
−
−
+
+
−
...
−
+
+
−
Data Sheet S16086EJ1V0DS
13
µPD16724
6. RELATIONSHIP BETWEEN MODE1, SRC1 AND SRC2
The µPD16724’s IC can control the slew rate of output amplifier.
High slew rate period can be chosen from “control from the IC outside”, or “forming inside the IC” with MODE2 pin.
(1) MODE2 = H
SRC1 pin is good and can control a high slew rate period from the outside.
SRC1 = H: High slew rate period
SRC1 = L: Low slew rate period
We recommend setting as “SRC1 = H” from 1 µs or more before STB falling.
STB
SRC1
Over 1 µ s
(2) MODE2 = L or open
SRC2 pin is good and forms high slew rate period inside the IC.
STB
CLK
The number of clocks
during STB = H period
PWhp
Internal bias current
In this mode, clock stop is prohibition during the STB = H.
SRC2, the CLK number in STB = H period, and the relation of high slew rate period are as follows.
The number of clocks
PWhp (the number of clocks)
during STB = H period
SRC2 = H
SRC2 = L or open
2 to 15
16
32
16 to 31
32
64
32 to 47
48
96
48 to 63
64
128
64 to 79
80
160
80 to 95
96
192
96 to 111
112
224
from 112
128
256
14
Data Sheet S16086EJ1V0DS
µPD16724
7. RELATIONSHIP BETWEEN MODE, STB, SRC, ORC, POL AND OUTPUT WAVEFORM
MODE1 = H or open:
When it switches such as POL = H→L or L→H, all output pins are output reset during STB = H and synchronizing
with falling of STB, gray-scale voltage is output to LCD. When it does not switch, all output pins become Hi-Z during
STB = H.
MODE1 = L:
Regardless of POL changing, all output is Hi-Z during the STB = H and synchronizing with falling of STB, gray-scale
voltage is outputted to LCD.
Figure 7−
−1. MODE1 = H or open
STB
POL
S12n, S12n −3, S12n −4,
S12n −7, S12n −8, S12n −11
Selected voltage V0-V8
Selected voltage V9-V17
Selected voltage V9-V17
S12n −1, S12n −2, S12n −5,
S12n −6, S12n −9, S12n −10
Selected voltage V9-V17
Reset
Selected voltage V0-V8
Reset
Selected voltage V0-V8
Hi-Z
Figure 7−
−2. MODE1 = L
STB
POL
S12n, S12n −3, S12n −4,
S12n −7, S12n −8, S12n −11
Selected voltage V0-V8
Selected voltage V9-V17
Selected voltage V0-V8
S12n −1, S12n −2, S12n −5,
S12n −6, S12n −9, S12n −10
Selected voltage V9-V17
Hi-Z
Selected voltage V0-V8
Hi-Z
Data Sheet S16086EJ1V0DS
Selected voltage V9-V17
Hi-Z
15
µPD16724
8. RELATIONSHIP BETWEEN STB, CLK, AND OUTPUT WAVEFORM (MODE1 = L)
At the time of MODE1 = L, synchronizing with the falling edge of STB, it is begun to output gray-scale voltage.
Figure 8−
−1. Output Circuit Block Diagram
Output Amp.
−
DAC
+
SW1
Sn (Vx)
SW1 switches according to the level of STB.
STB = L: SW1 = ON
STB = H: SW1 = OFF
Figure 8−
−2. Output Circuit Timing Waveform
[1]
[1']
CLK
tSTB-CLK
STB
SW1: OFF
Hi-Z
Sn (VX)
STB = H is loaded with the rising edge of CLK [1]. However, when not satisfying the specification of tSTB-CLK, STB =
H is loaded with the rising edge of the next CLK [1’]. Latch operation of display data is completed with the falling
edge of the next CLK which loaded STB= H. Therefore, in order to complete latch operation of display data, it is
necessary to input at least 2 CLK in STB = H period. In MORE2 = L or open, please input the CLK number according
to the high slew period.
16
Data Sheet S16086EJ1V0DS
µPD16724
★ 9. CURRENT CONSUMPTION REDUCTION FUNCTION
The µPD16724 has a low power control function (LPC) which can switch the bias current of the output amplifier
between two levels.
<Low power control function (LPC)>
The bias current of the output amplifier can be switched between two levels using this pin.
LPC = H or open: Normal power mode
LPC = L: Low power mode
The VDD2 of static current consumption can be reduced to two thirds of that in normal mode (LPC = H or open).
Input a stable DC current (VDD1/VSS1) to this pin.
Caution Because the low-power control function controls the bias current in the output amplifier and
regulate the over-all current consumption of the driver IC, when this occurs, the characteristics of
the output amplifier will simultaneously change. Therefore, when using this function, be sure to
sufficiently evaluate the picture quality.
Data Sheet S16086EJ1V0DS
17
µPD16724
10. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25°°C, VSS1 = VSS2 = 0 V)
Parameter
Symbol
Ratings
Unit
Logic part supply voltage
VDD1
−0.5 to + 4.0
V
Driver part supply voltage
VDD2
−0.5 to + 17.0
V
Logic part input voltage
VI1
−0.5 to VDD1 + 0.5
V
Driver part input voltage
VI2
−0.5 to VDD2 + 0.5
V
Logic part output voltage
VO1
−0.5 to VDD1 + 0.5
V
Driver part output voltage
VO2
−0.5 to VDD2 + 0.5
V
Operating ambient temperature
TA
−10 to + 75
°C
Storage temperature
Tstg
−55 to + 125
°C
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any
parameter. That is, the absolute maximum ratings are rated values at which the product is on the
verge of suffering physical damage, and therefore the product must be used under conditions that
ensure that the absolute maximum ratings are not exceeded.
Recommended Operating Range (TA = −10 to +75°C, VSS1 = VSS2 = 0 V)
Parameter
Symbol
Logic part supply voltage
VDD1
Driver part supply voltage
VDD2
Condition
MIN.
TYP.
2.3
3.3
3.6
V
LPC = H or open
12.0
(13.0)
V
(13.0)
15.0
V
0.7 VDD1
VDD1
V
LPC = L
MAX.
Unit
High-level input voltage
VIH
Low-level input voltage
VIL
0
0.3 VDD1
V
γ -corrected voltage
V0-V8
0.5 VDD2 + 0.5
VDD2 − 0.2
V
V9-V17
0.2
0.5 VDD2 − 0.5
V
0.2
Driver part output voltage
VO
Clock frequency
fCLK
VDD2 − 0.2
V
2.3 V ≤ VDD1 < 3.0 V
50
MHz
3.0 V ≤ VDD1 ≤ 3.6 V
55
MHz
Remark The value enclosed in parentheses is a reference value.
18
Data Sheet S16086EJ1V0DS
µPD16724
Electrical Characteristics (TA = −10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 12.0 to 15.0 V, VSS1 = VSS2 = 0 V)
Parameter
Symbol
Condition
Input leakage current
IIL
High-level output voltage
VOH
STHR (STHL), IOH = 0 mA
Low-level output voltage
VOL
STHR (STHL), IOL = 0 mA
Pull-up/pull-down resistance
RPU
VDD1 = 3.3 V,
MIN.
TYP.
MAX.
Unit
±1.0
µA
VDD1 − 0.1
V
0.1
V
80
200
500
kΩ
7.9
15.8
31.6
kΩ
−40
mA
MODE1, MODE2, SRC1, SRC2, LPC
γ -corrected resistance
Rγ
TA = 25°C, VDD2 = 15.0 V,
V0 to V8 = V9 to V17 = 7.0 V
Driver output current
VX = 11.0 V, VOUT = 10.0 V
IVOH
Output voltage deviation
IVOL
VX = 1.0 V, VOUT = 2.0 V
∆VO
TA = 25°C, VSS2 + 1.0 V to VDD2 − 1.0 V
Output swing voltage difference ∆VP-P1
deviation
Logic part dynamic current
Note1
Note1
VDD1 = 3.3 V,
40
VX = 7.0 to 8.0 V
mA
Note1
±10
±20
mV
±5
±10
mV
mV
∆VP-P2
VDD2 = 15.0 V, VX = 4.0 to 11.0 V
Note1
±7
±15
∆VP-P3
TA = 25°C
Note1
±10
±20
mV
IDD1
VDD1
1.0
15.0
mA
IDD2
VDD2, with no load
12.5
40.0
mA
VX = 1.0 to 14.0 V
Note2
consumption
Driver part dynamic current
Note2
consumption
Notes 1. VX refers to the output voltage of analog output pins S1 to S480.
VOUT refers to the voltage applied to analog output pins S1 to S480
2. fSTB = 77 kHz, fCLK = 40 MHz
The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured
values in the dot checkerboard input pattern.
Switching Characteristics (TA = −10 to +75°°C, VDD1 = 2.3 to 3.6 V, VDD2 = 12.0 to 15.0 V, VSS1 = VSS2 = 0 V)
Parameter
Symbol
Start pulse delay time
tPLH1
Driver output delay time
tPLH2
tPLH3
tPHL2
tPHL3
Input capacitance
Note
Note
MAX.
Unit
CL = 15 pF, 2.3 V ≤ VDD1 < 3.0 V
Condition
MIN.
TYP.
15
ns
CL = 15 pF, 3.0 V ≤ VDD1 ≤ 3.6 V
12
ns
VDD2 = 15.0 V, TA = 25°C,
5
µs
CL = 100 pF, RL = 10 kΩ
10
µs
5
µs
Note
Note
CI1
logic input, except STHR (STHL),
10
µs
5
10
pF
10
15
pF
TA = 25°C
CI2
STHR (STHL), TA = 25°C
Note tPLH2, tPHL2 refer to the arrival time from falling edge of STB to target voltage ±10% (condition: VO = 0.2 V ↔14.8
V)
tPLH3, tPHL3 refer to the arrival time from falling edge of STB to target voltage ±0.02 V (condition: VO = 3.0 V ↔13.0 V)
★
<Test Condition>
Measurement
point
RL1
RL2
RL3
RL4
RL5
Output
RLn = 2 kΩ
CLn = 20 pF
CL1
CL2
CL3
CL4
CL5
GND
Data Sheet S16086EJ1V0DS
19
µPD16724
Timing Requirements (TA = −10 to +75°°C, VDD1 = 2.3 to 3.6 V, VSS1 = 0 V, tr = tf = 5.0 ns)
Parameter
Clock pulse width
Clock pulse high period
Clock pulse low period
Symbol
PW CLK
PW CLK(H)
PW CLK(L)
Condition
MIN.
TYP.
MAX.
Unit
2.3 V ≤ VDD1 < 3.0 V
20
ns
3.0 V ≤ VDD1 ≤ 3.6 V
17
ns
2.3 V ≤ VDD1 < 3.0 V
5
ns
3.0 V ≤ VDD1 ≤ 3.6 V
3
ns
2.3 V ≤ VDD1 < 3.0 V
5
ns
3.0 V ≤ VDD1 ≤ 3.6 V
3
ns
Data setup time
tSETUP1
0
ns
Data hold time
tHOLD1
3
ns
Start pulse setup time
tSETUP2
0
ns
Start pulse hold time
tHOLD2
3
ns
POL21, POL22 setup time
tSETUP3
0
ns
POL21, POL22 hold time
tHOLD3
3
ns
STB pulse width
PW STB
1.0
µs
2
CLK
Last data timing
tLDT
2
CLK
STB-CLK time
tSTB-CLK
STB ↑→ CLK↑
4
ns
Time between STB and start pulse
tSTB-STH
STB ↑→ STHR (STHL) ↑
2
CLK
POL-STB time
tPOL-STB
POL ↑ or ↓→ STB ↑
4
ns
STB-POL time
tSTB-POL
STB ↓→ POL ↓ or ↑
4
ns
STB-SRC time
tSTB-SRC1
STB ↑ → SRC1 ↑
0
ns
★ Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.
20
Data Sheet S16086EJ1V0DS
tSETUP2
2
3
1
80
81
82
801
tr
2
VDD1
90 %
802
10 %
tSTB-CLK
tHOLD2
tf
VDD1
STHR
(1st Dr.)
VSS1
tSETUP1
Dn0 to Dn5
INVALID
D1 to D6
tHOLD1
D7 to D12
tSETUP3
POL21,
POL22
VSS1
tSTB-STH
D469 to
D474
D475 to
D480
D481 to
D486
VDD1
D4795 to
D4800
INVALID
D1 to D6
D7 to D12
VSS1
tHOLD3
VDD1
INVALID
INVALID
VSS1
tPLH1
Data Sheet S16086EJ1V0DS
VDD1
STHL
(1st Dr.)
VSS1
tLDT
PWSTB
VDD1
STB
VSS1
tSTB-SRC1
VDD1
SRC1
VSS1
tPOL-STB
tSTB-POL
VDD1
POL
Switching Characteristic Waveform (R,/L= H, MODE1 = L, MODE2 = H)
1
CLK
PWCLK(H)
Unless otherwise specified, VIH, VIL are defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.
PWCLK(L) PWCLK
VSS1
tPLH3
Hi-Z
tPLH2
Target voltage ±10%
Vx
Target voltage ±20 mV
tPHL3
21
µPD16724
tPHL2
µPD16724
★ 11. RECOMMENDED MOUNTING CONDITIONS
The following conditions must be met for mounting conditions of the µPD16724.
For more details, refer to the Semiconductor Device Mount Manual
(http://www.necel.com/pkg/en/mount/index.html).
Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under
different conditions.
µPD16724N-xxx: TCP (TAB Package)
Mounting Condition
Thermocompression
Mounting Method
Condition
Soldering
Heating tool 300 to 350°C, heating for 2 to 3 sec, pressure 100 g (per
solder).
ACF
Temporary bonding 70 to 100°C, pressure 3 to 8 kg/cm2, time 3 to 5
(Adhesive Conductive
sec. Real bonding 165 to 180°C pressure 25 to 45 kg/cm2, time 30 to
Film)
40 sec. (When using the anisotropy conductive film SUMIZAC1003 of
Sumitomo Bakelite, Ltd.)
Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF
manufacturing company. Be sure to avoid using two or more mounting methods at a time.
22
Data Sheet S16086EJ1V0DS
µPD16724
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
Data Sheet S16086EJ1V0DS
23
µPD16724
Reference Documents
NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades On NEC Semiconductor Devices (C11531E)
★ Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)
• The information in this document is current as of March, 2003. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
• No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
• NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
• Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
• NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).
M8E 02. 11-1