ETC NJU6825

NJU6825
Preliminary
162-common x 128RGB-Segment, 4096-Color
STN LCD DRIVER
■ GENERAL DESCRIPTION
The NJU6825 is a STN LCD driver with 162-common x
128RGB-segment in 4096-color. It consists of
384(128xRGB)-segment, 162-common drivers, serial and
parallel MPU interface circuits, internal power supply
circuits, gradation palettes and 248,832-bit for graphic
display data RAM.
Each segment driver outputs 16-gradation level out of
32-gradation level of gradation palette.
Since the NJU6825 provides a low operating voltage of
1.7V and low operating current, it is ideally suited for
battery-powered handheld applications.
■ PACKAGE OUTLINE
NJU6825CJ
■ FEATURES
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
4096-color STN LCD driver
LCD drivers
162 commons, 128x3 RGB-segments
Display data RAM (DDRAM)
248,832-bit for graphic display
Color display mode
16 gradation level out of 32-gradation level of gradation palette
Black & white display mode
162 x 384 pixels in 16 gradation level or 162 x 384 pixels in B&W
256-color driving mode
8/16bit Parallel interface directly-connective to 68/80 series MPU
Programmable 8- or 16-bit data bus length for display data
3-/4-line serial interface
Programmable duty and bias ratios
Programmable internal voltage booster (Maximum 7-times)
Programmable contrast control using128-step EVR
Various instructions
Display data read/write, Display ON/OFF, Reverse display ON/OFF, All pixels ON/OFF,
column address, row address, N-line inversion, Initial display line, Initial COM line, Read-modify-write,
Gradation mode control, Increment control, Data bus length, Discharge ON/OFF,
Duty cycle ratio, LCD bias ratio, Boost level, EVR control, Power save ON/OFF, etc
Low operating current
Low logic supply voltage
1.7V to 3.3V
LCD driving supply voltage
5.0V to 18.0V
C-MOS technology
Package
Bumped chip / TCP
02/11/22
-1-
NJU6825
■ PAD LOCATION
SEGA126
SEGB126
SEGC126
SEGA127
SEGB127
SEGC127
COM81
COM100
DMY113
DMY114
COM101
COM149
DMY115
1
DMY40
WRb
DMY39
DMY38
VSSA(R)
VSSA(C)
VSSA(L)
DMY37
DMY36
SEL68
DMY35
DMY34
DMY33
P/S
DMY32
DMY31
VDDA(R)
VDDA(C)
VDDA(L)
DMY30
DMY29
TEST2
DMY28
DMY27
VSS(R)
VSS(C)
VSS(L)
DMY26
DMY25
RS
DMY24
DMY23
DMY22
CSb
DMY21
DMY20
DMY19
RESb
DMY18
DMY1r7
DMY16
DMY15
DMY14
DMY13
VDD(R)
VDD(C)
VDD(L)
DMY12
DMY11
DMY10
DMY9
DMY8
TEST1
DMY7
DMY6
DMY5
DMY4
DMY3
VSSA(R)
VSSA(C)
VSSA(L)
DMY2
DMY1
COM161
COM150
DMY0
Note1) The PADs of (L), (R) and (C) are shorted mutually in the LSI.
Note2) The DMY PADs are electrically open.
Chip Center
Chip Size
Chip Thickness
Bump Size
Bump Pitch
Bump Height
Bump Material
:X= 0µm, Y= 0µm
:19.93mm x 3.06mm
:625µm ± 25µm
:32µm x 68µm(COM/SEG Output), 47µm x 68µm(Interface),
68µm x 68µm(DMY0,109,110,111,112,113,114,115)
:45µm(Min)
:14.0~22.5µm (Typical 18µm) <tolerance : ±3µm >
:Au
Alignment marks
a
a: 30µm
b: 6µm
c: 120µm
d: 27µm
Alignment mark coordinates
d
d
b
a
X=-9831µm, Y=-1396µm
X= 9831µm, Y=-1396µm
b
c
-2-
c
NJU6825
Y
X
DMY67
FLM
DMY66
DMY65
CL
DMY64
VSS (R)
VSS (C)
VSS (L)
DMY63
D15
DMY62
D14
DMY61
D13
DMY60
D12
DMY59
D11
DMY58
D10
DMY57
D9
DMY56
D8
DMY55
D7
DMY54
D6
DMY53
D5
DMY52
D4/SPOL
DMY51
D3/SMODE
DMY50
D2
DMY49
D1/SDA
DMY48
D0/SCL
DMY47
DMY46
VDD(R)
VDD(C)
VDD(L)
DMY45
DMY44
DMY43
RDb
DMY42
DMY41
VEE(C)
VEE(L)
DMY87
DMY86
DMY85
VBA(R)
VBA(C)
VBA(L)
DMY84
VREF(R)
VREF(C)
VREF(L)
DMY83
DMY82
VREG(R)
VREG(C)
VREG(L)
V4(R)
V4(C)
V4(L)
DMY81
V3(R)
V3(C)
V3(L)
V2(R)
V2(C)
V2(L)
DMY80
V1(R)
V1(C)
V1(L)
VLCD(R)
VLCD(C)
VLCD(L)
DMY79
DMY78
VSSH(R)
VSSH(C)
VSSH(L)
DMY77
DMY76
OSC2
DMY75
DMY74
OSC1
DMY73
DMY72
DMY71
CLK
DMY70
DMY69
FR
DMY68
-3-
NJU6825
DMY109
COM69
COM80
DMY108
VOUT(R)
VOUT(C)
VOUT(L)
DMY107
DMY106
DMY105
DMY104
DMY103
C6-(R)
C6-(C)
C6-(L)
DMY102
C6+(R)
C6+(C)
C6+(L)
DMY101
C5-(R)
C5-(C)
C5-(L)
DMY100
C5+(R)
C5+(C)
C5+(L)
DMY99
C4-(R)
C4-(C)
C4-(L)
DMY98
C4+(R)
C4+(C)
C4+(L)
DMY97
C3-(R)
C3-(C)
C3-(L)
DMY96
C3+(R)
C3+(C)
C3+(L)
DMY95
C2-(R)
C2-(C)
C2-(L)
DMY94
C2+(R)
C2+(C)
C2+(L)
DMY93
C1-(R)
C1-(C)
C1-(L)
DMY92
C1+(R)
C1+(C)
C1+(L)
DMY91
DMY90
VSSH(R)
VSSH(C)
VSSH(L)
DMY89
DMY88
VEE(R)
-4-
DMY112
COM19
COM0
SEGA0
SEGB0
SEGC0
SEGA1
SEGB1
SEGC1
DMY111
COM20
Y
X
COM68
DMY110
NJU6825
■ PAD COORDINATES 1
Chip Size 19930µm x 3060µm (Chip Center 0µm x 0µm )
PAD
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Terminal
X(µm)
Y(µm)
DMY0
COM150
COM151
COM152
COM153
COM154
COM155
COM156
COM157
COM158
COM159
COM160
COM161
DMY1
DMY2
VSSA(L)
VSSA(C)
VSSA(R)
DMY3
DMY4
DMY5
DMY6
DMY7
TEST1
DMY8
DMY9
DMY10
DMY11
DMY12
VDD(L)
VDD(C)
VDD(R)
DMY13
DMY14
DMY15
DMY16
DMY17
DMY18
RESb
DMY19
DMY20
DMY21
CSb
DMY22
DMY23
DMY24
RS
DMY25
DMY26
VSS(L)
VSS(C)
-9581
-9518
-9473
-9428
-9383
-9338
-9293
-9248
-9203
-9158
-9113
-9068
-9023
-8910
-8850
-8790
-8730
-8670
-8610
-8550
-8490
-8430
-8370
-8310
-8250
-8190
-8130
-8070
-8010
-7950
-7890
-7830
-7650
-7590
-7530
-7470
-7410
-7350
-7290
-7230
-7170
-7110
-7050
-6990
-6930
-6870
-6810
-6750
-6690
-6630
-6570
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
PAD
No.
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
Terminal
X (µm)
Y (µm)
VSS(R)
DMY27
DMY28
TEST2
DMY29
DMY30
VDDA(L)
VDDA(C)
VDDA(R)
DMY31
DMY32
P/S
DMY33
DMY34
DMY35
SEL68
DMY36
DMY37
VSSA(L)
VSSA(C)
VSSA(R)
DMY38
DMY39
WRb
DMY40
DMY41
DMY42
RDb
DMY43
DMY44
DMY45
VDD(L)
VDD(C)
VDD(R)
DMY46
DMY47
D0
DMY48
D1
DMY49
D2
DMY50
D3
DMY51
D4
DMY52
D5
DMY53
D6
DMY54
D7
-6510
-6330
-6270
-6210
-6150
-6090
-6030
-5970
-5910
-5850
-5790
-5730
-5670
-5610
-5550
-5490
-5430
-5370
-5310
-5250
-5190
-5130
-5070
-5010
-4950
-4890
-4830
-4770
-4710
-4650
-4590
-4530
-4470
-4410
-4230
-4170
-4050
-3930
-3810
-3690
-3570
-3450
-3330
-3210
-3090
-2970
-2850
-2730
-2610
-2490
-2370
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
PAD
No.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
Terminal
X (µm)
Y (µm)
DMY55
D8
DMY56
D9
DMY57
D10
DMY58
D11
DMY59
D12
DMY60
D13
DMY61
D14
DMY62
D15
DMY63
VSS(L)
VSS(C)
VSS(R)
DMY64
CL
DMY65
DMY66
FLM
DMY67
DMY68
FR
DMY69
DMY70
CLK
DMY71
DMY72
DMY73
OSC1
DMY74
DMY75
OSC2
DMY76
DMY77
VSSH(L)
VSSH(C)
VSSH(R)
DMY78
DMY79
VLCD(L)
VLCD(C)
VLCD(R)
V1(L)
V1(C)
V1(R)
-2250
-2130
-2010
-1890
-1770
-1650
-1530
-1410
-1290
-1170
-1050
-930
-810
-690
-570
-450
-330
-270
-210
-150
30
150
270
330
450
570
630
750
870
930
1050
1170
1230
1290
1350
1410
1470
1650
1830
1890
1950
2010
2070
2250
2310
2370
2430
2490
2670
2730
2790
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-5-
NJU6825
■ PAD COORDINATES 2
Chip Size 19930µm x 3060µm (Chip Center 0µm x 0µm )
PAD
No.
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
-6-
Terminal
X(µm)
Y(µm)
DMY80
V2(L)
V2(C)
V2(R)
V3(L)
V3(C)
V3(R)
DMY81
V4(L)
V4(C)
V4(R)
VREG(L)
VREG(C)
VREG(R)
DMY82
DMY83
VREF(L)
VREF(C)
VREF(R)
DMY84
VBA(L)
VBA(C)
VBA(R)
DMY85
DMY86
DMY87
VEE(L)
VEE(C)
VEE(R)
DMY88
DMY89
VSSH(L)
VSSH(C)
VSSH(R)
DMY90
DMY91
C1+(L)
C1+(C)
C1+(R)
DMY92
C1-(L)
C1-(C)
C1-(R)
DMY93
C2+(L)
C2+(C)
C2+(R)
DMY94
C2-(L)
C2-(C)
C2-(R)
2850
2910
2970
3030
3210
3270
3330
3390
3450
3510
3570
3750
3810
3870
3930
3990
4050
4110
4170
4230
4290
4350
4410
4470
4530
4590
4650
4710
4770
4950
5010
5190
5250
5310
5370
5430
5490
5550
5610
5670
5730
5790
5850
5910
5970
6030
6090
6150
6210
6270
6330
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
PAD
No.
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
Terminal
X (µm)
Y (µm)
DMY95
C3+(L)
C3+(C)
C3+(R)
DMY96
C3-(L)
C3-(C)
C3-(R)
DMY97
C4+(L)
C4+(C)
C4+(R)
DMY98
C4-(L)
C4-(C)
C4-(R)
DMY99
C5+(L)
C5+(C)
C5+(R)
DMY100
C5-(L)
C5-(C)
C5-(R)
DMY101
C6+(L)
C6+(C)
C6+(R)
DMY102
C6-(L)
C6-(C)
C6-(R)
DMY103
DMY104
DMY105
DMY106
DMY107
VOUT(L)
VOUT(C)
VOUT(R)
DMY108
COM80
COM79
COM78
COM77
COM76
COM75
COM74
COM73
COM72
COM71
6390
6450
6510
6570
6630
6690
6750
6810
6870
6930
6990
7050
7110
7170
7230
7290
7350
7410
7470
7530
7590
7650
7710
7770
7830
7890
7950
8010
8070
8130
8190
8250
8310
8370
8430
8490
8550
8610
8670
8730
8910
9023
9068
9113
9158
9203
9248
9293
9338
9383
9428
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
-1396
PAD
No.
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
Terminal
X (µm)
Y (µm)
COM70
COM69
DMY109
DMY110
COM68
COM67
COM66
COM65
COM64
COM63
COM62
COM61
COM60
COM59
COM58
COM57
COM56
COM55
COM54
COM53
COM52
COM51
COM50
COM49
COM48
COM47
COM46
COM45
COM44
COM43
COM42
COM41
COM40
COM39
COM38
COM37
COM36
COM35
COM34
COM33
COM32
COM31
COM30
COM29
COM28
COM27
COM26
COM25
COM24
COM23
COM22
9473
9518
9581
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
9831
-1396
-1396
-1396
-1143
-1080
-1035
-990
-945
-900
-855
-810
-765
-720
-675
-630
-585
-540
-495
-450
-405
-360
-315
-270
-225
-180
-135
-90
-45
0
45
90
135
180
225
270
315
360
405
450
495
540
585
630
675
720
765
810
855
900
945
990
NJU6825
■ PAD COORDINATES 3
Chip Size 19930µm x 3060µm (Chip Center 0µm x 0µm )
PAD
No.
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
Terminal
X(µm)
Y(µm)
COM21
COM20
DMY111
DMY112
COM19
COM18
COM17
COM16
COM15
COM14
COM13
COM12
COM11
COM10
COM9
COM8
COM7
COM6
COM5
COM4
COM3
COM2
COM1
COM0
SEGA0
SEGB0
SEGC0
SEGA1
SEGB1
SEGC1
SEGA2
SEGB2
SEGC2
SEGA2
SEGB3
SEGC3
SEGA4
SEGB4
SEGC4
SEGA5
SEGB5
SEGC5
SEGA6
SEGB6
SEGC6
SEGA7
SEGB7
SEGC7
SEGA8
SEGB8
SEGC8
9831
9831
9831
9581
9518
9473
9428
9383
9338
9293
9248
9203
9158
9113
9068
9023
8978
8933
8888
8843
8798
8753
8708
8663
8618
8573
8528
8483
8438
8393
8348
8303
8258
8213
8168
8123
8078
8033
7988
7943
7898
7853
7808
7763
7718
7673
7628
7583
7538
7493
7448
1035
1080
1144
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
PAD
No.
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
Terminal
X (µm)
Y (µm)
SEGA9
SEGB9
SEGC9
SEGA10
SEGB10
SEGC10
SEGA11
SEGB11
SEGC11
SEGA12
SEGB12
SEGC12
SEGA13
SEGB13
SEGC13
SEGA14
SEGB14
SEGC14
SEGA15
SEGB15
SEGC15
SEGA16
SEGB16
SEGC16
SEGA17
SEGB17
SEGC17
SEGA18
SEGB18
SEGC18
SEGA19
SEGB19
SEGC19
SEGA20
SEGB20
SEGC20
SEGA21
SEGB21
SEGC21
SEGA22
SEGB22
SEGC22
SEGA23
SEGB23
SEGC23
SEGA24
SEGB24
SEGC24
SEGA25
SEGB25
SEGC25
7403
7358
7313
7268
7223
7178
7133
7088
7043
6998
6953
6908
6863
6818
6773
6728
6683
6638
6593
6548
6503
6458
6413
6368
6323
6278
6233
6188
6143
6098
6053
6008
5963
5918
5873
5828
5783
5738
5693
5648
5603
5558
5513
5468
5423
5378
5333
5288
5243
5198
5153
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
PAD
No.
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
Terminal
X (µm)
Y (µm)
SEGA26
SEGB26
SEGC26
SEGA27
SEGB27
SEGC27
SEGA28
SEGB28
SEGC28
SEGA29
SEGB29
SEGC29
SEGA30
SEGB30
SEGC30
SEGA31
SEGB31
SEGC31
SEGA32
SEGB32
SEGC32
SEGA33
SEGB33
SEGC33
SEGA34
SEGB34
SEGC34
SEGA35
SEGB35
SEGC35
SEGA36
SEGB36
SEGC36
SEGA37
SEGB37
SEGC37
SEGA38
SEGB38
SEGC38
SEGA39
SEGB39
SEGC39
SEGA40
SEGB40
SEGC40
SEGA41
SEGB41
SEGC41
SEGA42
SEGB42
SEGC42
5108
5063
5018
4973
4928
4883
4838
4793
4748
4703
4658
4613
4568
4523
4478
4433
4388
4343
4298
4253
4208
4163
4118
4073
4028
3983
3938
3893
3848
3803
3758
3713
3668
3623
3578
3533
3488
3443
3398
3353
3308
3263
3218
3173
3128
3083
3038
2993
2948
2903
2858
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
-7-
NJU6825
■ PAD COORDINATES 4
Chip Size 19930µm x 3060µm (Chip Center 0µm x 0µm )
PAD
No.
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
-8-
Terminal
X(µm)
Y(µm)
SEGA43
SEGB43
SEGC43
SEGA44
SEGB44
SEGC44
SEGA45
SEGB45
SEGC45
SEGA46
SEGB46
SEGC46
SEGA47
SEGB47
SEGC47
SEGA48
SEGB48
SEGC48
SEGA49
SEGB49
SEGC49
SEGA50
SEGB50
SEGC50
SEGA51
SEGB51
SEGC51
SEGA52
SEGB52
SEGC52
SEGA53
SEGB53
SEGC53
SEGA54
SEGB54
SEGC54
SEGA55
SEGB55
SEGC55
SEGA56
SEGB56
SEGC56
SEGA57
SEGB57
SEGC57
SEGA58
SEGB58
SEGC58
SEGA59
SEGB59
SEGC59
2813
2768
2723
2678
2633
2588
2543
2498
2453
2408
2363
2318
2273
2228
2183
2138
2093
2048
2003
1958
1913
1868
1823
1778
1733
1688
1643
1598
1553
1508
1463
1418
1373
1328
1283
1238
1193
1148
1103
1058
1013
968
923
878
833
788
743
698
653
608
563
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
PAD
No.
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
Terminal
X (µm)
Y (µm)
SEGA60
SEGB60
SEGC60
SEGA61
SEGB61
SEGC61
SEGA62
SEGB62
SEGC62
SEGA63
SEGB63
SEGC63
SEGA64
SEGB64
SEGC64
SEGA65
SEGB65
SEGC65
SEGA66
SEGB66
SEGC66
SEGA67
SEGB67
SEGC67
SEGA68
SEGB68
SEGC68
SEGA69
SEGB69
SEGC69
SEGA70
SEGB70
SEGC70
SEGA71
SEGB71
SEGC71
SEGA72
SEGB72
SEGC72
SEGA73
SEGB73
SEGC73
SEGA74
SEGB74
SEGC74
SEGA75
SEGB75
SEGC75
SEGA76
SEGB76
SEGC76
518
473
428
383
338
293
248
203
158
113
68
23
-23
-68
-113
-158
-203
-248
-293
-338
-383
-428
-473
-518
-563
-608
-653
-698
-743
-788
-833
-878
-923
-968
-1013
-1058
-1103
-1148
-1193
-1238
-1283
-1328
-1373
-1418
-1463
-1508
-1553
-1598
-1643
-1688
-1733
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
PAD
No.
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
Terminal
X (µm)
Y (µm)
SEGA77
SEGB77
SEGC77
SEGA78
SEGB78
SEGC78
SEGA79
SEGB79
SEGC79
SEGA80
SEGB80
SEGC80
SEGA81
SEGB81
SEGC81
SEGA82
SEGB82
SEGC82
SEGA83
SEGB83
SEGC83
SEGA84
SEGB84
SEGC84
SEGA85
SEGB85
SEGC85
SEGA86
SEGB86
SEGC86
SEGA87
SEGB87
SEGC87
SEGA88
SEGB88
SEGC88
SEGA89
SEGB89
SEGC89
SEGA90
SEGB90
SEGC90
SEGA91
SEGB91
SEGC91
SEGA92
SEGB92
SEGC92
SEGA93
SEGB93
SEGC93
-1778
-1823
-1868
-1913
-1958
-2003
-2048
-2093
-2138
-2183
-2228
-2273
-2318
-2363
-2408
-2453
-2498
-2543
-2588
-2633
-2678
-2723
-2768
-2813
-2858
-2903
-2948
-2993
-3038
-3083
-3128
-3173
-3218
-3263
-3308
-3353
-3398
-3443
-3488
-3533
-3578
-3623
-3668
-3713
-3758
-3803
-3848
-3893
-3938
-3983
-4028
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
NJU6825
■ PAD COORDINATES 5
Chip Size 19930µm x 3060µm (Chip Center 0µm x 0µm )
PAD
No.
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
Terminal
X(µm)
Y(µm)
SEGA94
SEGB94
SEGC94
SEGA95
SEGB95
SEGC95
SEGA96
SEGB96
SEGC96
SEGA97
SEGB97
SEGC97
SEGA98
SEGB98
SEGC98
SEGA99
SEGB99
SEGC99
SEGA100
SEGB100
SEGC100
SEGA101
SEGB101
SEGC101
SEGA102
SEGB102
SEGC102
SEGA103
SEGB103
SEGC103
SEGA104
SEGB104
SEGC104
SEGA105
SEGB105
SEGC105
SEGA106
SEGB106
SEGC106
SEGA107
SEGB107
SEGC107
SEGA108
SEGB108
SEGC108
SEGA109
SEGB109
SEGC109
SEGA110
SEGB110
SEGC110
-4073
-4118
-4163
-4208
-4253
-4298
-4343
-4388
-4433
-4478
-4523
-4568
-4613
-4658
-4703
-4748
-4793
-4838
-4883
-4928
-4973
-5018
-5063
-5108
-5153
-5198
-5243
-5288
-5333
-5378
-5423
-5468
-5513
-5558
-5603
-5648
-5693
-5738
-5783
-5828
-5873
-5918
-5963
-6008
-6053
-6098
-6143
-6188
-6233
-6278
-6323
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
PAD
No.
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
Terminal
X (µm)
Y (µm)
SEGA111
SEGB111
SEGC111
SEGA112
SEGB112
SEGC112
SEGA113
SEGB113
SEGC113
SEGA114
SEGB114
SEGC114
SEGA115
SEGB115
SEGC115
SEGA116
SEGB116
SEGC116
SEGA117
SEGB117
SEGC117
SEGA118
SEGB118
SEGC118
SEGA119
SEGB119
SEGC119
SEGA120
SEGB120
SEGC120
SEGA121
SEGB121
SEGC121
SEGA122
SEGB122
SEGC122
SEGA123
SEGB123
SEGC123
SEGA124
SEGB124
SEGC124
SEGA125
SEGB125
SEGC125
SEGA126
SEGB126
SEGC126
SEGA127
SEGB127
SEGC127
-6368
-6413
-6458
-6503
-6548
-6593
-6638
-6683
-6728
-6773
-6818
-6863
-6908
-6953
-6998
-7043
-7088
-7133
-7178
-7223
-7268
-7313
-7358
-7403
-7448
-7493
-7538
-7583
-7628
-7673
-7718
-7763
-7808
-7853
-7898
-7943
-7988
-8033
-8078
-8123
-8168
-8213
-8258
-8303
-8348
-8393
-8438
-8483
-8528
-8573
-8618
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
PAD
No.
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
Terminal
X (µm)
Y (µm)
COM81
COM82
COM83
COM84
COM85
COM86
COM87
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
COM96
COM97
COM98
COM99
COM100
DMY113
DMY114
COM101
COM102
COM103
COM104
COM105
COM106
COM107
COM108
COM109
COM110
COM111
COM112
COM113
COM114
COM115
COM116
COM117
COM118
COM119
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
COM128
COM129
-8663
-8708
-8753
-8798
-8843
-8888
-8933
-8978
-9023
-9068
-9113
-9158
-9203
-9248
-9293
-9338
-9383
-9428
-9473
-9518
-9581
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1396
1143
1080
1035
990
945
900
855
810
765
720
675
630
585
540
495
450
405
360
315
270
225
180
135
90
45
0
-45
-90
-135
-180
-9-
NJU6825
■ PAD COORDINATES 6
Chip Size 19930µm x 3060µm (Chip Center 0µm x 0µm )
PAD
No.
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
- 10 -
Terminal
X(µm)
Y(µm)
COM130
COM131
COM132
COM133
COM134
COM135
COM136
COM137
COM138
COM139
COM140
COM141
COM142
COM143
COM144
COM145
COM146
COM147
COM148
COM149
DMY115
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-9831
-225
-270
-315
-360
-405
-450
-495
-540
-585
-630
-675
-720
-765
-810
-855
-900
-945
-990
-1035
-1080
-1144
NJU6825
COM161
COM0
SEGA0
SEGB0
SEGC0
SEGA127
SEGB127
SEGC127
■ BLOCK DIAGRAM
VSSH
VSS
VDD
Common Driver
Gradation Circuit
Shift Register
Data Latch Circuit
D15
Initial Display Line Register
Line Counter
Display Data RAM
(DD RAM)
128x162x(4+4+4)bit
Line Address Decoder
Voltage
regulator
Row Address Decoder
Voltage
booster
Row Address Counter
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5C6+
C6VOUT
VEE
VREF
VBA
VREG
Row Address Register
VLCD, V1 -V4
Segment Driver
5
Column Address Decoder
D14
D13
RAM
Interface
D12
Display
Timing
Generator
Column Address Counter
D11
FR
FLM
CL
D10
D8
D7
Column Address Register
I/O Buffer
D9
CLK
Oscillator
OSC2
OSC1
D6
D5
D4/SPOL
Pole Control
D3/SMODE
D2
Instruction
Decoder
Bus Holder
Register Read
Control
Internal Bus
D1/SDA
D0/SCL
MPU Interface
CSb
RS
RDb
WRb
P/S
SEL68 RESb TEST1
TEST2
- 11 -
NJU6825
! POWER SUPPLY CIRCUITS BLOCK DIAGRAM
VBA
-
Voltage regulator
VREG
VREF
+
Reference
Voltage
Generator
+
Gain
Control
(1x-7x)
E.V.R
1/2VREG
EVR register
Boost level register
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5C6+
C6VEE
- 12 -
Voltage
Booster
VOUT
+
-
VLCD
+
-
V1
+
-
V2
+
-
V3
+
-
V4
NJU6825
■ TERMINAL DESCRIPTION 1
No.
30-32,
83-85
50-52,
120-122
143-145,
185-187
Symbol
I/O
VDD
Power
Power supply for logic circuits
VSS
Power
GND for logic circuits
VSSH
Power
GND for high voltage circuits
58-60
VDDA
Power
16-18,
70-72
VSSA
Power
148-150,
151-153,
155-157,
158-160,
162-164
VLCD
V1
V2
V3
V4
Power/O
190-192,
194-196
198-200,
202-204
206-208,
210-212
214-216,
218-220
222-224,
226-228
230-232,
234-236
174-176
170-172
C 1+
C 1C 2+
C 2C 3+
C 3C 4+
C 4C 5+
C 5C 6+
C 6VBA
VREF
180-182
VEE
Power
242-244
VOUT
Power/O
165-167
VREG
O
39
RESb
I
Function
This terminal is internally connected to the VDD level.
•This terminal is used to fix the selection terminals to the VDD
level.
Note) Do not use this terminal for a main power supply.
This terminal is internally connected to the VSS level.
•This terminal is used to fix the selection terminals of the VSS
level.
Note) Do not use this terminal for a main GND.
LCD driving voltages
•When the internal voltage booster is not used, external LCD
driving voltages (V1 to V4 and VLCD) must be supplied on these
terminals. The external voltages must be maintained with the
following relation.
VSS<V4<V3<V2<V1<VLCD
• When the internal voltage booster is used, the LCD driving
voltages (V1 to V4 and VLCD) are enabled by the “Power control”
instruction. The capacitors between the VSS and these terminals
are necessary.
O
Capacitor connection terminals for the voltage booster
O
Capacitor connection terminals for the voltage booster
O
Capacitor connection terminals or the voltage booster
O
Capacitor connection terminals for the voltage booster
O
Capacitor connection terminals for the voltage booster
O
Capacitor connection terminals for the voltage booster
O
I
Output of the reference-voltage generator
Input of the Voltage regulator
Input of the Voltage booster input
•This terminal is normally connected to the VDD level.
Output of the Voltage booster
Input for high voltage circuits in using external power supply
Output of the Voltage regulator
Reset
Active “0”
- 13 -
NJU6825
■ TERMINAL DESCRIPTION 2
No.
Symbol
I/O
88
D0/SCL
I/O
90
D1/SDA
I/O
94
D3/SMODE
I/O
96
D4/SPOL
I/O
92, 98,
100,102
D 2, D 5,
D 6, D 7
I/O
104,106,108,
110,112,114,
116,118
D8, D9, D10,
D11, D12, D13,
D14, D15
I/O
43
CSb
I
47
RS
I
Function
Parallel interface:
D7 to D0 : 8-bit bi-directional bus
•In the parallel interface mode (P/S=“1”), these terminals
connect to 8-bit bi-directional MPU bus.
Serial interface:
SDA : serial data
SCL : serial clock
SMODE : 3-/4-line serial interface mode selection
SPOL : RS polarity selection (in the 3-line serial interface mode)
•In the 3-/4-line serial interface mode (P/S=“0”), the D0 terminal
is assigned to the SCL and the D1 terminal to the SDA.
•In the 3-line serial interface mode, the D4 terminal is assigned
to the SPOL.
•Serial data on the SDA is fetched at the rising edge of the
SCL signal in the order of the D7, D6…D0, and the fetched data
is converted into 8-bit parallel data at the falling edge of the 8th
SCL signal.
•The SCL signal must be set to “0” after data transmissions or
during non-access.
8-bit bi-directional bus
•In the 16-bit data bus mode, these terminals are assigned to
the upper 8-bit data bus.
•In the serial interface mode or 8-bit data bus mode of the
parallel interface, these terminals must be fixed to “1” or “0”.
Chip select
Active “0”
Resister select
•This signal distinguishes transferred data as an instruction or
display data as follows.
RS
Distinct.
H
Instruction
L
Display data
80 series MPU interface (P/S=“1”, SEL68=“0”)
RDb signal. Active “0”.
79
75
RDb (E)
I
WRb (R/W)
I
68 series MPU interface (P/S=“1”, SEL68=“1”)
Enable signal. Active “1”.
80 series MPU interface (P/S=“1”, SEL68=“0”)
WRb signal. Active “0”.
68 series MPU interface (P/S=“1”, SEL68=“1”)
R/W signal.
R/W
Status
- 14 -
H
Read
L
Write
NJU6825
■ TERMINAL DESCRIPTION 3
No.
Symbol
I/O
67
SEL68
I
Function
MPU interface type select
SEL68
H
Status
68 series
L
80 series
Parallel / serial interface mode selection
63
P/S
I
P/S
Chip
Select
Data/Instructio
n
Data
H
CSb
RS
D0 to D7
RDb, WRb
-
L
CSb
RS
SDA (D1)
Write only
SCL (D0)
Read/Write
Serial clock
•Since the D15 to D5 and D2 terminals are in the high impedance in the
serial inter face mode (P/S=”0”), they must be fixed to “1” or “0”. The
RDb and WRb terminals also must be “1” or “0”.
124
CL
I/O
This terminal must be opened.
127
130
FLM
FR
I/O
I/O
24
TEST1
I
55
TEST2
I
This terminal must be opened.
This terminal must be opened.
Maker test terminal
This terminal should be fixed to “0”.
Maker test terminal
This terminal must be fixed to “1”.
- 15 -
NJU6825
■ TERMINAL DESCRIPTION 4
No.
Symbol
I/O
Function
Segment output
REV Mode
Normal
Reverse
331-714
SEGA0 to SEGA127,
SEGB0 to SEGB127,
SEGC0 to SEGC127
Turn-off
0
1
Turn-on
1
0
•These terminals output LCD driving waveforms in accordance
with the combination of the FR signal and display data.
O
In the B/W mode
FR signal
Display data
Normal display mode
Reverse display
mode
311-330,
260-308,
246-257,
715-734,
737-785,
2-13
V2
VLCD
V3
VSS
VLCD
V2
VSS
V3
Common output
•These terminals output LCD driving waveforms in accordance
with the combination of the FR signal and scanning data.
COM0 to COM161
O
Data
H
L
H
L
FR
H
H
L
L
Output level
VSS
V1
VLCD
V4
137,
140
OSC1
OSC2
I
O
OSC
•When the internal oscillator clock is used, OSC1 terminal must be
fixed to “1” or “0”, and the OSC2 terminal must be opened. When
the oscillation frequency from the internal oscillator is adjusted by
an external resistor between OSC1 terminal and OSC2
•When an external oscillator is used, external clock is input to the
OSC1 terminal or an external resistor is connected between the
OSC1 and OSC2 terminals.
133
CLK
I/O
This terminal must be opened.
(Terminal No.14,15,20-23,25-29,33-38,40-42,44-46,48,49,53,54,56,57,61,62,64-66,68,69,73,74,76-78,80-82,
86,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,123,125,126,128,129,131,132,134-136,
138,139,141,142,146,147,154,161,168,169,173,177-179,183,184,188,189,193,197,201,205,209,213,217,221,
225,229,233,237-241,245,258,259,309,310,735,736, and 786 are dummy.)
- 16 -
NJU6825
■ Functional Description
(1) MPU Interface
(1-1) Selection of parallel / serial interface mode
The P/S terminal is used to select parallel or serial interface mode as shown in the following table. In the
serial interface mode, it is not possible to read out display data from the DDRAM and status from the
internal registers.
Table1
P/S
P/S mode
CSb
RS
H
Parallel I/F
CSb
RS
L
Serial I/F
CSb
RS
Note 1) “ -” mark: Fix to “1” or “0”.
RDb
RDb
-
WRb
WRb
-
SEL68
SEL68
-
SDA
SCL
SDA
SCL
Data
D7-D0 (D15-D0)
-
(1-2) Selection of MPU interface type
In the parallel interface mode, the SEL68 terminal is used to select 68- or 80-series MPU interface type
as shown in the following table.
Table2
SEL68
MPU type
H
68 series MPU
L
80 series MPU
CSb
CSb
CSb
RS
RS
RS
RDb
E
RDb
WRb
R/W
WRb
Data
D7-D0 (D15-D0)
D7-D0 (D15-D0)
(1-3) Data distinction
In the parallel interface mode, the combination of RS, RDb, and WRb (R/W) signals distinguishes
transferred data between the LSI and MPU as instruction or display data, as shown in the following table.
Table3
RS
H
H
L
L
68 series
R/W
H
L
H
L
80 series
RDb
WRb
L
H
H
L
L
H
H
L
Function
Read out instruction data
Write instruction data
Read out display data
Write display data
(1-4) Selection of serial interface mode
In the serial interface mode, the SMODE terminal is used to select the 3- or 4-line serial interface mode
as shown in the following table.
Table4
SMODE
H
L
Serial interface mode
3-line
4-line
- 17 -
NJU6825
(1-5) 4-line serial interface mode
In the 4-line serial interface mode, when the chip select is active (CSb=“0”), the SDA and the SCL are
enabled. When the chip select is not active (CSb=“1”), the SDA and the SCL are disabled and the internal
shift register and the counter are being initialized. The 8-bit serial data on the SDA is fetched at the rising
edge of the SCL signal (serial clock) in order of the D7, D6…D0, and the fetched data is converted into the
8-bit parallel data at the rising edge of the 8th SCL signal.
In the 4-line serial interface mode, the transferred data on the SDA is distinguished as display data or
instruction data in accordance with the condition of the RS signal.
RS
H
L
Table5
Data distinction
Instruction data
Display data
Since the serial interface operation is sensitive to external noises, the SCL should be set to “0” after data
transmissions or during non-access. To release a mal-function caused by the external noises, the chipselected status should be released (CSb=“1”) after each of the 8-bit data transmissions. The following
figure illustrates the interface timing for the 4-line serial interface operation.
CSb
RS
VALID
SDA
D7
D6
D5
D4
D3
D2
D1
D0
1
2
3
4
5
6
7
8
SCL
Fig1
4-line serial interface timing
(1-6) 3-line serial interface mode
In the 3-line serial interface mode, when the chip select is active (CSb=“0”), the SDA and SCL are
enabled. When the chip select is not active (CSb=“1”), the SDA and SCL are disabled and the internal shift
register and counter are being initialized. 9-bit serial data on the SDA is fetched at the rising edge of the
SCL signal in order of the RS, D7, D6…D0, and the fetched data is converted into the 9-bit parallel data at
the rising edge of the 9th SCL signal.
In the 3-line serial interface mode, data on the SDA is distinguished as display data or instruction data in
accordance with the condition of the RS bit of SDA data and the status of the SPOL, as follows.
Table6
RS
L
H
- 18 -
SPOL=L
Data distinction
Display data
Instruction data
RS
L
H
SPOL=H
Data distinction
Instruction data
Display data
NJU6825
Since the serial interface operation is sensitive to external noises, the SCL must be set to “0” after data
transmissions or during non-access. To release a mal-function caused by the external noises, the chipselected status should be released (CSb=“1”) after each of 9-bit data transmissions. The following figure
illustrates the interface timing of the 3-line serial interface operation.
CSb
SDA
RS
D7
D6
D5
D4
1
2
3
4
5
D3
D2
D1
D0
SCL
Fig2
6
7
8
9
3-line serial interface timing
- 19 -
NJU6825
(2) Access to the DDRAM
When the CSb signal is ”0”, the transferred data from MPU is written into the DDRAM or instruction register
in accordance with the condition of the RS signal.
When the RS signal is “1”, the transferred data is distinguished as display data. After the “column address”
and “row address” instructions are executed, the display data can be written into the DDRAM by the “display
data write” instruction. The display data is written at the rising edge of the WRb signal in the 80 series MPU
mode, or at the falling edge of the E signal in the 68 series MPU mode.
Table6
RS
Data
L
Display RAM Data
H
Internal Command Register
In the sequence of the “display data read” operation, the transferred data from MPU is temporarily held in the
internal bus-holder, and then transferred to the internal data-bus. When the “display data read” operation is
executed just after the “column address” and “row address” instructions or “display data write” instruction,
unexpected data on the bus-holder is read out at the 1st execution, then the data of designated DDRAM
address is read out from the 2nd execution. For this reason, a dummy read cycle must be executed to avoid
the unexpected 1st data read.
Display data write operation
D0 to D15
n
n+1
n+2
n+3
n+4
Internal
WRb
n
Bus Holder
n+1
n+2
n+3
n+4
WRb
Display data read operation
WRb
D0 to D7(D0 to D15)
n
Address Set
n
n
Dummy
Read
Data Read
n Address
n+1
Data Read
n+1 Address
n+2
Data Read
n+2 Address
RDb
Fig3
Note) In the16-bit data bus mode, instruction data must be 16-bit as well as the display data.
- 20 -
NJU6825
(3) Access to the instruction register
Each instruction resisters is assigned to each address between 0H and FH, and the content of the instruction
register can be read out by the combination of the “Instruction resister address” and ”Instruction resister read”.
WRb
D0 to D7
M
m
N
n
Instruction resister
address set
Instruction resister
contents read
Instruction resister
address set
Instruction resister
contents read
RDb
Fig4
(4) 8-/16-bit data bus length for display data (in the parallel interface mode)
The 8- or 16-bit data bus length for display data is determined by the “WLS” of the “Data bus length”
instruction.
In the 16-bit data bus mode, instruction data must be 16-bit data (D15 to D0) as well as display data. However,
for the access to the instruction register, the only lower 8-bit data (D7 to D0) of the 16-bit data is valid. For the
access to the DDRAM, all of the 16-bit data (D15 to D0) is valid.
Table8
WLS
L
H
Data bus length mode
8-bit
16-bit
(5) Initial display line register
The initial display line resister specifies the line address, corresponding to the initial COM line, by the “Initial
display line” instruction. The initial COM line signifies the common driver, starting scanning the display data in
the DDRAM, and specified by the “Initial COM line” instruction.
The line address, established in the initial display line resister, is preset into the line counter whenever the
FLM signal becomes “1”. At the rising edge of the CL signal, the line counter is counted-up and addressed 384bit display data corresponding to the counted-up line address, is latched into the data latch circuit. At the falling
edge of the CL signal, the latched data outputs to the segment drivers.
- 21 -
NJU6825
(6) DDRAM mapping
The DDRAM is capable of 1,536-bit (12-bit x 128-segment) for the column address and 162-bit for the row
address.
In the gradation mode, each pixel for RGB corresponds to successive 3-segment drivers, and each segment
driver has 16-gradation. Therefore, the LSI can drive up to 128x162 pixels in 4096-color display (16-gradation x
16-gradation x 16-gradation).
# In the 8-bit data bus length mode
column-address
0H
0H
7bit
1H
5bit
FEH
7bit
FFH
5bit
A1H
7bit
5bit
7bit
5bit
row-address
column-address
0H
0H
4bit
1H
8bit
FEH
4bit
FFH
8bit
A1H
4bit
8bit
4bit
8bit
0H
0H
8bit
1H
8bit
BEH
8bit
BFH
8bit
A1H
8bit
8bit
8bit
8bit
0H
0H
8bit
1H
8bit
7EH
8bit
7FH
8bit
A1H
8bit
8bit
8bit
8bit
ABS=’1’
row-address
column-address
HSW=’1’
row-address
column-address
C256=’1’
row-address
Fig5
- 22 -
NJU6825
# In the 16-bit data bus length mode
column-address
0H
0H
12bit
A1H
12bit
7FH
12bit
row-address
12bit
Fig6
In the B&W mode, only MSB data from each 4-bit display data group in the DDRAM is used. Therefore, 384 x
162 pixels in the B&W and 128 x 162 pixels in the 8-gradation are available.
The range of the column address varies depending on data bus length. The range between 00H and FFH is
used in the 8-bit data bus length and the range between 00H and 7FH is in the 16-bit data bus length.
The increments for the column address and row address are set to the auto-increment mode by
programming the “AXI” and “AYI” registers of the “Increment control” instruction. In this mode, the contents of
the column address and row address counters automatically increment whenever the DDRAM is accessed.
The column address and row address counters, independent of the line counter. They are used to designate
the column and row addresses for the display data transferred from MPU. On the other hand, the line counter is
used to generate the line address, and output display data to the segment drivers, being synchronized with the
display control timing of the FLM and CL signals.
- 23 -
NJU6825
0
0
1
1
1
1
1
0
0
1
1
0
0
X
0
0
X
X
0
0
0
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
X
X
0
X
X
1
1
0
1
X
X
SEG0
Palette B
X=7FH
X=00H
Palette C
Palette A
SEG1
Palette B
X=01H
X=7EH
X=01H
Palette C
D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1
X=7FH
X=7EH
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
X=00H
X=01H
X=02H
X=03H
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
X=FEH
X=FFH
X=FCH
X=FDH
D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1
X=00H
X=01H
X=02H
X=03H
D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1
X=FEH
X=FFH
X=FCH
X=FDH
D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
X=00H
X=01H
X=02H
D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
X=BFH
X=BDH
X=BEH(H)
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
X=BEH(L)
Palette B
SEG0
Palette C
SEG1
Palette B
Palette C
- D7 D6 D5 D4 D3 D2 D1 D0
- D7 D6 D5 D4 D3 D2 D1 D0
X=7EH
X=01H
-
-
-
Palette A
D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4
Palette A
- D7 D6 D5 D4 D3 D2 D1 D0
-
Palette A
SEG126
Palette B
X=7EH
Palette C
Palette A
A0
SEG126
X=FDH
X=03H
X=FDH
X=03H
X=02H
Palette B
X=BEH
Palette C
- D7 D6 D5 D4 D3 D2 D1 D0
X=01H
X=7EH
- D7 D6 D5 D4 D3 D2 D1 D0
-
-
-
-
Palette A
X=FEH
X=00H
X=FEH
X=00H
X=00H
SEG127
Palette B
X=7FH
X=00H
X=7FH
X=00H
SEG127
Palette C
X=FFH
X=01H
X=FFH
X=01H
X=BFH
Palette B
X=01H(H)
Palette C
- D7 D6 D5 D4 D3 D2 D1 D0
X=00H
X=7FH
- D7 D6 D5 D4 D3 D2 D1 D0
-
-
-
-
-
-
Palette A
D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4
X=01H(L)
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
X=BDH
D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
X=02H
D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
X=FCH
D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1
X=02H
D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1
X=FCH
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
X=01H
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
X=7EH
D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1
X=01H
D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1
A0
Note1) In the 256-color mode, the vacant LSB bit is filled with "1".
Note2) The function of 256-color mode is different from that of fixed 8-gradation mode (fixed 256-color mode).
Note3) The written data in the DD RAM in "C256"=0 is not compatible with the data in "C256"=1.
Note4) In the 256-color mode, only 8-bit length mode is available, but 16-bit is not.
- D7 D6 D5 D4 D3 D2 D1 D0
X=7FH
X=00H
-
-
-
A1
Palette A
X=00H
A0
D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1
A0
RAM Map 1
Mode
16bit
8bit
0
0
X
Palette C
SEGCx
C0
C0
A1
Palette B
SEGBx
SEGAx
C1
C1
A2
SEGBx
C2
C2
RAM Map 2 (256 Color Mode)
Mode
8bit
0
Palette A
SEGAx
SEGCx
C3
C3
C0
C0
B0
B0
C1
C1
B1
B1
C2
C2
B2
B2
C3
C3
B3
B3
A0
B0
B0
A1
A1
B1
B1
A2
A2
B2
B2
A3
A3
B3
B3
A0
C0
C0
A1
A1
C1
C1
A2
A2
C2
C2
A3
A3
C3
C3
C0
C0
B0
B0
C1
C1
B1
B1
C2
C2
B2
B2
C3
C3
B3
B3
B0
B0
A2
A0
B3
B3
A3
A1
B1
B1
C0
A2
B2
B2
C1
A3
A3
B2
256
B3
A0
C2
256
REF
A0
A1
C3
REF
HSW
A1
A2
B0
ABS
HSW
ABS
A2
A3
B1
WLS
WLS
A3
SWAP
0
0
1
1
0
1
0
1
- 24 -
REF
SWAP
NJU6825
(7) Window addressing mode
In addition to the above usual DDRAM addressing, it is possible to access some part of DDRAM in using the
window addressing mode, in which the start and end points are designated. The start point is determined by the
“column address” and “row address” instructions, and the end point is determined by the “Window end column
address” and “Window end row address” instructions, The setting example of the window addressing is listed,
as follows.
.
1. Set WIN=1, AXI=1 and AYI=1 by the “Increment control” instruction
2. Set the start point by the “column address” and “row address” instructions
3. Set the end point by the “Window end column address” and “Window end row address” instructions
4. Enable to access to the DDRAM in the window addressing mode
In the window addressing mode (WIN=1, AXI=1, AYI=1), the read-modify-write operation is available by
setting “0” to the “AIM” register of the ”Increment control” instruction.
And in the window addressing mode, the following start and end point must be maintained to abide a
malfunction.
AX (column address of start point) < EX (column address of end point) < Maximum of column address
AY (row address of start point) < EY (row address of end point) < Maximum of row address
column address
row address
(X, Y)
Start point
Window display area
End point
(X, Y)
Whole DDRAM area
Fig7
(8) Reverse display ON/OFF
The “Reverse display ON/OFF” function is used to reverse the display data without changing the contents of
the DDRAM.
Table9
REV
Display
0
Normal
1
Reverse
DDRAM data → Display data
0
0
1
1
0
1
1
0
(9) Segment direction
The “Segment direction” function is used to reverse the assignment for the segment drivers and column
address, and it is possible to reduce the restrictions for the placement of the LSI on the LCD modules.
- 25 -
- 26 -
palette
C
SEGA127
$%
palette
B
$%
Column address / bit / segment assign
$%
$%
D0
D1
D0
D1
D2
palette
C
D2
SEGC127
D3
D3
D5
D4
X=7FH
X=00H
D4
palette
B
Column address / bit / segment assign
$%
$%
D5
SEGB127
SEGA127
SEGB127
palette
C
palette
B
palette
A
SEGC127
D1
D2
D3
D4
D7
D8
D9
D10
D12
D13
D14
D15
Column address / bit / segment assign
$%
$%
D6
D7
D8
D9
D10
D1
D2
D3
SEGC127
SEGB127
palette
C
palette
B
palette
A
palette
C
SEGC0
SEGA127
palette
B
SEGB0
D1
D2
D3
D4
D7
D8
D9
D10
D12
D13
D14
D1
D2
D3
D4
D7
D8
D9
D10
D12
D13
D14
D15
Column address / bit / segment assign
$%
$%
D6
D7
D8
palette
A
SEGA127
$%
D9
$%
D11
palette
C
SEGA0
$%
D10
D0
D1
D2
$%
D11
palette
C
SEGC0
D4
D7
D8
D9
$%
SEGB127
D0
D1
X=00H
X=7FH
D2
X=00H
X=7FH
$%
palette
A
palette
C
SEGA0
palette
B
SEGB0
X=00H
X=7FH
D3
D4
D5
D6
D10
D12
D13
palette
A
$%
SEGA0
D15
X=00H
X=7FH
D3
ABS REF SWAP
1
0
1
1
1
0
D4
palette
B
SEGB0
ABS REF SWAP
1
0
0
1
1
1
D5
D7
D8
D9
palette
A
$%
SEGC0
ABS REF SWAP
0
0
1
0
1
0
D6
palette
A
$%
SEGA0
D14
D15
ABS REF SWAP
0
0
0
0
1
1
SEGC127
palette
B
$%
SEGB0
D7
D8
D9
HSW
*
*
palette
A
D11
HSW
*
*
D10
HSW
*
*
SEGC0
D11
HSW
*
*
D10
NJU6825
(10) The relationship among the DDRAM column address, display data and segment drivers
In the Color mode, and 16-bit data bus mode
X=7FH
X=00H
X=7FH
X=00H
X=7FH
X=00H
palette
C
SEGA127
$%
palette
B
$%
- 27 -
D0
D1
SEGC127
palette
C
D0
D1
D2
D3
SEGA127
palette
C
palette
B
SEGB127
D1
D2
D3
D4
D7
D0
D1
D2
D4
D5
D6
D7
Column address / bit / segment assign
$%
X=01H
X=FEH
$%
X=FFH
X=00H
D2
Column address / bit / segment assign
$%
X=01H
X=FEH
$%
X=FFH
X=00H
D4
D5
palette
A
SEGC127
D1
D2
D3
palette
C
palette
B
SEGB127
SEGC127
palette
A
palette
C
SEGC0
SEGA127
palette
B
SEGB0
D1
D2
D3
D4
D7
D0
D1
D1
D2
D3
D4
D7
D0
D1
D2
D4
D5
D6
D7
Column address / bit / segment assign
$%
X=01H
X=FEH
$%
X=FFH
X=00H
D3
palette
B
SEGB127
D6
D7
D0
D1
D2
Column address / bit / segment assign
$%
X=01H
X=FEH
$%
X=FFH
X=00H
D4
D5
D6
D7
D0
palette
A
SEGA127
$%
D1
$%
D3
palette
C
SEGA0
$%
D2
D0
D1
D2
$%
D3
palette
C
SEGC0
D4
D7
D0
D1
$%
SEGB127
D0
D1
D2
D3
palette
B
SEGB0
D2
D4
D5
D6
$%
palette
A
palette
C
SEGA0
X=00H
X=FEH
D4
D5
D6
X=00H
X=FEH
D3
palette
B
SEGB0
X=00H
X=FEH
D4
D5
D6
D2
D4
D5
palette
A
$%
SEGA0
D7
X=00H
X=FEH
SEGC127
palette
B
$%
SEGB0
D7
D0
D1
palette
A
$%
SEGC0
ABS REF SWAP
0
0
1
0
1
0
D7
palette
A
$%
SEGA0
D6
D7
ABS REF SWAP
0
0
0
0
1
1
D0
D1
ABS REF SWAP
1
0
1
1
1
0
palette
A
HSW
0
0
ABS REF SWAP
1
0
0
1
1
1
SEGC0
HSW
0
0
D2
D3
HSW
0
0
D2
HSW
0
0
D3
NJU6825
In the Color mode, and 8-bit data bus mode
X=FFH
X=01H
X=FFH
X=01H
X=FFH
X=01H
X=FFH
X=01H
NJU6825
Palette B
D2
SEGA
126
D1
Palette C
D2
D3
SEGB
127
D1
Palette B
D2
D2
D3
Palette C
D5
D4
X=01H
X=01H
SEGA
127
SEGA
127
Palette C
D2
D1
D0
D2
D1
Palette B
D6
D5
D4
D3
SEGC
127
Palette C
D2
D1
D0
X=BFH
D7
D5
Palette A
X=BFH
D7
D5
D7
SEGB
127
D5
D4
D6
D0
D6
D0
D6
D1
D3
D7
Palette B
D2
D4
SEGA
127
D1
D0
D6
Palette C
D0
SEGB
127
D1
Palette B
X=BEH
D4
Palette A
X=00H
D2
D5
D3
X=BEH
D3
Palette A
D4
SEGC
126
D5
D7
D5
D5
D7
D6
D7
SEGC
127
D6
D0
D4
D6
Palette A
D7
D0
SEGC
127
D7
SEGA
126
D0
D0
D6
D1
D0
SEGB
126
D1
D2
X=BDH
D5
D3
Palette C
SEGB
126
Palette C
Column-address / bit / segment assign
D6
D4
SEGA
126
D1
D3
D5
X=02H
D4
X=02H
D2
D4
- 28 -
Palette B
D5
D6
D3
SEGC
1
X=01H
D5
X=00H
Palette C
SEGB
126
X=02H
SEGC
127
Palette A
D6
X=BDH
D0
D7
D7
D6
D3
Palette B
D1
D1
D0
SEGC
126
X=00H
Palette A
D2
D2
Palette B
D4
Column-address / bit / segment assign
D3
SEGC
126
Palette C
SEGB
1
D5
X=02H
D4
X=01H
D1
D5
X=BEH
D2
Palette C
Column-address / bit / segment assign
D5
SEGA
1
D1
D7
D6
D3
D6
D2
D0
D7
SEGA
1
Palette A
D7
D7
D4
SEGB
127
Palette B
D5
D0
D4
X=01H
Palette A
SEGB
1
D1
D6
D3
SEGA
1
D1
D0
X=BEH
SEGA
127
D2
D1
D4
D2
D0
D6
0
Palette B
Palette A
X=BDH
SEGB
1
D1
SEGC
1
D5
D3
D2
D3
Palette C
D6
D4
0
Palette A
*
D5
1
D3
Palette C
X=01H
D7
D2
D7
SEGC
0
D5
D7
D4
SEGC
126
Palette C
D4
SEGC
1
Palette B
D0
D6
D0
D6
SEGB
0
D1
D0
D7
Palette B
D1
D5
D3
D2
D7
SEGA
0
D6
D4
D0
D2
HSW ABS REF SWAP
Palette C
Palette B
X=BFH
D1
D0
SEGB
126
D5
D3
SEGA
0
SEGB
0
Palette A
X=00H
Palette B
D6
D4
D2
D3
Palette A
1
D5
D4
SEGA
126
X=BEH
SEGB
0
Column-address / bit / segment assign
Palette C
0
0
D6
SEGA
0
D5
D3
X=BDH
SEGC
1
Palette A
D7
D3
Palette B
SEGC
0
D7
D4
SEGB
1
D1
D7
D6
D4
X=BFH
Palette A
X=BEH
SEGA
1
Palette A
D7
D0
D3
Palette C
SEGC
0
D2
D0
D4
SEGC
0
*
1
1
Palette B
D1
1
*
1
SEGB
0
Palette A
D3
HSW ABS REF SWAP
1
*
SEGA
0
D2
HSW ABS REF SWAP
1
HSW ABS REF SWAP
D3
NJU6825
In the Color mode, 8-bit data bus mode, and C256 mode (C256=1)
D0
D1
D1
SEGB127
SEGC127
palette
C
D2
D2
D3
palette
B
D4
D0
palette
C
SEGA127
D3
palette
B
SEGB127
D4
D6
palette
A
D5
D5
X=7FH
X=00H
palette
A
D6
X=7FH
X=00H
SEGC127
$%
D7
D0
D1
palette
C
SEGA0
D2
D3
palette
B
$%
SEGB0
D4
$%
palette
A
D5
Column address / bit / segment assign
$%
$%
SEGC0
D6
X=00H
X=7FH
SEGA127
$%
D7
D0
D1
palette
C
SEGC0
D3
palette
B
SEGB0
D4
palette
A
$%
SEGA0
D5
Column address / bit / segment assign
$%
$%
$%
ABS REF SWAP
*
0
1
*
1
0
D7
HSW
*
*
D6
X=00H
X=7FH
D2
ABS REF SWAP
*
0
0
*
1
1
D7
HSW
*
*
- 29 -
- 30 $%
SEGA127
Column address / bit / segment assign
$%
$%
D2
D1
D0
D4
D3
D7
D6
D5
Column address / bit / segment assign
$%
$%
SEGC127
SEGB127
SEGA127
SEGB127
D2
D1
D0
D4
D3
D7
D6
D5
D9
D8
D12
D11
D10
Column address / bit / segment assign
$%
$%
D9
D8
D12
D11
D10
D15
SEGC127
SEGB127
D2
D1
D0
D6
D5
D4
D3
D10
D9
D8
D7
D12
D11
D15
D14
D13
SEGA127
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Column address / bit / segment assign
$%
$%
D2
D1
D0
D6
D5
D4
D3
SEGB127
SEGA127
$%
D10
D9
D8
D7
$%
D14
D13
SEGC127
SEGC0
SEGB0
SEGA0
$%
D12
D11
X=00H
X=7FH
$%
SEGC127
ABS REF SWAP
1
0
1
1
1
0
$%
D14
D13
X=00H
X=7FH
D15
ABS REF SWAP
1
0
0
1
1
1
SEGA0
X=00H
X=7FH
SEGC0
$%
SEGB0
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
ABS REF SWAP
0
0
1
0
1
0
D15
D14
D13
HSW
*
*
X=00H
X=7FH
SEGA0
HSW
*
*
$%
SEGC0
HSW
*
*
ABS REF SWAP
0
0
0
0
1
1
SEGB0
SEGA0
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
HSW
*
*
SEGB0
SEGC0
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
NJU6825
In the B&W mode, and 16-bit data bus mode
X=7FH
X=00H
X=7FH
X=00H
X=7FH
X=00H
X=7FH
X=00H
NJU6825
In the B&W mode, and 8-bit data bus mode
D2
D1
D2
D1
D3
D3
D4
SEGA127
D2
D1
D0
D2
D1
D0
D3
SEGC127
D3
SEGA127
D4
D5
D6
D7
X=FFH
X=01H
SEGB127
D0
D1
D2
D3
$%
SEGC127
D0
D1
D2
D3
SEGA0
D4
D5
$%
D4
D5
D6
D7
X=FFH
X=01H
SEGB127
D0
D1
D2
D3
$%
SEGA127
D0
D1
D2
D3
SEGC0
D4
D5
$%
D7
D0
D1
D2
D4
SEGB127
D5
D6
D7
SEGC127
D1
D2
D3
SEGA0
$%
D4
SEGC127
D7
D0
D1
D2
SEGB127
D4
D5
D6
D7
SEGA127
D1
D2
D3
D4
SEGC0
D7
D0
D1
D6
D6
D7
SEGB0
D0
D1
D2
$%
X=FFH
X=01H
Column address / bit / segment assign
$%
X=01H
X=FEH
$%
X=FFH
X=00H
X=00H
X=FEH
D3
D7
D0
D1
SEGB0
D7
SEGB0
D0
D1
D2
SEGA0
ABS REF SWAP
1
0
1
1
1
0
$%
Column address / bit / segment assign
$%
X=01H
X=FEH
$%
X=FFH
X=00H
X=00H
X=FEH
SEGC0
HSW
0
0
D2
D4
D5
D6
SEGC0
ABS REF SWAP
1
0
0
1
1
1
$%
X=FFH
X=01H
Column address / bit / segment assign
$%
X=01H
X=FEH
$%
X=FFH
X=00H
X=00H
X=FEH
D3
HSW
0
0
D2
D4
SEGB0
D5
D6
SEGA0
ABS REF SWAP
0
0
1
0
1
0
D7
HSW
0
0
Column address / bit / segment assign
$%
X=01H
X=FEH
$%
X=FFH
X=00H
X=00H
X=FEH
D4
ABS REF SWAP
0
0
0
0
1
1
D7
HSW
0
0
- 31 -
NJU6825
1
*
0
0
1
D4
SEGB 0
D3
D2
D5
D5
D1
D1
SEGA 0
D3
X=BFH
D3
D4
D0
SEGA 0
D0
SEGC 0
D7
D7
D6
D6
D1
D1
D5
D5
D0
D0
D4
SEGC 1
SEGC 1
D7
D3
D4
SEGA 1
D3
D6
D6
D2
D2
D5
D5
D1
D1
SEGB 1
D3
X=BDH
D3
D4
D0
SEGB 1
D0
SEGB 1
D7
D7
D6
D6
D1
D1
D5
D5
D0
D0
D4
SEGA 1
D2
D1
D1
D0
SEGC 126 D7
D6
D5
D3
D2
D1
D0
SEGA 126 D7
D6
D5
D4
SEGB 126 D3
SEGB 126 D7
SEGB 126 D7
SEGB 126 D3
D6
D6
D2
D2
D5
D5
D1
D1
D4
SEGA 126 D3
X=02H
SEGC 126 D3
X=02H
D4
D0
D0
SEGA 126 D7
SEGC 126 D7
D6
D6
D1
D5
D5
D0
D0
D4
SEGA 127 D7
SEGC 127 D7
SEGC 127 D3
D6
D6
D2
D2
D5
D5
D1
D1
D4
SEGB 127 D3
X=00H
SEGB 127 D3
X=00H
D4
D4
SEGA 127 D3
D0
D0
SEGB 127 D7
SEGB 127 D7
D6
D6
D1
D5
D5
D0
D0
D4
SEGC 127 D7
SEGA 127 D7
SEGA 127 D3
D4
D6
D5
D4
X=01H
D5
X=01H
D6
D4
SEGC 127 D3
D2
D2
D1
D1
D0
D0
X=BFH
D2
D1
X=BFH
D2
X=BEH
D2
D1
X=BEH
D2
X=BDH
D4
X=BDH
D0
D2
D4
SEGC 1
Column-address / bit / segment assign
SEGC 126 D3
D3
Column-address / bit / segment assign
D0
D4
X=01H
D1
X=01H
D2
D5
X=BEH
SEGA 126 D3
D6
Column-address / bit / segment assign
X=BEH
D4
Column-address / bit / segment assign
D5
SEGA 1
D7
X=02H
D2
X=02H
D2
D7
X=01H
D2
X=01H
D2
D7
X=00H
X=00H
D3
HSW ABS REF SWAP
0
D5
D2
D6
- 32 -
D6
D5
D6
X=BDH
SEGC 1
SEGB 0
D7
D6
D4
D7
SEGA 0
D7
D6
D4
SEGB 1
SEGB 0
X=BFH
SEGA 1
D0
D7
D4
SEGC 0
*
SEGB 0
X=BEH
D1
1
0
X=BEH
D2
D0
SEGC 0
D3
HSW ABS REF SWAP
1
1
D1
*
1
D2
1
*
SEGC 0
D3
HSW ABS REF SWAP
1
HSW ABS REF SWAP
SEGA 0
NJU6825
Bit assignments between write and read data (in the 16-bit data bus mode)
ABS=0
Write data
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Read data
D15
D14
D13
D12
*
D10
D9
D8
D7
*
*
D4
D3
D2
D1
*
Write data
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Read data
*
*
*
*
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
ABS=1
Examples of write and read data (In the 8 bit bus mode)
ABS=0, HSW=0, C256=0 (Address; 00, 02……FC,FEH)
Write data
D7
D6
D5
D4
D3
D2
D1
D0
Read data
D7
D6
D5
D4
*
D2
D1
D0
ABS=0, HSW=0, C256=0 (Address; 01,03……FD,FFH)
Write data
D7
D6
D5
D4
D3
D2
D1
D0
Read data
D7
*
*
D4
D3
D2
D1
*
ABS=1, HSW=0, C256=0 (Address; 00, 02……FC,FEH)
Write data
D7
D6
D5
D4
D3
D2
D1
D0
Read data
*
*
*
*
D3
D2
D1
D0
ABS=1, HSW=0, C256=0 (Address; 01,03……FD,FFH)
Write data
D7
D6
D5
D4
D3
D2
D1
D0
Read data
D7
D6
D5
D4
D3
D2
D1
D0
ABS=0, HSW=1, C256=0 (Address; 00, 01……BE,BFH)
Write data
D7
D6
D5
D4
D3
D2
D1
D0
Read data
D7
D6
D5
D4
D3
D2
D1
D0
ABS=0, HSW=0, C256=1 (Address; 00, 01…… 7E ,7FH)
Write data
D7
D6
D5
D4
D3
D2
D1
D0
Read data
D7
D6
D5
D4
D3
D2
D1
D0
*: Invalid data
- 33 -
NJU6825
(11) Gradation palette
In the gradation mode, either variable or fixed gradation mode is selected by programming the “PWM”
register of the “Gradation control” instruction.
PWM=0:
Variable gradation mode
(Select 16 gradation levels out of 32-gradation level of the gradation palette)
PWM=1:
Fixed gradation mode
(Fixed 8-gradation levels)
In these mode, each of the gradation palettes Aj, Bj and Cj can select 16-gradation level out of 32-gradation
level by setting 5-bit data to the “PA” registers in the “Gradation palette j” instructions (j=0 to Fh).
For instance, the gradation palettes Aj correspond to the SEGAi, the Bj to SEGBi and the Cj to SEGCi (j=0 to
15, i=0 to 127).
- 34 -
NJU6825
Correspondence between display data and gradation palettes
Table 10 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15))
(MSB) Display data (LSB)
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Gradation palette
Palette 0
Palette 1
Palette 2
Palette 3
Palette 4
Palette 5
Palette 6
Palette 7
Palette 8
Palette 9
Palette10
Palette11
Palette12
Palette13
Palette14
Palette15
Default palette value
00000
00011
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11001
11011
11101
11111
Gradation palette table (Variable gradation mode, PWM=”0”, MON=”0”)
Table 11 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15))
Palette value
Gradation level
Gradation palette
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
0
1/31
2/31
3/31
4/31
5/31
6/31
7/31
8/31
9/31
10/31
11/31
12/31
13/31
14/31
15/31
Palette 0(default)
Palette 1(default)
Palette 2(default)
Palette 3(default)
Palette 4(default)
Palette 5(default)
Palette 6(default)
Palette 7(default)
Palette
value
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
Gradation
level
16/31
17/31
18/31
19/31
20/31
21/31
22/31
23/31
24/31
25/31
26/31
27/31
28/31
29/31
30/31
31/31
Gradation palette
Palette 0(default)8
Palette 9(default)
Palette 10(default)
Palette 11(default)
Palette 12(default)
Palette 13(default)
Palette 14(default)
Palette 15(default)
- 35 -
NJU6825
Gradation palette table (Fixed gradation mode, PWM=”1”, MON=”0”)
Table 12 8-gradation segment drivers
(MSB) Display data (LSB)
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
*
*
*
*
*
*
*
*
Gradation
level
0/7
(MSB) Display data (LSB)
Gradation level
0
0
*
*
1/7
2/7
3/7
4/7
5/7
6/7
7/7
0
0
0
1
1
1
1
0
1
1
0
0
1
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Correspondence between display data and gradation level (B&W mode, MON=”1”)
Table 13
(MSB) Display data (LSB)
0
*
1
*
*:Don’t care
- 36 -
*
*
*
*
Gradation
level
0
1
0/7
3/7
5/7
7/7
NJU6825
(12) Gradation control and display data
(12-1) Gradation mode
In the graduation mode, each pixel for RGB corresponds to successive 3 segment drivers, and each
segment driver provides 16-gradation PWM output by controlling 4 bit display data of the DDRAM.
Accordingly, the LSI can drive up to 128x162 pixels in 4096-color (16-gradation x 16-gradation x 16gradation = 4-bit x 4-bit x 4-bit).
In addition, the LSI can transfer the display data for the RGB by 16-bit at once or 8-bit two-times. The
data assignment between gradation palettes and segment drivers varies in accordance with setting for the
“SWAP” and “REF” registers of the "Display control (2)" instruction.
(REF, SWAP)=(0, 0) or (1, 1)
SEGAi
SEGBi
SEGCi
(i=0 to 127)
Paltte Aj
Palette Bj
Gradation palette
j=0 to 15
Palette Cj
Gradation control circuit
0
MSB
0
0
0
0
LSB MSB
0
0
0
D7
0
D6
0
D5
0
D4
ABS=1
(D3
D2
D1
HSW=1
(D7
D6
C256=1
(D7
D6
1
1
LSB MSB
1
1
0
D2
0
D1
0
D0
1
D7
D0
D7
D6
D5
D5
D4
D3
D2
D5
*
D4
D3
1
D4
1
D3
1
D2
1
D1
D4
D3
D2
D1
D0 )
D1
D0
D7
D6
D5
D4 )
D2
*
D1
D0
*
*)
:2nH ,2nH+1H
:FEH -2nH , FFH-(2nH+1H)
HSW=1; 00H to BFH, C256=1; 00H to 7FH
Note) DDRAM column address
1
LSB
Display data in DDRAM
Display data from MPU
Column address:2nH:2n+1H
(REF=”0”)
(REF=”1”)
- 37 -
NJU6825
(REF, SWAP)=(0, 1) or (1, 0)
SEGAi
SEGBi
SEGCi
Palette Aj
Palette Bj
(i=0 to 127)
Gradation palette
j=0 to 15
Palette Cj
Gradation control circuit
1
LSB
1
1
1
1
MSB LSB
0
D7
ABS=1 (D3
HSW=1 (D7
C256=1 (D7
0
D6
D2
D6
D6
0
D5
D1
D5
D5
0
D4
D0
D4
*
0
D2
D7
D3
D4
0
0
0
0
MSB LSB
0
D1
D6
D2
D3
0
D0
D5
D1
D2
1
D7
D4
D0
*
: 2nH ,2nH+1H
: FEH -2nH , FFH-(2nH+1H)
HSW=1; 00H to BFH, C256=; 00H to 7FH
Note) DDRAM column address
1
D4
D3
D7
D1
Display data in DDRAM
0
MSB
0
0
1
D3
D2
D6
D0
1
D2
D1
D5
*
1
D1
D0 )
D4 )
*)
Display data from MPU
Column address:2nH:2n+1H
(REF=”0”)
(REF=”1”)
In the 16-bit data bus mode, the data assignments between the gradation palettes and the segment
drivers vary in accordance with setting for the “SWAP” and “REF” bit of the "Display control (2)" instruction
as well as the assignment in the 8-bit data bus mode.
(REF, SWAP)=(0, 0) or (1, 1)
SEGAi
SEGBi
Palette Aj
SEGCi
Palette Bj
(i=0 to 127)
Gradation palette
j=0 to 15
Palette Cj
Gradation control circuit
ABS=1
0
MSB
0
0
0
D15
0
D14
0
D13
0
D12
D9
D8
(D11 D10
0
0
LSB MSB
Note) DDRAM column address
- 38 -
0
0
1
1
LSB MSB
0
D10
0
D9
0
D8
1
D7
D7
D6
D5
D4
(REF=”0”)
:nH
:7FH - nH (REF=”1”)
1
1
1
LSB
1
D4
1
D3
1
D2
1
D1
D3
D2
D1
D0 )
Display data in DDRAM
Display data from MPU
Column address;
nH
NJU6825
(REF, SWAP)=(0, 1) or (1, 0)
SEGAi
SEGBi
Palette Aj
Palette Bj
SEGCi
i=(0 to 127)
Gradation palette
j=0 to 15
Palette Cj
Gradation control circuit
ABS=1
1
LSB
1
1
0
0
0
0
D13
D9
D12
D8
D15 D14
(D11 D10
1
1
MSB LSB
Note) DDRAM column address
0
0
0
0
MSB LSB
0
0
0
1
D10
D7
D9
D6
D8
D5
D7
D4
Display data in DDRAM
0
MSB
0
0
1
1
1
1
D4
D3
D3
D2
D2
D1
D1
D0 )
Display data from MPU
Column address
; nH
(REF=”0”)
:nH
:7FH -nH (REF=”1”)
- 39 -
NJU6825
(12-2) B&W mode (MON=”1”)
In the B&W mode, 3 bits of the MSB data are used in both of the 16-bit and 8-bit data bus modes.
In the 16-bit data bus mode (Similarly 8-bit data bus access)
(REF, SWAP)=(0, 0) or (1, 1)
SEGAi
SEGBi
SEGCi
Palette Aj
Palette Bj
(i=0 to 127)
Gradation palette
j=0 to 15
Palette Cj
Gradation control circuit
ABS=1
0
MSB
0
0
0
0
0
0
D15
D14
D13
D9
(D11 D10
0
0
LSB MSB
0
0
0
0
0
1
D12
D10
D9
D8
D8
D7
D6
D5
Note) DDRAM column address
1
1
LSB MSB
1
1
1
1
1
1
D7
D4
D3
D2
D1
D4
D3
D2
D1
D0 )
SEGBi
Palette Aj
Display data in DDRAM
Display data in DDRAM
Column address; nH
(REF=”0”)
(REF=”1”)
: nH
: 7FH-nH
(REF, SWAP)=(0, 1) or (1, 0)
SEGAi
1
LSB
SEGCi
Palette Bj
(i=0 to 127)
Gradation palette
j=0 to 15
Palette Cj
Gradation control circuit
ABS=1
1
LSB
1
1
0
0
0
0
D15
D14
D13
D9
(D11 D10
1
1
MSB LSB
0
0
0
0
0
1
D12
D10
D9
D8
D8
D7
D6
D5
Note ) DDRAM column address
- 40 -
: nH
: 7FH-nH
0
0
MSB LSB
Display data in DDRAM
0
MSB
0
0
1
1
1
1
D7
D4
D3
D2
D1
D4
D3
D2
D1
D0 )
(REF=”0”)
(REF=”1”)
Display data in DDRAM
Column address;
nH
NJU6825
(13) Display timing generator
The display-timing generator creates the timing pulses such as the CL, the FLM, the FR and the CLK by
dividing the oscillation frequency oscillate an external or internal resister mode. The each of timing pulses is
outputted through the each output terminals by “SON” = 1.
(14) LCD line clock (CL)
The LCD line clock (CL) is used as a count-up signal for the line counter and a latch signal for the data latch
circuit. At the rising edge of the CL signal, the line counter is counted-up and the 384-bit display data,
corresponding to this line address, is latched into the data latch circuit. And at the falling edge of the CL signal,
this latched data output on the segment drivers. Read out timing of the display data, from DDRAM to the latch
circuits is completely independent of the access timing to the MPU. For this reason, the MPU can access to the
LSI regardless of an internal operation.
(15) LCD alternate signal (FR) and LCD synchronous signal (FLM)
The FR and FLM signals are created from the CL signal. The FR signal is used to alternate the crystal
polarization on a LCD panel. It is programmed that the FR signal is toggle on every frame in the default setting
or once every N lines in the N-line inversion mode. The FLM signal is used to indicate a start line of a new
display frame. It presets an initial display line address of the line counter when the FLM signal becomes ”1”.
(16) Data latch circuit
The data latch circuit is used temporarily store the display data that will output to the segment drivers. The
display data in this circuit is updated in synchronization of the CL signal.
The “All pixels ON/OFF”, “Display ON/OFF” and “Reverse display ON/OFF” instructions change the display
data in this circuit but do not change the display data of the DDRAM.
- 41 -
NJU6825
LCD Driving waveforms (In the B&W mode, Reverse display OFF, 1/163 duty)
COM0
163 1
2 3 4 5
163 1
2 3 4 5
163 1
COM1
SEG2
SEG1
SEG0
CL
FLM
FR
COM0
VLCD
V1
V2
V3
V4
VSS
COM1
VLCD
V1
V2
V3
V4
VSS
VLCD
V1
V2
V3
V4
VSS
SEG0
VLCD
V1
V2
V3
V4
VSS
SEG1
Fig 8
- 42 -
NJU6825
(17) Common and segment drivers
The LSI includes 384-segment drivers and 162-common drivers. The common drivers generate the LCD
driving waveforms composed of the VLCD, V1, V4 and VSS in accordance with the FR signal and scanning data.
The segment drivers generate waveforms composed of the VLCD, V2, V3 and VSS in accordance with the FR
signal and display data.
(18) Oscillator
The oscillator generates internal clocks for the display timing and the voltage booster. Since the LSI has
internal capacitor (C) and resistor (R) for the oscillation, external capacitor and resistor are not usually required.
However, in case that an external resistor is used, the resister is connected between the OSC1 and OSC2
terminals. The external resistor becomes enabled by setting “1” to the “CKS” register of “Data bus length”
instruction. When the internal oscillator is not used, the external clocks with 50% duty cycle ratio must be input
to the OSC1 terminal.
In addition, the feed back resister for the oscillation is varied by programming the “Rf” register of the
“Frequency control” instruction, so that it is possible to optimize the frame frequency for a LCD panel. Setting
examples of the MON (B&W /Gradation) and the PWM (Variable gradation /Fixed gradation) are described, as
follows.
(18-1) Internal oscillation mode (CKS=0)
Symbol
f1
f2
f3
MON
0
0
1
PWM
0
1
*
Display mode
Variable gradation mode
Fixed gradation mode
B&W mode
*: Don’t care
(18-2) External resistor oscillation mode(CKS=1)
The internal clocks must be adjusted to the same frequency as the one in using the internal oscillation
mode, and the “MON” and “PWM” registers must be set as well.
(18-3) External clock input mode (CKS=1)
The external clocks must be adjusted to the same frequency as the one in using the internal oscillation
mode, and the “MON” and “PWM” registers must be set as well.
(19) Power supply circuits
The internal power supply circuits are composed of the voltage booster, the electrical variable resister (EVR),
the voltage regulator, reference voltage generator and the voltage followers.
The condition of the power supply circuits is arranged by programming the “DCON” and “AMPON” registers
on the “Power control” instruction. For this arrangement, some parts of the internal power supply circuits are
activated in using an external power supply, as shown in the following table.
Table 14
DCON
AMPON
Voltage booster
0
0
1
0
1
1
Disable
Disable
Enable
Voltage followers
Voltage regulator
EVR
Disable
Enable
Enable
External voltage
Note
VOUT, VLCD, V1, V2, V3, V4
VOUT
−
1, 3
2, 3
−
Note1) The internal power circuits are not used. The external VOUT is required and the C1+, C1-, C2+, C2-, C3+,
C3-, C4+, C4-, C5+, C5-, C6+, C6-, VREF, VREG and VEE terminals must be open.
Note2) The internal power circuits except the voltage booster are used. The external VOUT is required and the
C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, C6+, C6- and VEE terminals must be open. The reference
voltage is required to VREF terminal.
Note3) The relation among the voltages should be maintained as follows.
VOUT ≥ VLCD ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS
- 43 -
NJU6825
(20) Voltage booster
The voltage booster generates maximum 7x voltage of the VEE level. It is programmed so that the boost level
is selected out of 1x, 2x, 3x, 4x, 5x, 6x and 7x by the “Boost level select” instruction. The boosted voltage VOUT
must not exceed beyond the value of 18.0V, otherwise the voltage stress may cause a permanent damage to
the LSI.
Boosted voltages
VOUT=17.5V
VOUT=9V
VEE=3V
VEE=2.5V
VSS=0V
VSS=0V
7-time boost
3-time boost
Capacitor connections for the voltage Booster
7-time boost
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5C6+
C6VOUT
6-time boost
+
+
+
+
+
+
+
4-time boost
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5C6+
C6VOUT
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5C6+
C6VOUT
+
+
+
+
+
+
3-time boost
+
+
+
+
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5C6+
C6VOUT
Fig 9
- 44 -
5-time boost
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5C6+
C6VOUT
+
+
+
+
+
2-time boost
+
+
+
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5C6+
C6VOUT
+
+
NJU6825
(21) Reference voltage generator
The reference voltage generator is used to produce the reference voltage (VBA), which is output from the VBA
terminal and should be input to the VREF terminal.
VBA = VEE x 0.9
(22) Voltage regulator
The voltage regulator, composed of the gain control circuit and an operational amplifier, and is used to gain
the reference voltage (VREF) and to create the regulated voltage (VREG). The VREG is used as an input voltage to
the EVR circuit, which is programmed by the “VU” register of the “Boost level” instruction.
VREG = VREF x N
(N: register value for the boost level)
(23) Electrical variable resister (EVR)
The EVR is variable within 128-step, and is used to fine-tune the LCD driving voltage (VLCD) by programming
the “DV” register in the “EVR control” instruction, so that it is possible to optimize the contrast level for a LCD
panels.
VLCD = 0.5 x VREG + M (VREG - 0.5 x VREG) / 127 (M: register value for the EVR)
(24) LCD driving voltage generation circuit
LCD driving voltage generation circuit generates the VLCD voltage levels as VLCD, V1, V2, V3 and V4 with
internal E.V.R and the Bleeder resistors. The bias ratio of the LCD driving voltage is selected out of 1/5, 1/6, 1/7,
1/8, 1/9, 1/10, 1/11 and 1/12.
In using the internal power supply, the capacitors CA2 must be connected to the VLCD, V1, V2, V3 and V4
terminals, and the CA2 value must be determined by the evaluation with actual LCD modules.
In using the internal power supply, the external LCD driving voltages such as the VLCD, V1, V2, V3 and V4 are
supplied and the external power supply circuits must be set to “OFF” by DCON = AMPON = "0". In this mode,
voltage booster terminals such as C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, C6+, C6-, VEE, VREF and VREG
must be opened.
In case that the voltage booster is not used but only some parts of internal power supply circuits (Voltage
followers, Voltage regulator and EVR) are used, the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, C6+ and
C6- terminals must be opened. And, the external power supply is input to the VOUT terminal, and the reference
voltage to the VREF terminal. The capacitor CA3 must connect to the VREG terminal for voltage stabilization.
- 45 -
NJU6825
Connections of the capacitors for the voltage boost
Using All of the internal power supply circuits
(7-time boost)
VDD
CA3
CA3
VS
CA1
CA1
CA1
CA1
CA1
CA1
CA1
VSS
CA2
CA2
CA2
CA2
VSS
VDD
VDD
VEE
CA1
VS
Using only external power supply circuits
CA2
CA1
VDD
VEE
VBA
VBA
VREF
VREF
VREG
VREG
C1 -
C1 -
C1 +
C1 +
C2 -
C2 -
C2 +
C2 +
C3 -
C3 -
C3 +
C3 +
C4 C4 +
C4 -
NJU6825
C4 +
C5 -
C5 -
C5 +
C5 +
C6 -
C6 -
C6 +
C6 +
VOUT
CA1
VLCD
VLCD
V1
VOUT
VLCD
V1
V3
V1
External
Power V2
circuit
V3
V4
V4
V4
V2
Fig 10
Reference values
CA1
1.0 to 4.7µF
CA2
1.0 to 2.2µF
CA3
0.1µF
NJU6825
V2
V3
CA2
CA2
CA2
Fig11
CA2
Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is
recommended to decide an optimum value of these capacitors.
Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4)
reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation
and display quality. To minimize this impact, use the shortest possible wires and place the capacitors
to be as close as possible to the LSI.
- 46 -
NJU6825
Using internal power supply circuit
Without the reference voltage generator(2)
(7-time boost)
Using internal power supply circuits
Without the reference voltage generator(1)
(7-time boost)
VDD
CA1
VBA
VREF
VREF
Thermistor
VBA
C1 -
CA1
C3 -
C4 +
C6 VOUT
CA2
CA2
CA2
CA2
CA2
C3 +
C4 C4 +
C5 +
C6 C6 +
VOUT
CA1
VSS
VLCD
CA2
V1
CA2
V2
CA2
V3
CA2
V4
VSS
Fig 12
NJU6825
C5 -
CA1
C6 +
CA1
VSS
C3 -
CA1
C5 +
CA1
C2 +
CA1
NJU6825
C5 -
CA1
C2 -
CA1
C3 +
C4 -
C1 +
CA1
C2 +
CA1
C1 -
CA1
C2 -
CA1
VREG
CA3
VSS
C1 +
CA1
VDD
VEE
CA1
VREG
CA3
VSS
VSS
VDD
VDD
VEE
CA2
VLCD
V1
V2
V3
V4
Fig 13
Reference value
CA1
1.0 to 4.7µF
CA2
1.0 to 2.2µF
CA3
0.1µF
Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is
recommended to decide an optimum value of these capacitors.
Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4)
reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation
and display quality. To minimize this impact, use the shortest possible wires and place the capacitors
to be as close as possible to the LSI.
- 47 -
NJU6825
Using internal power supply circuits
Without the voltage booster
VDD
VDD
VEE
CA1
VBA
CA3
VSS
VREF
VREG
CA3
VSS
C1 C1 +
C2 C2 +
C3 C3 +
C4 C4 +
NJU6825
C5 C5 +
C6 External
power
circuit
CA1
CA2
CA2
CA2
CA2
VSS
CA2
C6 +
VOUT
VLCD
V1
V2
V3
V4
Fig 14
Reference value
CA1
1.0 to 4.7µF
CA2
1.0 to 2.2µF
CA3
0.1µF
Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is
recommended to decide an optimum value of these capacitors.
Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4)
reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation
and display quality. To minimize this impact, use the shortest possible wires and place the capacitors
to be as close as possible to the LSI.
.
- 48 -
NJU6825
(25) Partial display function
The partial display function is used to partially specify some parts of display area on LCD panels. By using
this function, LCD modules can work in lower duty cycle ratio, lower LCD bias ratio, lower boost level and lower
LCD driving voltage. It is usually used to display a time and calendar, and is also used to optimize the LSI
condition in accordance with the display size. It can be programmed to select the duty cycle ratio (1/16, 1/24,
1/32, 1/40, 1/48, 1/56, 1/64, 1/72, 1/80, 1/96, 1/112, 1/128, 1/133, 1/144, 1/160, 1/163 in case “DSE” is “0”), the
LCD bias ratio, the boost level and the EVR value by the instructions.
Partial display image
NJRC
LCD DRIVER
Low Power and
Low Voltage
LCD DRIVER
Normal display
Partial display
Partial display sequence
Optional status
Display OFF (ON/OFF=”0”)
Internal Power supply OFF (DCON=”0”, AMPON=”0”)
WAIT
Setting for LCD driving voltage-related functions
- Boost level
- EVR value
- LCD bias ratio
Internal Power supply ON (DCON=”1”, AMPON=”1”)
WAIT
Setting for display-related functions
- Duty cycle ratio
- Initial display line
- Initial COM line
- Other instructions
Display ON (ON/OFF =”1”)
Partial display Status
- 49 -
NJU6825
(26) Discharge circuit
Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and VLCD terminals.
This circuit is activated by setting “0” to the “DIS” register of the “Discharge” instruction or by setting “RESb”
terminal to ”0” level. The “Discharge ON/OFF” instruction is usually required just after the internal power supply
is turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is
turned off. During the discharge operation, the internal or external power supply must not be turned on.
(27) Reset circuit
The reset circuit initializes the LSI into the following default status. It is activated by setting the RESb terminal
to “0” . The RESb terminal is usually required to connect to the MPU reset terminal in order that the LSI can be
initialized at the same timing of the MPU.
●
Default status
1. DDRAM display data
2. column address
3. row address
4. Initial display line
5. Display ON/OFF
6. Reverse display ON/OFF
7. Duty cycle ratio
8. N-line Inversion ON/OFF
9. COM scan direction
10. Increment mode
11. Reverse SEG direction
12. SWAP mode
13. EVR value
14. Internal power supply
15. Display mode
16. LCD bias ratio
17. Gradation Palette 0
18. Gradation Palette 1
19. Gradation Palette 2
20. Gradation Palette 3
21. Gradation Palette 4
22. Gradation Palette 5
23. Gradation Palette 6
24. Gradation Palette 7
25. Gradation Palette 8
26. Gradation Palette 9
27. Gradation Palette 10
28. Gradation Palette 11
29. Gradation Palette 12
30. Gradation Palette 13
31. Gradation Palette 14
32. Gradation Palette 15
33. Gradation mode control
34. Data bus length
35. Discharge circuit
- 50 -
:Undefined
:(00)H
:(00)H
:(0)H (1st line)
:OFF
:OFF (normal)
:1/163 duty (DSE=0)
:OFF
:COM0 → COM161
:OFF
:OFF (normal)
:OFF (normal)
:(0, 0, 0, 0, 0, 0, 0)
:OFF
:Gradation display mode
:1/9 bias
:(0, 0, 0, 0, 0)
:(0, 0, 0, 1, 1)
:(0, 0, 1, 0, 1)
:(0, 0, 1, 1, 1)
:(0, 1, 0, 0, 1)
:(0, 1, 0, 1, 1)
:(0, 1, 1, 0, 1)
:(0, 1, 1, 1, 1)
:(1, 0, 0, 0, 1)
:(1, 0, 0, 1, 1)
:(1, 0, 1, 0, 1)
:(1, 0, 1, 1, 1)
:(1, 1, 0, 0, 1)
:(1, 1, 0, 1, 1)
:(1, 1, 1, 0, 1)
:(1, 1, 1, 1, 1)
:Variable gradation mode
:8-bit data bus length
:OFF
NJU6825
(28) Power supply ON/OFF sequences
The following paragraphs describe power supply ON/OFF sequences, which are to protect the LSI from over
current.
(28-1) Using an external power supply
# Power supply ON sequence
Logic voltage (VDD) must be always input first, and next the LCD driving voltages (V1 to V4 and VLCD)
are turned on. In using the external VOUT, the VDD must be input first, next the reset operation must be
performed, and finally the VOUT can be input.
# Power supply OFF sequence
Either the reset operation, cutting off the V1 to V4 and VLCD from the LSI by the RESb terminal or the
“Power control” instruction must be performed first, and next the VDD is turned off. It is recommended
that a series-resister between 50 Ω and 100 Ω is added on the VLCD line (or VOUT line in using only the
external VOUT voltage) in order to protect the LSI from the over current.
(28-2) Using the internal power supply circuits
# Power supply ON sequence
The VDD must be input first, next the reset operation must be performed, and finally the V1 to V4 and
VLCD can be turned on by setting “1” to the “DCON” and “AMPON” registers of the “Power control”
instruction.
# Power supply OFF sequence
Either the reset operation by the RESb terminal or the “Power control” instruction must be
performed first, and next the input voltage for the voltage booster (VEE) and the VDD can be turned off.
If the VEE is supplied from different power sources for VDD, the VEE is turned off first, and next the VDD
is turned off.
- 51 -
NJU6825
(29) Referential instruction sequences
(29-1) Initialization in using the internal power supply circuits
VDD, VEE power ON
Wait for power-ON stabilization
RESET Input
WAIT
Setting for LCD driving voltage-related functions
- EVR value
- LCD bias ratio
- Power control (DCON=”1”, AMPON=”1”)
End of initialization
(29-2) Display data writing
End of Initialization
Setting for display-related functions
Display data write
Display ON (ON/OFF =”1”)
- 52 -
- Initial display line
- Increment mode
- column address
- row address
NJU6825
(29-3) Power OFF
Optional status
Power save or reset operation
- All COM/SEG output VSS level.
Discharge ON
WAIT
VEE, VDD power OFF
- 53 -
NJU6825
(30) Instruction table
Instruction Table (1)
Code (80 series MPU I/F)
Instructions
CSb RS RDb
WRb
Code
RE2 RE1 RE0 D7
D6
D5
D4
Functions
D3
D2
D1
D0
Display data write
0
0
1
0
0/1 0/1 0/1
Write Data
Write display data to DDRAM
Display data read
0
0
0
1
0/1 0/1 0/1
Read Data
Read display data from DDRAM
column address
(Lower) [0H]
0
1
1
0
0
0
0
0
0
0
0
AX3
AX2
AX1
AX0
DDRAM column address
column address
(Upper) [1H]
0
1
1
0
0
0
0
0
0
0
1
AX7
AX6
AX5
AX4
DDRAM column address
row address
(Lower) [2H]
0
1
1
0
0
0
0
0
0
1
0
AY3
AY2
AY1
AY0
DDRAM row address
row address
(Upper) [3H]
0
1
1
0
0
0
0
0
0
1
1
AY7
AY6
AY5
AY4
DDRAM row address
Initial display line
(Lower) [4H]
0
1
1
0
0
0
0
0
1
0
0
LA3
LA2
LA1
LA0
Row address for an initial COM line
(Scan start line)
Initial display line
(Upper) [5H]
0
1
1
0
0
0
0
0
1
0
1
LA7
LA6
LA5
LA4
Row address for an initial COM line
(Scan start line)
N-line inversion
(Lower) [6H]
0
1
1
0
0
0
0
0
1
1
0
N3
N2
N1
N0
The number of N-line inversion
N-line inversion
(Upper) [7H]
0
1
1
0
0
0
0
0
1
1
1
N7
N6
N5
N4
The number of N-line inversion
0
1
1
0
0
0
0
1
0
0
0
SHIFT: Common direction
Display control (1)
[8H]
Display control (2)
[9H]
Increment control
[AH]
Power control
[BH]
Duty cycle ratio
[CH]
Boost level
[DH]
LCD bias ratio
[EH]
RE register
[FH]
Note 1)
Note 2)
Note 3)
- 54 -
SHIFT MON
ALL
ON
ON/ MON: Gradation or B/W display mode
OFF ALLON: All pixels ON/OFF
ON/OFF: Display ON/OFF
REV: Reverse display ON/OFF
NLIN: N-line inversion ON/OFF,
NLIN SWAP REF
SWAP: SWAP mode ON/OFF
REF: Segment direction
WIN: Window addressing mode ON/OFF
AIM: Read-modify-write ON/OFF
AIM
AYI
AXI AYI: Row auto-increment mode ON/OFF
AXI: Column auto-increment mode
ON/OFF
AMPON: Voltage followers ON/OFF
HALT: Power save ON/OFF
DC
ACL
HALT
ON
DCON: Voltage booster ON/OFF
ACL: Reset
0
1
1
0
0
0
0
1
0
0
1
REV
0
1
1
0
0
0
0
1
0
1
0
WIN
0
1
1
0
0
0
0
1
0
1
1
AMP
ON
0
1
1
0
0
0
0
1
1
0
0
DS3
DS2
DS1
DS0
Sets LCD duty cycle ratio
0
1
1
0
0
0
0
1
1
0
1
*
VU2
VU1
VU0
Sets boost level
0
1
1
0
0
0
0
1
1
1
0
*
B2
B1
B0
0
1
1
0
1
1
1
1
TST0
RE2
RE1
0/1 0/1 0/1
Sets LCD bias ratio
RE0 RE flag set
*
: Don’t care.
[ NH ] : Address of instruction register
The dual instructions including upper and lower bytes is enabled after either upper or lower
bytes are set into the register. The only “EVR control” instruction is enabled after both of the
upper and lower bytes are set.
NJU6825
Instruction Table (2)
Code (80 series MPU I/F)
Instructions
CSb RS RDb
WRb
Code
RE2 RE1 RE0
D7
D6
D5
D4
Gradation palette A0/A8
(Lower) [0H]
0
1
1
0
0
0
1
0
0
0
0
Gradation palette A0/A8
(Upper) [1H]
0
1
1
0
0
0
1
0
0
0
1
Gradation palette A1/A9
(Lower) [2H]
0
1
1
0
0
0
1
0
0
1
0
Gradation palette A1/A9
(Upper) [3H]
0
1
1
0
0
0
1
0
0
1
1
Gradation palette A2/A10
(Lower) [4H]
0
1
1
0
0
0
1
0
1
0
0
Gradation palette A2/A10
(Upper) [5H]
0
1
1
0
0
0
1
0
1
0
1
Gradation palette A3/A11
(Lower) [6H]
0
1
1
0
0
0
1
0
1
1
0
Gradation palette A3/A11
(Upper) [7H]
0
1
1
0
0
0
1
0
1
1
1
Gradation palette A4/A12
(Lower) [8H]
0
1
1
0
0
0
1
1
0
0
0
Gradation palette A4/A12
(Upper) [9H]
0
1
1
0
0
0
1
1
0
0
1
Gradation palette A5/A13
(Lower) [AH]
0
1
1
0
0
0
1
1
0
1
0
Gradation palette A5/A13
(Upper) [BH]
0
1
1
0
0
0
1
1
0
1
1
Gradation palette A6/A14
(Lower) [CH]
0
1
1
0
0
0
1
1
1
0
0
Gradation palette A6/A14
(Upper) [DH]
0
1
1
0
0
0
1
1
1
0
1
0
1
1
0
1
1
1
1
RE register
[FH]
Note 1)
Note 2)
Note 3)
0/1 0/1 0/1
D3
D2
D1
Functions
D0
PA03/ PA02/ PA01/ PA00/
PA83 PA82 PA81 PA80
Sets palette values to gradation
palette A0(PS=0)/A8(PS=1)
*
PA04/
PA84
Sets palette values to gradation
palette A0(PS=0)/A8(PS=1)
PA11/
PA91
PA10/
PA90
Sets palette values to gradation
palette A1(PS=0)/A9(PS=1)
*
PA14/
PA94
Sets palette values to gradation
palette A1(PS=0)/A9(PS=1)
PA23/ PA22/ PA21/ PA20/
PA103 PA102 PA101 PA100
Sets palette values to gradation
palette A2(PS=0)/A10(PS=1)
PA24/
PA104
Sets palette values to gradation
palette A2(PS=0)/A10(PS=1)
PA33/ PA32/ PA31/ PA30/
PA113 PA112 PA111 PA110
Sets palette values to gradation
palette A3(PS=0)/A11(PS=1)
PA34/
PA114
Sets palette values to gradation
palette A3(PS=0)/A11(PS=1)
PA43/ PA42/ PA41/ PA40/
PA123 PA122 PA121 PA120
Sets palette values to gradation
palette A4(PS=0)/A12(PS=1)
PA44/
PA124
Sets palette values to gradation
palette A4(PS=0)/A12(PS=1)
PA53/ PA52/ PA51/ PA50/
PA133 PA132 PA131 PA130
Sets palette values to gradation
palette A5(PS=0)/A13(PS=1)
PA54/
PA134
Sets palette values to gradation
palette A5(PS=0)/A13(PS=1)
PA63/ PA62/ PA61/ PA60/
PA143 PA142 PA141 PA140
Sets palette values to gradation
palette A6(PS=0)/A14(PS=1)
PA64/
PA144
Sets palette values to gradation
palette A6(PS=0)/A14(PS=1)
*
*
PA13/ PA12/
PA93 PA92
*
*
*
*
*
*
*
*
*
*
*
*
TST0 RE2
*
*
*
*
*
RE1
RE0 RE flag set
*
: Don’t care.
[ NH ] : Address of instruction register
The dual instructions including upper and lower bytes is enabled after either upper or lower
bytes are set into the register. The only “EVR control” instruction is enabled after both of the
upper and lower bytes are set.
- 55 -
NJU6825
Instruction Table (3)
Code (80 series MPU I/F)
Instructions
CSb RS RDb
WRb
Code
RE2 RE1 RE0
D7
D6
D5
D4
Gradation palette A7/A15
(Lower) [0H]
0
1
1
0
0
1
0
0
0
0
0
Gradation palette A7/A15
(Upper) [1H]
0
1
1
0
0
1
0
0
0
0
1
Gradation palette B0/B8
(Lower) [2H]
0
1
1
0
0
1
0
0
0
1
0
Gradation palette B0/B8
(Upper) [3H]
0
1
1
0
0
1
0
0
0
1
1
Gradation palette B1/B9
(Lower) [4H]
0
1
1
0
0
1
0
0
1
0
0
Gradation palette B1/B9
(Upper) [5H]
0
1
1
0
0
1
0
0
1
0
1
Gradation palette B2/B10
(Lower) [6H]
0
1
1
0
0
1
0
0
1
1
0
Gradation palette B2/B10
(Upper) [7H]
0
1
1
0
0
1
0
0
1
1
1
Gradation palette B3/B11
(Lower) [8H]
0
1
1
0
0
1
0
1
0
0
0
Gradation palette B3/B11
(Upper) [9H]
0
1
1
0
0
1
0
1
0
0
1
Gradation palette B4/B12
(Lower) [AH]
0
1
1
0
0
1
0
1
0
1
0
Gradation palette B4/B12
(Upper) [BH]
0
1
1
0
0
1
0
1
0
1
1
Gradation palette B5/B13
(Lower) [CH]
0
1
1
0
0
1
0
1
1
0
0
Gradation palette B5/B13
(Upper) [DH]
0
1
1
0
0
1
0
1
1
0
1
0
1
1
0
1
1
1
1
RE register
[FH]
Note 1)
Note 2)
Note 3)
- 56 -
0/1 0/1 0/1
D3
D2
D1
Functions
D0
PA73/ PA72/ PA71/ PA70/
PA153 PA152 PA151 PA150
Sets palette values to gradation
palette A7(PS=0)/A15(PS=1)
PA74/
PA154
Sets palette values to gradation
palette A7(PS=0)/A15(PS=1)
PB03/ PB02/ PB01/ PB00/
PB83 PB82 PB81 PB80
Sets palette values to gradation
palette B0(PS=0)/B8(PS=1)
PB04/
PB84
Sets palette values to gradation
palette B0(PS=0)/B8(PS=1)
PB13/ PB12/ PB11/ PB10/
PB93 PB92 PB91 PB90
Sets palette values to gradation
palette B1(PS=0)/B9(PS=1)
PB14/
PB94
Sets palette values to gradation
palette B1(PS=0)/B9(PS=1)
PB23/ PB22/ PB21/ PB20/
PB103 PB102 PB101 PB100
Sets palette values to gradation
palette B2(PS=0)/B10(PS=1)
PB24/
PB104
Sets palette values to gradation
palette B2(PS=0)/B10(PS=1)
PB33/ PB32/ PB31/ PB30/
PB113 PB112 PB111 PB110
Sets palette values to gradation
palette B3(PS=0)/B11(PS=1)
PB34/
PB114
Sets palette values to gradation
palette B3(PS=0)/B11(PS=1)
PB43/ PB42/ PB41/ PB40/
PB123 PB122 PB121 PB120
Sets palette values to gradation
palette B4(PS=0)/B12(PS=1)
PB44/
PB124
Sets palette values to gradation
palette B4(PS=0)/B12(PS=1)
PB53/ PB52/ PB51/ PB50/
PB133 PB132 PB131 PB130
Sets palette values to gradation
palette B5(PS=0)/B13(PS=1)
PB54/
PB134
Sets palette values to gradation
palette B5(PS=0)/B13(PS=1)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
TST0 RE2
*
*
*
*
*
*
*
RE1
RE0 RE flag set
*
: Don’t care.
[ NH ] : Address of instruction register
The dual instructions including upper and lower bytes is enabled after either upper or lower
bytes are set into the register. The only “EVR control” instruction is enabled after both of the
upper and lower bytes are set.
NJU6825
Instruction Table (4)
Code (80 series MPU I/F)
Instructions
CSb RS RDb
WRb
Code
RE2 RE1 RE0
D7
D6
D5
D4
D3
D2
Gradation palette B6/B14
(Lower) [0H]
0
1
1
0
0
1
1
0
0
0
0
Gradation palette B6/B14
(Upper) [1H]
0
1
1
0
0
1
1
0
0
0
1
Gradation palette B7/B15
(Lower) [2H]
0
1
1
0
0
1
1
0
0
1
0
Gradation palette B7/B15
(Upper) [3H]
0
1
1
0
0
1
1
0
0
1
1
*
*
Gradation palette C0/C8
(Lower) [4H]
0
1
1
0
0
1
1
0
1
0
0
PC03/
PC83
Gradation palette C0/C8
(Upper) [5H]
0
1
1
0
0
1
1
0
1
0
1
Gradation palette C1/C9
(Lower) [6H]
0
1
1
0
0
1
1
0
1
1
Gradation palette C1/C9
(Upper) [7H]
0
1
1
0
0
1
1
0
1
Gradation palette C2/C10
(Lower) [8H]
0
1
1
0
0
1
1
1
Gradation palette C2/C10
(Upper) [9H]
0
1
1
0
0
1
1
Gradation palette C3/C11
(Lower) [AH]
0
1
1
0
0
1
Gradation palette C3/C11
(Upper) [BH]
0
1
1
0
0
Gradation palette C4/C12
(Lower) [CH]
0
1
1
0
Gradation palette C4/C12
(Upper) [DH]
0
1
1
0
0
1
1
0
RE register
[FH]
Note 1)
Note 2)
Note 3)
D1
Functions
D0
PB63/ PB62/ PB61/ PB60/
PB143 PB142 PB141 PB140
Sets palette values to gradation
palette B6(PS=0)/B14(PS=1)
PB64/
PB144
Sets palette values to gradation
palette B6(PS=0)/B14(PS=1)
PB73/ PB72/ PB71/ PB70/
PB153 PB152 PB151 PB150
Sets palette values to gradation
palette B7(PS=0)/B15(PS=1)
*
PB74/
PB154
Sets palette values to gradation
palette B7(PS=0)/B15(PS=1)
PC02/
PC82
PC01/
PC81
PC00/
PC80
Sets palette values to gradation
palette C0(PS=0)/C8(PS=1)
*
*
*
PC04/
PC84
Sets palette values to gradation
palette C0(PS=0)/C8(PS=1)
0
PC13/
PC93
PC12/
PC92
PC11/
PC91
PC10/
PC90
Sets palette values to gradation
palette C1(PS=0)/C9(PS=1)
1
1
*
*
*
PC14/
PC94
Sets palette values to gradation
palette C1(PS=0)/C9(PS=1)
0
0
0
PC23/ PC22/ PC21/ PC20/
PC103 PC102 PC101 PC100
Sets palette values to gradation
palette C2(PS=0)/C10(PS=1)
1
0
0
1
PC24/
PC104
Sets palette values to gradation
palette C2(PS=0)/C10(PS=1)
1
1
0
1
0
PC33/ PC32/ PC31/ PC30/
PC113 PC112 PC111 PC110
Sets palette values to gradation
palette C3(PS=0)/C11(PS=1)
1
1
1
0
1
1
PC34/
PC114
Sets palette values to gradation
palette C3(PS=0)/C11(PS=1)
0
1
1
1
1
0
0
PC43/ PC42/ PC41/ PC40/
PC123 PC122 PC121 PC120
Sets palette values to gradation
palette C4(PS=0)/C12(PS=1)
0
1
1
1
1
0
1
PC44/
PC124
Sets palette values to gradation
palette C4(PS=0)/C12(PS=1)
1
1
1
1
0/1 0/1 0/1
*
*
*
*
*
*
*
*
TST0 RE2
*
*
*
*
RE1
RE0 RE flag set
*
: Don’t care.
[ NH ] : Address of instruction register
The dual instructions including upper and lower bytes is enabled after either upper or lower
bytes are set into the register. The only “EVR control” instruction is enabled after both of the
upper and lower bytes are set.
- 57 -
NJU6825
Instruction Table (5)
Code (80 series MPU I/F)
Instructions
CSb RS RDb
WRb
Code
RE2 RE1 RE0
D7
D6
D5
D4
D3
D2
D1
Functions
D0
Gradation palette C5/C13
(Lower) [0H]
0
1
1
0
1
0
0
0
0
0
0
Gradation palette C5/C13
(Upper) [1H]
0
1
1
0
1
0
0
0
0
0
1
Gradation palette C6/C14
(Lower) [2H]
0
1
1
0
1
0
0
0
0
1
0
Gradation palette C6/C14
(Upper) [3H]
0
1
1
0
1
0
0
0
0
1
1
Gradation palette C7/C15
(Lower) [4H]
0
1
1
0
1
0
0
0
1
0
0
Gradation palette C7/C15
(Upper) [5H]
0
1
1
0
1
0
0
0
1
0
1
*
*
0
1
1
0
1
0
0
0
1
1
0
SC3
Display control Signal/
Duty Select
[7H]
0
1
1
0
1
0
0
0
1
1
1
*
Gradation mode control
[8H]
0
1
1
0
1
0
0
1
0
0
0
PWM C256 FDC1 FDC2 C256 : 256-Color Mode ON/OFF
0
1
1
0
1
0
0
1
0
0
1
HSW
ABS CKS
EVR control
(Lower) [AH]
0
1
1
0
1
0
0
1
0
1
0
DV3
DV2
DV1
DV0
Sets EVR level
(Lower bit)
EVR control
(Upper) [BH]
0
1
1
0
1
0
0
1
0
1
1
*
DV6
DV5
DV4
Sets EVR level
(Upper bit)
0
1
1
0
1
0
0
1
1
0
1
*
RF2
RF1
RF0
Oscillation frequency
0
1
1
0
1
0
0
1
1
1
0
*
*
*
DIS
Discharge the electric charge in
capacitors on V1 to V4 and VLCD
0
1
1
0
1
1
1
1
0
1
1
0
1
1
0
0
Reading address
Sets instruction register address
0
1
0
1
*
*
*
*
Read Data
Read out instruction register data
Initial COM line
[6H]
Data bus length
[9H]
Frequency control
[DH]
Discharge ON/OFF
[EH]
RE register
[FH]
Instruction register address
[CH]
Instruction register read
Note 1)
Note 2)
Note 3)
0/1 0/1 0/1
1
0
0
0/1 0/1 0/1
PC53/ PC52/ PC51/ PC50/
PC133 PC132 PC131 PC130
Sets palette values to gradation
palette C5(PS=0)/C13(PS=1)
PC54/
PC134
Sets palette values to gradation
palette C5(PS=0)/C13(PS=1)
PC63/P PC62/ PC61/ PC60/
C143 PC142 PC141 PC140
Sets palette values to gradation
palette C6(PS=0)/C14(PS=1)
PC64/
PC154
Sets palette values to gradation
palette C6(PS=0)/C14(PS=1)
PC73/ PC72/ PC71/ PC70/
PC153 PC152 PC151 PC150
Sets palette values to gradation
palette C7(PS=0)/C15(PS=1)
*
PC74/
PC154
Sets palette values to gradation
palette C7(PS=0)/C15(PS=1)
SC2
SC1
SC0
Sets scan-starting common driver
*
DSE
SON
SON : Display clock ON/OFF
DSE : Duty-1 ON/OFF
*
*
*
*
*
*
PWM : Variable/Fixed gradation mode
TST0 RE2
FDC : Boost Clock
HSW : High speed access ON/OFF
ABS : ABS mode ON/OFF
WLS
CKS : Internal/external oscilation
WLS : Display data Length
RE1
RE0 RE flag
*
: Don’t care.
[ NH ] : Address of instruction register
The dual instructions including upper and lower bytes is enabled after either upper or lower
bytes are set into the register. The only “EVR control” instruction is enabled after both of the
upper and lower bytes are set.
Note 4)
CKS=0: Internal oscillation mode (default)
CKS=1: External oscillation mode
- 58 -
NJU6825
Instruction Table (6)
Code (80 series MPU I/F)
Instructions
CSb RS RDb
Window end
column address
(Lower) [0H]
Window end
column address
(Upper) [1H]
WRb
Code
RE2 RE1 RE0 D7
D6
D5
D4
D3
D2
D1
D0
Functions
0
1
1
0
1
0
1
0
0
0
0
EX3
EX2
EX1
EX0
Sets column address for end point
0
1
1
0
1
0
1
0
0
0
1
EX7
EX6
EX5
EX4
Sets column address for end point
Window end row address
(Lower) [2H]
0
1
1
0
1
0
1
0
0
1
0
EY3
EY2
EY1
EY0
Sets row address for end point
Window end row address
(Upper) [3H]
0
1
1
0
1
0
1
0
0
1
1
EY7
EY6
EY5
EY4
Sets row address for end point
Initial reverse line
(Lower) [4H]
0
1
1
0
1
0
1
0
1
0
0
LS3
LS2
LS1
LS0
Sets address for reverse line
Initial reverse line
(Upper) [5H]
0
1
1
0
1
0
1
0
1
0
1
LS7
LS6
LS5
LS4
Sets address for reverse line
Last reverse line
(Lower) [6H]
0
1
1
0
1
0
1
0
1
1
0
LE3
LE2
LE1
LE0
Sets address for reverse line
Last reverse line
(Upper) [7H]
0
1
1
0
1
0
1
0
1
1
1
LE7
LE6
LE5
LE4
Sets address for reverse line
0
1
1
0
1
0
1
1
0
0
0
*
*
BT
LREV
0
1
1
0
1
0
1
1
0
0
1
*
*
*
PS
0
1
1
0
1
0
1
1
0
1
0
PWM PWM PWM PWM
S
A
B
C
0
1
1
0
1
1
1
1
TST0 RE2
Reverse line display
ON/OFF
[8H]
Gradation palette
setting control
[9H]
PWM control
[AH]
RE register
[FH]
Note 1)
Note 2)
Note 3)
0/1 0/1 0/1
RE1
BT : Blink type setting
LREV : Reverse line display ON/OFF
Upper 8 gradation setting
Lower 8 gradation setting
Sets PWM mode
RE0 RE flag
*
: Don’t care.
[ NH ] : Address of instruction register
The dual instructions including upper and lower bytes is enabled after either upper or lower
bytes are set into the register. The only “EVR control” instruction is enabled after both of the
upper and lower bytes are set.
- 59 -
NJU6825
(31) Instruction descriptions
This chapter provides detail descriptions and instruction registers. Nonexistent instruction codes must not be
set into the LSI.
(31-1) Display data write
The “Display data write” instruction is used to write 8-bit display data into the DDRAM.
CSb
RS
RDb
WRb
RE2
RE1
RE0
0
0
1
0
0/1
0/1
0/1
D7
D6
D5
D4
D3
D2
D1
D0
Display data
(31-2) Display data read
The “Display data read” instruction is used to read out 8-bit display data from the DDRAM, where the
column address and row address must be specified beforehand by the “column address” and “row
address” instructions. The dummy read is required just after the “column address” and “row address”
instructions.
CSb
RS
RDb
WRb
RE2
RE1
RE0
0
0
0
1
0/1
0/1
0/1
D7
D6
D5
D4
D3
D2
D1
D0
Display data
(31-3) Column address
The “column address” instruction is used to specify the column address for the display data’s reading
and writing operations. It requires dual bytes for lower 4-bit and upper 4-bit data. The instruction for the
lower 4-bit data must be executed first, next the instruction for the upper 4-bit.
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
0
0
0
0
AX3
AX2
AX1
AX0
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
0
0
0
1
AX7
AX6
AX5
AX4
(31-4) Row address
The “row address” instruction is used to specify the row address for the display data read and write
operations. It requires dual bytes for lower 4-bit and upper 4-bit data. The instruction for the lower 4-bit
data must be executed first, next the instruction for upper 4-bit. The row address is specified in between
00H and A1H. The setting for nonexistent row address between A2H and FFH is prohibited.
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
0
0
1
0
AY3
AY2
AY1
AY0
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
0
0
1
1
AY7
AY6
AY5
AY4
- 60 -
NJU6825
(31-5) Initial display line
The “Initial display line” instruction is used to specify the line address corresponding to the initial COM
line. The initial COM line specified by the “Initial COM line” instruction and indicates the common driver
that starts scanning the display data.
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
0
1
0
0
LA3
LA2
LA1
LA0
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
0
1
0
1
LA7
LA6
LA5
LA4
LA7
LA6
LA5
LA4
LA3
LA2
LA1
LA0
Line address
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
:
:
:
:
1
0
1
0
0
0
0
1
161
(31-6) N-line inversion
The “N-line inversion” instruction is used to control the alternate rates of the liquid crystal direction. It is
programmed to select the N value between 2 and 161, and the FR signal toggles once every N lines by
setting “1” into the “NLIN” register of the “Display control (2)” instruction. When the N-line inversion is
disabled by setting “0” into the “NLIN” register, the FR signal toggles by the frame.
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
0
1
1
0
N3
N2
N1
N0
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
0
1
1
1
N7
N6
N5
N4
N7
N6
N5
N4
N3
N2
N1
N0
N value
0
0
0
0
0
0
0
0
Inhibited
0
0
0
0
0
0
0
1
2
:
:
:
:
1
0
1
0
0
0
0
0
161
- 61 -
NJU6825
# N-line Inversion Timing (1/163 duty cycle ratio)
N-line inversion OFF
1st line
2nd line
3rd line
162nd line
1st line
163rd line
CL
FLM
FR
N-line inversion ON
N-line control
1st line
2nd line
3rd line
Nst line
1st line
2nd line
CL
FR
(31-7) Display control (1)
The “Display control (1)” instruction is used to control display conditions by setting the “Display ON/OFF”,
“All pixels ON/OFF”, “Display mode” and “Common direction” registers.
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
0
1
1
0
0
0
0
1
0
0
0
SHIFT
MON
D1
D0
ALLON ON/OFF
# ON/OFF register
ON/OFF=0
ON/OFF=1
: Display OFF (All COM/SEG output Vss level.)
: Display ON
# All ON register
The “All pixels ON/OFF” register is used to turn on all pixels without changing display data of the
DDRAM. The setting for the “All pixels ON/OFF” register has a priority over the “Reverse display
ON/OFF” register.
ALLON=0
ALLON=1
: Normal
: All pixels turn on.
# MON register
MON=0
MON=1
: Gradation mode
: B&W mode
# SHIFT register
SHIFT=0
SHIFT=1
- 62 -
: COM0 → COM161
: COM161 → COM0
NJU6825
(31-8) Display control (2)
The “Display control (2)” instruction is used to control the display conditions by setting the “Segment
direction”, “SWAP mode ON/OFF”, “N-line inversion ON/OFF” and “Reverse display ON/OFF” registers.
CSb
RS
RDb
WRb
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
1
0
0
1
REV
NLIN
SWAP
REF
# REF register
The “REF” register is used to reverse the assignment between segment drivers and column
address, and it is possible to reduce restrictions for placement of the LSI on the LCD modules. For
more information, see (10) “The relation among the DDRAM column address, display data and
segment drivers”.
# SWAP register
The “SWAP” register is used to reverse the arrangement of display data in the DDRAM.
SWAP=0
SWAP=1
: SWAP mode OFF
: SWAP mode ON
(Normal)
SWAP=”0”
SWAP=”1”
Write data
D7 D 6 D 5 D 4 D 3 D 2 D 1 D 0
D7 D6 D5 D4 D3 D2 D1 D0
RAM data
d7 d6 d5 d4 d3 d2 d1 d0
d0 d1 d2 d3 d4 d5 d6 d7
Read data
D 7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0
# NLIN register
The “NLIN” is used to enable or disable the N-line inversion.
NLIN=0
NLIN=1
: N-line inversion OFF
: N-line inversion ON
(The FR signal toggles by the flame.)
(The FR signal toggles once every N frames.)
# REV register
The “REV” register is used to enable or disable the reverse display mode that reverses the polarity
of display data without changing display data of the DDRAM.
REV=0
REV=1
: Reverse display mode OFF
: Reverse display mode ON
REV
Display
0
Normal
1
Reverse
DDRAM data → Display data
0
0
1
1
0
1
1
0
- 63 -
NJU6825
(31-9) Increment control
The “Increment control” instruction is used for the increment mode. In using the auto-increment mode,
DDRAM address automatically increments (+1) whenever the DDRAM is accessed by the “Display data
write” or “Display data read” instruction. Therefore, once “Display data write” or “Display data read”
instruction is established, it is possible to continuously access to the DDRAM without the “column address”
and “row address” instructions. The settings for the “AIM”, “AXI” and “AYI” registers are listed in the
following tables.
CSb
RS
0
1
RDb WRb
1
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
0
1
0
WIN
AIM
AYI
AXI
0
# AIM, AYI and AXI registers
AIM
0
1
Increment mode
Auto-increment for both of the display data read and write operations
Auto-increment for the display write operation (Read modify write)
Note
1
2
Note 1) It is effective for usual operations accessing successive addresses.
Note 2) It is effective for the read-modify-write operation
AYI
0
0
1
AXI
0
1
0
1
1
Increment mode
No auto-increment
Auto-increment for the column address
Auto-increment for the row address
Auto-increment for the column address and row
address
Note
1
2
3
4
Note 1) Auto-increment is disabled regardless of the “AIM” register.
Note 2) Auto-increment of the column address is enabled in accordance with the “AIM” register.
00H
MAXH
MAXH in the 8-bit data bus mode
MAXH in the 16-bit data bus mode
: FFH
: 7FH
Note 3) Auto-increment of the row address is enabled in accordance with the “AIM” register.
00H
A1H
Note 4) Auto-increment of the column address and the row address are enabled. The row address
increments whenever the column address reaches to the MAXH.
00H
MaxH
column address
MAXH in the 8-bit data bus mode
MAXH in the 16-bit data bus mode
- 64 -
00H
A1H
row address
: FFH
: 7FH
NJU6825
# WIN register
The “WIN” register is used to access to the DDRAM for the window display area, where the start point is
determined by the “column address” and “row address” instructions, and the end point by the “Window
end column address “and ”Window end row address” instructions. The setting sequence for the window
display area is listed as follows. For more detail, see (7) “Window addressing mode”.
WIN=0
WIN=1
:Window addressing mode OFF
:Window addressing mode ON
1. Set WIN=1, AXI=1, and AYI=1 by “Increment control” instruction.
2. Set the start point by the “column address” and “row address” instructions
3. Set the end point by the “Window end column address” and “Window end row address” instructions
4. Enable to access to the DDRAM in the window addressing mode
START
Address
END
Address
column address
START
Address
END
Address
row address
- 65 -
NJU6825
(31-10) Power control
CSb
RS
0
1
RDb WRb RE2
1
0
0
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
1
AMPON
HALT
DCON
ACL
# ACL register
The “ACL” register is used to initialize the internal power supply circuits.
ACL=0
ACL=1
: Initialization OFF (Normal)
: Initialization ON
When the data of the “ACL register” is read out by the “Instruction register read” instruction, the
read-out data is “1” during the initialization and “0” after the initialization. This initialization is
performed by using the signal produced by 2 clocks on the OSC1. For this reason, the wait time for 2
clocks of the OSC1 is necessary until next instruction.
# DCON register
The “DCON” register is used to enable or disable the voltage booster.
DCON=0
DCON=1
: Voltage booster OFF
: Voltage booster ON
# HALT register
The “HALT” register is used to enable or disable the power save mode. It is possible to reduce
operating current down to stand-by level. The internal status in the power save mode is listed below.
HALT=0
HALT=1
: Power save OFF (Normal)
: Power save ON
Internal status in the power save mode
• The oscillation circuits and internal power supply circuits are halted.
• All segment and common drivers output VSS level.
• The clock input into the OSC1 is inhibited.
• The display data in the DDRAM is maintained.
• The operational modes before the power save mode are maintained.
• The V1 to V4 and VLCD are in the high impedance.
As a power save ON sequence, the “Display OFF” must be executed first, next the “Power save
ON” instruction, and then all common and segment drivers output the VSS level. And as power save
OFF sequence, the “Power save OFF” instruction is executed first, next the “Display ON” instruction.
If the “Power save OFF” instruction is executed in the display ON status, unexpected pixels may
instantly turn on.
# AMPON register
The “AMPON” register is used to enable or disable the voltage followers, voltage regulator and EVR.
AMPON=0
AMPON=1
- 66 -
: The voltage followers, voltage regulator and the EVR OFF
: The voltage followers, voltage regulator and the EVR ON
NJU6825
(31-11) Duty cycle ratio
The “Duty cycle ratio” instruction is used to select LCD duty cycle ratio for the partial display function.
The partial display function specifies some parts of display area on a LCD panel in the condition of lower
duty cycle ratio, lower LCD bias ratio, lower boost level and lower LCD driving voltage. Therefore, it is
possible to optimize the LSI’s conditions with extremely low power consumption.
CSb
RS
0
1
RDb WRb RE2
1
0
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
1
0
0
DS3
DS2
DS1
DS0
0
DS3
DS2
DS1
DS0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Duty cycle ratio
DSE=0
DSE=1
1/163
1/162
1/161
1/160
1/145
1/144
1/133
1/132
1/129
1/128
1/113
1/112
1/97
1/96
1/81
1/80
1/73
1/72
1/64
1/65
1/56
1/57
1/49
1/48
1/41
1/40
1/33
1/32
1/25
1/24
1/17
1/16
Row way
displays
162 commons
160 commons
144 commons
132 commons
128 commons
112 commons
96 commons
80 commons
72 commons
64 commons
56 commons
48 commons
40 commons
32 commons
24 commons
16 commons
The duty cycle ratio is controlled by the “DS3 to DS0” registers of the “Duty cycle ratio” instruction and the “DSE”
register of the “Display Clock / Duty-1” instruction.
DSE=”0”
DSE=”1”
: The number of commons + 1
(Duty cycle ratio in the default setting)
: The number of commons (Duty-1)
When the “DSE” is “0”, all common drivers output non-selective levels in period of last common.
And the segment drivers output the same data for the last line as the for previous line: For instance
nd
rd
they output the same data for the 162 and 163 lines when the duty cycle ratio is set to 1/163. For
the setting of the “DSE” register, see (31-17) “Display clock / Duty-1”.
(31-12) Boost level
The “Boost level” is used to select the multiple of the voltage booster for the partial display function.
CSb
RS
0
1
RDb WRb
1
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
1
0
1
*
VU2
VU1
VU0
0
VU2
0
0
0
0
1
1
1
1
VU1
0
0
1
1
0
0
1
1
VU0
0
1
0
1
0
1
0
1
Boost level
1-time (No boost)
2-time
3-time
4-time
5-time
6-time
7-time
Inhibited
- 67 -
NJU6825
(31-13) LCD bias ratio
The “LCD bias ratio” is used to select the LCD bias ratio for the partial display function.
CSb
RS
0
1
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
1
1
0
*
B2
B1
B0
B1
0
0
1
1
0
0
1
1
B2
0
0
0
0
1
1
1
1
B0
0
1
0
1
0
1
0
1
LCD bias ratio
1/9
1/8
1/7
1/6
1/5
1/10
1/11
1/12
(31-14) RE flag
The “RE flag” registers are used to determine the contents for the RE registers (RE2, RE1 and RE0) and
it is possible to access to the instruction registers.
The data in the “TST0” register must be “0”, and it is used maker tests only.
CSb
RS
0
1
- 68 -
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0/1
0/1
0/1
1
1
1
1
TST0
RE2
RE1
RE0
NJU6825
(31-15) Gradation palette A, B and C
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
0
0
0
PA03/
PA83
PA02/
PA82
PA01/
PA81
PA00/
PA80
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
0
0
1
*
*
*
PA04/
PA84
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
0
1
0
PA13/
PA93
PA12/
PA92
PA11/
PA91
PA10/
PA90
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
0
1
1
*
*
*
PA14/
PA94
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
0
0
PA23/
PA103
PA22/
PA102
PA21/
PA101
PA20/
PA100
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
0
1
*
*
*
PA24/
PA104
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
1
0
PA33/
PA113
PA32/
PA112
PA31/
PA111
PA30/
PA110
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
1
1
*
*
*
PA34/
PA114
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
1
0
0
0
PA43/
PA123
PA42/
PA122
PA41/
PA121
PA40/
PA120
- 69 -
NJU6825
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
- 70 -
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
1
0
0
1
*
*
*
PA44/
PA124
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
1
0
1
0
PA53/
PA133
PA52/
PA132
PA51/
PA131
PA50/
PA130
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
1
0
1
1
*
*
*
PA54/
PA134
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
1
1
0
0
PA63/
PA143
PA62/
PA142
PA61/
PA141
PA60/
PA140
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
1
1
0
1
*
*
*
PA64/
PA144
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
0
0
PA73/
PA153
PA72/
PA152
PA71/
PA151
PA70/
PA150
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
0
1
*
*
*
PA74/
PA154
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
0
PB03/
PB83
PB02/
PB82
PB01/
PB81
PB00/
PB80
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
*
*
*
PB04/
PB84
NJU6825
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
0
0
PB13/
PB93
PB12/
PB92
PB11/
PB91
PB10/
PB90
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
0
1
*
*
*
PB14/
PB94
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
0
PB23/
PB103
PB22/
PB102
PB21/
PB101
PB20/
PB100
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
1
1
1
*
*
*
PB24/
PB104
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
0
PB33/
PB113
PB32/
PB112
PB31/
PB111
PB30/
PB110
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
0
1
*
*
*
PB34/
PB114
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
0
PB43/
PB123
PB42/
PB122
PB41/
PB121
PB40/
PB120
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
0
1
1
*
*
*
PB44/
PB124
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
0
PB53/
PB133
PB52/
PB132
PB51/
PB131
PB50/
PB130
- 71 -
NJU6825
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
- 72 -
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
1
1
0
1
*
*
*
PB54/
PB134
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
0
PB63/
PB143
PB62/
PB142
PB61/
PB141
PB60/
PB140
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
0
1
*
*
*
PB64/
PB144
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
1
0
PB73/
PB153
PB72/
PB152
PB71/
PB151
PB70/
PB150
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
0
1
1
*
*
*
PB74/
PB154
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
1
0
0
PC03/
PC83
PC02/
PC82
PC01/
PC81
PC00/
PC80
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
1
0
1
*
*
*
PC04/
PC84
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
1
1
0
PC13/
PC93
PC12/
PC92
PC11/
PC91
PC10/
PC90
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
1
1
1
*
*
*
PC14/
PC94
NJU6825
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
1
0
0
0
PC23/
PC103
PC22/
PC102
PC21/
PC101
PC20/
PC100
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
1
0
0
1
*
*
*
PC24/
PC104
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
1
0
1
0
PC33/
PC113
PC32/
PC112
PC31/
PC111
PC30/
PC110
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
1
0
1
1
*
*
*
PC34/
PC114
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
1
1
0
0
PC43/
PC123
PC42/
PC122
PC41/
PC121
PC40/
PC120
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
1
1
0
1
*
*
*
PC44/
PC124
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
0
0
0
PC53/
PC133
PC52/
PC132
PC51/
PC131
PC50/
PC130
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
0
0
1
*
*
*
PC54/
PC134
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
0
1
0
PC63/
PC143
PC62/
PC142
PC61/
PC141
PC60/
PC140
- 73 -
NJU6825
CSb
RS
0
1
CSb
RS
0
1
CSb
RS
0
1
RDb WRb
1
0
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
0
1
1
*
*
*
PC64/
PC144
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
1
0
0
PC73/
PC153
PC72/
PC152
PC71/
PC151
PC70/
PC150
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
1
0
1
*
*
*
PC74/
PC154
Gradation Palette Table (Variable gradation mode, PWM=”0” and MON=”0”)
(Palette Aj, Palette Bj, Palette Cj, (j=0 to 15))
Palette Value
Gradation
Level
Note
0 0 0 0 0
0/31
Gradation Palette 0
Initial Value
0 0 0 0 1
Gradation
Level
Palette Value
1
0 0 0
0
16/31
1/31
1
0 0 0
1
17/31
0 0 0 1 0
2/31
1
0 0 1
0
18/31
0 0 0 1 1
3/31
1
0 0 1
1
19/31
0 0 1 0 0
4/31
1
0 1 0
0
20/31
0 0 1 0 1
5/31
1
0 1 0
1
21/31
0 0 1 1 0
6/31
1
0 1 1
0
22/31
0 0 1 1 1
7/31
1
0 1 1
1
23/31
0 1 0 0 0
8/31
1
1 0 0
0
24/31
0 1 0 0 1
9/31
1
1 0 0
1
25/31
0 1 0 1 0
10/31
1
1 0 1
0
26/31
0 1 0 1 1
11/31
1
1 0 1
1
27/31
0 1 1 0 0
12/31
1
1 1 0
0
28/31
0 1 1 0 1
13/31
1
1 1 0
1
29/31
0 1 1 1 0
14/31
1
1 1 1
0
30/31
0 1 1 1 1
15/31
1
1 1 1
1
31/31
- 74 -
Gradation Palette 1
Initial Value
Gradation Palette2
Initial Value
Gradation Palette 3
Initial Value
Gradation Palette 4
Initial Value
Gradation Palette 5
Initial Value
Gradation Palette 6
Initial Value
Gradation Palette 7
Initial Value
Note
Gradation Palette 8
Initial Value
Gradation Palette 9
Initial Value
Gradation Palette 10
Initial Value
Gradation Palette 11
Initial Value
Gradation Palette 12
Initial Value
Gradation Palette 13
Initial Value
Gradation Palette 14
Initial Value
Gradation Palette 15
Initial Value
NJU6825
(31-16) Initial COM line
The “Initial COM line” instruction is used to specify the common driver that starts scanning the display
data. The line address, corresponding to the initial COM line, is specified by the “Initial display line”
instruction.
CSb
RS
RDb WRb
0
1
1
SC3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
SC2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
0
1
1
0
SC3
SC2
SC1
SC0
SC1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
SC0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Initial COM line (SHIFT=0)
COM0
COM1
COM9
COM14
COM17
COM25
COM33
COM41
COM49
COM57
COM65
COM73
COM122
COM130
COM138
COM146
SHIFT=0: Positive scan direction
SHIFT=1: Negative scan direction
Initial COM line (SHIFT=1)
COM161
COM160
COM152
COM146
COM144
COM136
COM128
COM120
COM112
COM104
COM96
COM88
COM39
COM31
COM23
COM15
(COM0 → COM161)
(COM161 → COM0)
(31-17) Display clock / Duty-1
The “Display clock / Duty-1” instruction is used to enable or disable the display clocks (CL, FLM, FR, and CLK),
and to control ON/OFF of the “Duty-1”. For more detail about the “Duty-1”, see (31-11) “Duty cycle ratio”.
CSb
RS
0
1
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
1
1
1
*
*
DSE
SON
SON=0:
SON=1:
CL, FLM, FR, and CLK outputs level “0”.
CL, FLM, FR, and CLK outputs are active.
DSE=0:
DSE=1:
Duty - 1 OFF
Duty - 1 ON
- 75 -
NJU6825
(31-18) Gradation mode control
The “Gradation mode control” is used to select display mode as follows.
CSb
RS
0
1
RDb WRb
1
RE2
RE1
RE0
D7
D6
D5
D4
1
0
0
1
0
0
0
0
D3
D2
D1
D0
PWM C256 FDC1 FDC2
# PWM register
PWM=0:
PWM=1:
Variable gradation mode
(Variable 16-gradation levels out of 32-gradation level of the gradation palette)
Fixed gradation mode
(Fixed 8-gradation levels)
# C256 register
C256=0
C256=1
256-color mode OFF (4,096-color in the default setting)
256-color mode ON
# FDC1 and FDC2 register
FDC1
0
0
1
1
- 76 -
FDC2
0
1
0
1
Boost Clock
×1
×2
×4
×1/2
NJU6825
(31-19) Data bus length
The “Data bus length” instruction is used to select the 8- or 16- bit data bus length and determine the
internal or external oscillation. In the 16-bit data bus mode, instruction data must be 16-bit (D15 to D0) as
well as display data. However, for the access to the instruction registers, the lower 8-bit data (D7 to D0) of
the 16-bit data is valid. For the access to the DDRAM, all of the 16-bit data (D15 to D0) is valid.
CSb
RS
0
1
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
1
0
0
1
0
0
1
D3
D2
HSW ABS
D1
D0
CKS WLS
# HSW register
HSW =0:
HSW=1:
High Speed access mode OFF.
High Speed access mode ON (only in the 8-bit data bus length).
# ABS register
ABS=0:
ABS=1:
ABS mode OFF (normal)
ABS Mode ON
# WLS register
WLS=0:
WLS =1:
8-bit data bus length
16-bit data bus length
# CKS register
CKS =0:
CKS =1:
Internal oscillation
(The OSC1 terminal must be fixd “1” or “0”.)
External oscillation
(By the external clock into the OSC1 or external resister between the OSC1 and
OSC2. OSC2 should be open when clock is inputted from OSC1.)
- 77 -
NJU6825
(31-20) EVR control
The “EVR control” instruction is used to fine-tune the LCD driving voltage (VLCD) so that it is possible to
optimize the contrast level for a LCD panel.
This instruction must be programmed by upper 3-bit data first, next lower 4-bit data. And it becomes
enabled when the lower 4-bit data is programmed, so that it can prevent unexpected high voltage for the
VLCD from being generated.
CSb
RS
0
1
CSb
RS
0
1
RDb WRb RE2
1
0
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
0
DV3
DV2
DV1
DV0
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
1
*
DV6
DV5
DV4
DV2
0
0
DV1
0
0
DV0
0
1
1
1
1
1
RDb WRb RE2
1
RE1
0
1
DV6
0
0
DV5
0
0
DV4
0
0
1
1
1
DV3
0
0
:
:
1
VLCD
Low
:
:
:
High
The formula of the VLCD is shown below.
VLCD [V] = 0.5 x VREG + M (VREG – 0.5 x VREG) / 127
VBA = VEE x 0.9
VREG = VREF x N
- 78 -
VBA
VREF
VREG
N
M
: Output voltage of the reference voltage generator
: Input voltage of the voltage regulator
: Output voltage of the voltage regulator
: Register value for the voltage booster
: Register value for the EVR
NJU6825
(31-21) Frequency control
The “Frequency control” instruction is used to control the frame frequency for a LCD panel.
CSb
RS
0
1
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
1
1
0
1
*
Rf2
Rf1
Rf0
# Rfx register (x=0, 1, 2)
The “Rfx” register is used to determine the feed back resister value for the internal oscillator and it
is possible to adjust the frame frequency for the LCD modules.
Rf 2
0
0
0
0
1
1
1
1
Rf 1
0
0
1
1
0
0
1
1
Rf 0
0
1
0
1
0
1
0
1
Feedback resistor value
Reference value
0.8 x reference value
0.9 x reference value
1.1 x reference value
1.2 x reference value
Inhibited
Inhibited
Inhibited
(31-22) Discharge ON/OFF
Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and the VLCD
terminals. The “Discharge ON/OFF” instruction is usually required just after the internal power supply is
turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is
turned off. During the discharge operation, the internal or external power supply must not be turned on.
CSb
RS
0
1
RDb WRb
1
DIS=0:
DIS=1:
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
1
1
1
0
*
*
*
DIS
Discharge OFF
Discharge ON
- 79 -
NJU6825
(31-23) Instruction register address
The “Instruction register address” is used to specify the instruction register address, so that it is possible
to read out the contents of the instruction registers in combination with the “Instruction register read”
instruction.
CSb
RS
0
1
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
1
1
0
0
RA3
RA2
RA1
RA0
(31-24) Instruction register read
The “Instruction register read” instruction is used to read out the contents of the instruction register in
combination with the “Instruction register address” instruction.
CSb
RS
0
1
RDb WRb
0
1
RE2
RE1
RE0
D7
D6
D5
D4
0/1
0/1
0/1
*
*
*
*
D3
D2
D1
D0
Internal register data read
(31-25) Window end column address
The “Window end column address” is used to specify the column address for the window end point. The
lower 4-bit data is required to be programmed first and then the upper 4-bit data can be programmed.
CSb
RS
0
1
CSb
RS
0
1
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
0
0
0
0
EX3
EX2
EX1
EX0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
0
0
0
1
EX7
EX6
EX5
EX4
(31-26) Window end row address set
The “Window end row address” is used to specify the row address for the window end point. The lower
4-bit data is required to be programmed first and then the upper 4-bit data can be programmed.
CSb
RS
0
1
CSb
RS
0
1
- 80 -
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
0
0
1
0
EY3
EY2
EY1
EY0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
0
0
1
1
EY7
EY6
EY5
EY4
NJU6825
(31-27) Initial reverse line
The “Initial reverse line” instruction is used to specify the initial reverse line address for the reverse line
display. Lower 4-bit data must be programmed first, next upper 4-bit data. It is programmed in between
00H and A1H and the line address beyond A1H is inhibited. The address relation: LSi < LEi (i=7 to 0) must
be maintained in the reverse line display.
CSb
RS
0
1
CSb
RS
0
1
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
0
1
0
0
LS3
LS2
LS1
LS0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
0
1
0
1
LS7
LS6
LS5
LS4
(31-28) Last reverse line
The “Last reverse line” instruction is used to specify the last reverse line address for the reverse line
display. Lower 4-bit must be programmed first, next upper 4-bit data. It is programmed in between 00H and
A1H and the line address beyond A1H is inhibited. The address relation: LSi < LEi (i=7 to 0) must be
maintained in the reverse line display.
CSb
RS
0
1
CSb
RS
0
1
RDb WRb
1
0
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
0
1
1
0
LE3
LE2
LE1
LE0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
0
1
1
1
LE7
LE6
LE5
LE4
(31-29) Reverse line display ON/OFF
The “Reverse line display ON/OFF” is used to enable or disable the reverse line display for the blink
operation and determine the reverse line display mode.
CSb
RS
0
1
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
1
0
0
0
*
*
BT
LREV
# LREV register
The “LREV” register is used to enable or disable the reverse line display.
LREV =0:
LREV =1:
Reverse line display OFF (Normal)
Reverse line display ON
- 81 -
NJU6825
# BT register
The “BT” register is used to determine the reverse line display mode in the reverse line display ON
(LREV=1) status.
BT =0:
BT =1:
Normal reverse line display
Blink once every 32 frames
Display examples in the LREV=”1” and BT=”1”
!"""!
"!!!"
"!!!!
!"""!
!!!!"
"!!!"
!"""!
!!!!!
"!!!"
!"""!
!""""
"!!!"
""""!
!"""!
"!!!"
"""""
Blink once every 32 frames
NJRC
LCD DRIVER
Low Power and
Low Voltage
Blink once every 32 frames
NJRC
LCD DRIVER
Low Power and
Low Voltage
- 82 -
←Initial reverse line address
←Last reverse line address
NJU6825
(31-30) Gradation Palette setting control
CSb
RS
0
1
RDb WRb
1
PS=0:
PS=1:
0
RE2
RE1
RE0
D7
D6
D5
D4
D3
D2
D1
D0
1
0
1
1
0
0
1
*
*
*
PS
Lower 8 Gradation setting
Upper 8 Gradation setting
(31-31) PWM control
The “PWM control” is used to determine the PWM type for the segment waveforms, where the type can
be specified for each of the SEGAi, SEGBi and SEGCi (i=0-127) drivers.
CSb
RS
0
1
RDb WRb
1
0
RE2
RE1
RE0
D7
D6
D5
D4
1
0
1
1
0
1
0
D3
D2
D1
D0
PWMS PWMA PWMB PWMC
# PWMS register
PWMS=0: Type 1
PWMS=1: Type 2
# PWMA, B and C registers
The “PWMA, PWMB and PWMC” registers are used to select the type 1-O or type 1-E.
PWMZ=0 (Z=A, B and C): Type 1-O
PWMZ=1 (Z=A, B and C): Type 1-E
PWM type1 (PWMS=”0”)
“H”
CL
Odd line
Even line
“L”
VLCD
Type-O
→
←
V2
SEG
VLCD
Type-E
→
←
V2
PWM type2 (PWMS=”1”)
CL
“H”
“L”
SEG
VLCD
→
→
V2
- 83 -
NJU6825
(32) The relationship between Common drivers and row addresses
Row address assignment of common drivers is programmed by the “ SHIFT ” register of the “ Display control
(1) ” , “ Duty cycle ratio ”, “ Internal display line ” and “ Initial COM line ” instructions
When initial display line is “0”
If the “ SHIFT “ is “ 0 “, the scan direction is normal. When the “ LA0 to LA7 ” registers of the “ Initial display
line “instruction is “ 0 “, the “ MY “ corresponding to the initial COM line is “ 0 “ and is increasing during display.
When initial display line is not “0”
If the “ SHIFT “ is “ 1 “, the scan direction is inversed. When the “ LA0 to LA7 ” registers of the “ Initial display
line “instruction is not “ 0 “, the “ MY “ corresponding to the initial COM line is this setting value and is increasing
during display.
The following are examples of setting the start-line 0 or 5 at 1/163(DSE=0), 1/80(DSE=1), or 1/16(DSE=1)
duty.
- 84 -
NJU6825
(32-1) Initial display line “0”, 1/163 duty cycle (Common forward scan, DSE=”0”)
SC3
SC2
SC1
SC0
0000
0
SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0000”, LA7….LA0=”00000000”(Initial display line 0) DSE=”0”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
161
0
153
148
145
137
129
121
113
105
97
89
1100
1101
1110
1111
40
32
24
16
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
:
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
COM64
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
COM74
COM75
COM76
COM77
COM78
:
COM120
COM121
COM122
:
COM128
COM129
COM130
:
COM136
COM137
COM138
COM139
COM140
COM141
COM142
COM143
COM144
COM145
COM146
COM147
COM148
COM149
COM150
COM151
COM152
COM153
COM154
COM155
COM156
COM157
COM158
COM159
COM160
COM161
161
160
152
147
144
136
128
120
112
104
96
88
39
31
23
15
(163rd COM period) *1
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
*1 : 163rd COM period is not selected.
- 85 -
NJU6825
(32-2) Initial display line “0”, 1/163 duty cycle (Common backward scan, DSE=”0”)
SC3
SC2
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
:
COM31
COM32
:
COM39
COM40
:
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
COM96
COM97
COM98
COM99
COM100
COM101
COM102
COM103
COM104
COM105
COM106
COM107
COM108
COM109
COM110
COM111
COM112
COM113
COM114
COM115
COM116
COM117
COM118
COM119
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
COM128
COM129
COM130
COM131
COM132
COM133
COM134
COM135
COM136
COM137
COM138
COM139
COM140
COM141
COM142
COM143
COM144
COM145
COM146
COM147
COM148
COM149
COM150
COM151
COM152
COM153
COM154
COM155
COM156
COM157
COM158
COM159
COM160
COM161
rd
SC1
SC0
0000
161
SHIFT=”1”(Common backward scan), DS3, 2, 1, 0=”0000”, LA7….LA0=”00000000”(Initial display line 0) DSE=”0”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
160
152
146
144
136
128
112
104
96
88
1100
1101
1110
1111
39
31
23
15
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
0
161
(163 COM period) *1
0
0
161
153
147
145
137
129
121
113
105
97
89
40
32
24
16
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
*1 : 163rd COM period is not selected.
- 86 -
120
NJU6825
(32-3) Initial display line “0”, 1/80 duty cycle (Common forward scan, DSE=”1”)
SC3
COM0
COM1
:
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
:
COM25
COM26
:
COM33
:
COM39
COM40
COM41
:
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
COM64
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
COM74
COM75
COM76
COM77
COM78
COM79
COM80
COM81
:
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
COM96
COM97
:
COM104
COM105
:
COM112
COM113
:
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
COM128
COM129
COM130
COM131
COM132
COM133
COM134
COM135
COM136
COM137
COM138
COM139
COM140
COM141
COM142
COM143
COM144
COM145
COM146
COM147
COM148
COM149
COM150
COM151
COM152
:
COM160
COM161
SC2
SC1
SC0
0000
SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0111”, LA7….LA0=”00000000”(Initial display line 0) DSE=”1”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
0
1100
1101
1110
1111
40
32
24
16
0
0
0
0
0
0
79
0
79
0
79
0
79
0
0
79
79
79
79
79
79
79
79
0
79
0
79
0
79
0
79
39
31
23
15
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
- 87 -
NJU6825
(32-4) Initial display line “0”, 1/80 duty cycle (Common backward scan, DSE=”1”)
SC3
COM0
:
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
:
COM49
:
COM57
:
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
:
COM81
COM82
COM83
COM84
COM85
COM86
COM87
COM88
:
COM96
COM97
COM98
COM99
COM100
COM101
COM102
COM103
COM104
COM105
COM106
COM107
COM108
COM109
COM110
COM111
COM112
COM113
COM114
COM115
COM116
COM117
COM118
COM119
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
COM128
:
COM136
:
COM144
COM145
COM146
:
COM152
:
COM160
COM161
SC2
SC1
SC0
0000
SHIFT=”1”(Common backward scan), DS3, 2, 1, 0=”0111”, LA7….LA0=”00000000”(Initial display line 0) DSE=”1”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1101
1110
1111
39
31
23
15
79
0
79
0
79
0
79
0
79
79
79
79
79
79
79
79
0
0
79
0
79
0
79
0
79
0
0
0
0
0
0
0
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
- 88 -
1100
40
32
24
16
NJU6825
(32-5) Initial display line “0”, 1/16 duty cycle (Common forward scan, DSE=”1”)
SC3
COM0
COM1
COM2
:
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
COM64
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
COM74
COM75
COM76
COM77
COM78
COM79
COM80
COM81
:
COM88
:
COM121
COM122
:
COM130
COM131
COM132
COM133
COM134
COM135
COM136
COM137
COM138
:
COM145
COM146
:
COM153
:
COM160
COM161
SC2
SC1
SC0
0000
SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”1111”, LA7….LA0=”00000000”(Initial display line 0) DSE=”1”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0
0
0
0
15
15
0
15
0
15
15
0
15
0
15
0
15
0
15
0
15
0
15
15
0
0
15
0
15
0
15
15
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
- 89 -
NJU6825
(32-6) Initial display line “0”, 1/16 duty cycle (Common backward scan, DSE=”1”)
SC3
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
:
COM39
:
COM73
:
COM81
COM82
COM83
COM84
COM85
COM86
COM87
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
COM96
COM97
:
COM104
COM105
COM106
COM107
COM108
COM109
COM110
COM111
COM112
COM113
:
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
COM128
COM129
COM130
COM131
COM132
COM133
COM134
COM135
COM136
COM137
:
COM144
COM145
COM146
COM147
COM148
COM149
COM150
COM151
COM152
:
COM160
COM161
SC2
SC1
SC0
0000
SHIFT=”1”(Common backward scan), DS3, 2, 1, 0=”1111”, LA7….LA0=”00000000”(Initial display line 0) DSE=”1”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1101
1110
1111
15
15
0
15
0
15
0
0
15
15
0
15
0
15
0
15
0
15
0
15
0
15
15
0
15
0
15
15
0
0
0
0
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
- 90 -
1100
NJU6825
(32-7) Initial display line “5”, 1/163 duty cycle (Common forward scan, DSE=”0”)
SC3
SC2
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
:
COM33
COM34
COM35
COM36
:
COM41
COM42
COM43
COM44
:
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
:
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
:
COM116
COM117
:
COM122
COM123
COM124
COM125
COM126
COM127
COM128
COM129
COM130
COM131
COM132
COM133
COM134
COM135
COM136
COM137
COM138
COM139
COM140
COM141
COM142
COM143
COM144
COM145
COM146
:
COM156
COM157
COM158
COM159
COM160
COM161
SC1
SC0
0000
5
SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0000”, LA7….LA0=”00000101”(Initial display line 5) DSE=”0”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
4
5
158
153
150
142
134
126
118
110
102
94
1100
1101
1110
1111
45
37
29
21
161
0
5
161
0
161
0
5
5
161
0
5
161
0
5
161
0
5
161
0
5
161
0
5
1161
0
5
161
0
5
161
0
5
161
0
5
161
0
5
161
0
5
161
0
(163rd COM period) *1
161
0
4
3
157
152
149
141
133
125
117
109
101
93
44
36
28
20
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
*1 : 163rd COM period is not selected.
- 91 -
NJU6825
(32-8) Initial display line “5”, 1/163 duty cycle (Common backward scan, DSE=”0”)
SC3
SC2
COM0
COM1
COM2
COM3
COM4
COM5
:
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
:
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
COM96
COM97
COM98
COM99
COM100
COM101
COM102
COM103
COM104
COM105
COM106
COM107
COM108
COM109
COM110
COM111
COM112
COM113
COM114
COM115
COM116
COM117
COM118
COM119
COM120
:
COM125
COM126
COM127
COM128
COM129
COM130
COM131
COM132
COM133
COM134
COM135
COM136
:
COM141
COM142
COM143
COM144
COM145
COM146
COM147
COM148
COM149
COM150
COM151
COM152
COM153
COM154
COM155
COM156
COM157
COM158
COM159
COM160
COM161
rd
SC1
SC0
0000
4
0
161
SHIFT=”1”(Common backward scan), DS3, 2, 1, 0=”0000”, LA7….LA0=”00000101”(Initial display line 5) DSE=”0”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
3
157
151
149
141
133
117
109
101
93
1100
1101
1110
1111
44
36
28
20
0
161
5
0
161
5
0
161
5
0
161
5
0
161
5
0
161
5
0
161
5
0
161
5
0
161
5
0
161
5
0
161
5
0
161
5
5
0
161
5
0
161
0
161
(163 COM period) *1
5
5
4
158
152
150
142
134
126
118
110
102
94
45
37
29
21
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
*1 : 163rd COM period is not selected.
- 92 -
125
NJU6825
(32-9) Initial display line “5”, 1/80 duty cycle (Common forward scan, DSE=”1”)
SC3
COM0
COM1
:
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
:
COM25
COM26
:
COM33
:
COM39
COM40
COM41
:
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
COM64
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
COM74
COM75
COM76
COM77
COM78
COM79
COM80
COM81
:
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
COM96
COM97
:
COM104
COM105
:
COM112
COM113
:
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
COM128
COM129
COM130
COM131
COM132
COM133
COM134
COM135
COM136
COM137
COM138
COM139
COM140
COM141
COM142
COM143
COM144
COM145
COM146
COM147
COM148
COM149
COM150
COM151
COM152
:
COM160
COM161
SC2
SC1
SC0
0000
SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0111”, LA7….LA0=”00000101”(Initial display line 5) DSE=”1”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
5
1100
1101
1110
1111
45
37
29
21
5
5
5
5
5
5
84
5
84
5
84
5
84
5
5
84
84
84
84
84
84
84
84
5
84
5
84
5
84
5
84
44
36
28
20
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
- 93 -
NJU6825
(32-10) Initial display line “5”, 1/80 duty cycle (Common backward scan, DSE=”1”)
SC3
COM0
:
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
:
COM49
:
COM57
:
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
:
COM81
COM82
COM83
COM84
COM85
COM86
COM87
COM88
:
COM96
COM97
COM98
COM99
COM100
COM101
COM102
COM103
COM104
COM105
COM106
COM107
COM108
COM109
COM110
COM111
COM112
COM113
COM114
COM115
COM116
COM117
COM118
COM119
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
COM128
:
COM136
:
COM144
COM145
COM146
:
COM152
:
COM160
COM161
SC2
SC1
SC0
0000
SHIFT=”1”(Common backward scan), DS3, 2, 1, 0=”0111”, LA7….LA0=”00000101”(Initial display line 5) DSE=”1”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1101
1110
1111
44
36
28
20
84
5
84
5
84
5
84
5
84
84
84
84
84
84
84
84
5
5
84
5
84
5
84
5
84
5
5
5
5
5
5
5
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
- 94 -
1100
45
37
29
21
NJU6825
(32-11) Initial display line “5”, 1/16 duty cycle (Common forward scan, DSE=”1”)
SC3
COM0
COM1
COM2
:
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
COM64
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
COM74
COM75
COM76
COM77
COM78
COM79
COM80
COM81
:
COM88
:
COM121
COM122
:
COM130
COM131
COM132
COM133
COM134
COM135
COM136
COM137
COM138
:
COM145
COM146
:
COM153
:
COM160
COM161
SC2
SC1
SC0
0000
SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”1111”, LA7….LA0=”00000101”(Initial display line 5) DSE=”1”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
5
5
5
5
20
20
5
20
5
20
20
5
20
5
20
5
20
5
20
5
20
5
20
20
5
5
20
5
20
5
20
20
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
- 95 -
NJU6825
(32-12) Initial display line “5”, 1/16 duty cycle (Common backward scan, DSE=”1”)
SC3
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
:
COM39
:
COM73
:
COM81
COM82
COM83
COM84
COM85
COM86
COM87
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
COM96
COM97
:
COM104
COM105
COM106
COM107
COM108
COM109
COM110
COM111
COM112
COM113
:
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
COM128
COM129
COM130
COM131
COM132
COM133
COM134
COM135
COM136
COM137
:
COM144
COM145
COM146
COM147
COM148
COM149
COM150
COM151
COM152
:
COM160
COM161
SC2
SC1
SC0
0000
SHIFT=”1”(Common backward scan), DS3, 2, 1, 0=”1111”, LA7….LA0=”00000101”(Initial display line 5) DSE=”1”
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1101
1110
1111
20
20
5
20
5
20
5
5
20
20
5
20
5
20
5
20
5
20
5
20
5
20
20
5
20
5
20
20
5
5
5
5
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line
- 96 -
1100
NJU6825
■ ABSOLUTE MAXIMUM RATINGS
PARAMETER
Supply Voltage (1)
Supply Voltage (2)
Supply Voltage (3)
Supply Voltage (4)
Supply Voltage (5)
Supply Voltage (6)
Input Voltage
Storage Temperature
SYMBOL
VDD
VEE
VOUT
VREG
VLCD
V1, V2, V3, V4
VI
Tstg
CONDITION
VSS=0V
Ta = +25°C
TERMINAL
VDD
VEE
VOUT
VREG
VLCD
V1, V2, V3, V4
*1
RATING
-0.3 to +4.0
-0.3 to +4.0
-0.3 to +19.0
-0.3 to +19.0
-0.3 to +19.0
-0.3 to VLCD + 0.3
-0.3 to VDD + 0.3
-45 to +125
UNIT
V
V
V
V
V
V
V
°C
Note 1) D0 to D15, CSb, RS, RDb, WRb, OSC1, RESb, TEST1, TEST2, terminals.
Note 2) To stabilize the voltage booster operation, decoupling capacitors must be connected between the
VDD and VSS pins and between the VEE and VSSH pins.
!
RECOMMENDED OPERATING CONDITIONS
PARAMETER
Supply Voltage
Operating Voltage
Operating
Temperature
SYMBOL
VDD1
VDD2
VEE
VLCD
VOUT
VREG
VREF
Topr
TERMINAL
VDD
VEE
VLCD
VOUT
VREG
VREF
MIN
1.7
2.4
2.4
5
TYP
2.1
MAX
3.3
3.3
3.3
18.0
18.0
VOUT × 0.9
3.3
UNIT
V
V
V
V
V
V
V
-30
85
°C
NOTE
*1
*2
*3
*4
*5
Note1)
Note2)
Note3)
Note4)
Applies to the condition when the reference voltage generator is not used.
Applies to the condition when the reference voltage generator is used.
Applies to the condition when the voltage booster is used.
The following relationship among the supply voltages must be maintained.
VSS<V4<V3<V2<V1<VLCD<VOUT
Note5) The relationship: VREF<VEE must be maintained.
- 97 -
NJU6825
■ DC CHARACTERISTICS 1
VSS = 0V, VDD = +1.7 to +3.3V, Ta = -30 to +85°C
High level input voltage
Low level input voltage
High level output voltage
Low level output voltage
High level output voltage
Low level output voltage
Input leakage current
Output leakage current
SYM
BOL
VIH
VIL
VOH1
VOL1
VOH2
VOL2
ILI
ILO
IOH = -0.4mA
IOL = 0.4mA
IOH = -0.1mA
IOL = 0.1mA
VI = VSS or VDD
VI = VSS or VDD
Driver ON-resistance
RON1
|∆VON| = 0.5V
ISTB
CSb=VDD, Ta=25°C VDD = 3V
PARAMETER
Stand-by current
Internal oscillation
Frequency
External oscillation
Frequency
fOSC1
fOSC2
fOSC3
fr1
fr2
fr3
CONDITION
TYP
0.8 VDD
0
VDD - 0.4
MAX
VDD
0.2VDD
0.4
VDD - 0.4
-10
-10
1
2
VLCD = 10V
VLCD = 6V
VDD = 3V
Ta = 25°C
Rf=10kΩ
Rf=51kΩ
Rf=390kΩ
N-time booster (N=2 to 7)
RL = 500kΩ (VOUT - VSS)
VDD = 2.5V, 7-time booster
Whole ON pattern
VDD = 2.5V, 7-time booster
Checker pattern
VDD = 3V, 6-time booster
Whole ON pattern
VDD = 3V, 6-time booster
Checker pattern
VDD = 3V, 5-time booster
Whole ON pattern
VDD = 3V, 5-time booster
Checker pattern
VDD = 3V, 4-time booster
Whole ON pattern
VDD = 3V, 4-time booster
Checker pattern
Voltage converter
output voltage
VOUT
Supply current (1)
IDD1
Supply current (2)
IDD2
Supply current (3)
IDD3
Supply current (4)
IDD4
Supply current (5)
IDD5
Supply current (6)
IDD6
Supply current (7)
IDD7
Supply current (8)
IDD8
VBA Operating voltage
VBA
VEE = 2.4 to 3.3V
VREG Operating voltage
VREG
VEE = 2.4 to 3.3V
VREF = 0.9 x VEE
N-time booster (N=2 to 7)
Output Voltage
V2
V3
VD12
VD34
VD24
- 98 -
MIN
625
141
20.5
763
172
25
750
185
27.2
0.4
10
10
2
4
15
900
203
29.5
(N x VEE)
x 0.95
(0.9 VEE)
x 0.98
(VREF x N)
x 0.97
-100
-100
-30
-30
-30
870
1300
1060
1590
760
1140
930
1400
520
780
650
980
360
540
450
680
0.9 VEE
(0.9 VEE)
x 1.02
(VREF x N)
0
0
0
0
0
(VREF x N)
x 1.03
+100
+100
+30
+30
+30
UNIT NOTE
V
V
V
V
V
V
µA
µA
*1
*1
*2
*2
*3
*3
*4
*5
kΩ
*6
µA
*7
*8
*9
*10
kHz
kHz
*11
V
*12
µA
*13
V
*14
V
*15
mV
*16
NJU6825
■ CLOCK and FRAME FREQUENCY
PARAMETER SYMBOL
Internal
clock
fOSC
Display mode
Display duty cycle ratio (1/D) <DSE=0>
1/163 to 1/97
1/81 to 1/57
1/49 to 1/33
1/25 to 1/17
16 Gradation mode
fOSC / (62xD)
fOSC / (62xDx2)
fOSC / (62xDx4)
fOSC / (62xDx8)
Simplified
8 gradation mode
fOSC / (14xD)
fOSC / (14xDx2)
fOSC / (14xDx4)
fOSC / (14xDx8)
B&W mode
fOSC / (2xD)
fOSC / (2xDx2)
fOSC / (2xDx4)
fOSC / (2xDx8)
16 Gradation mode
fCK / (62xD)
fCK / (62xDx2)
fCK / (62xDx4)
fCK / (62xDx8)
Simplified
8 gradation mode
fCK / (14xD)
fCK / (14xDx2)
fCK / (14xDx4)
fCK / (14xDx8)
B&W mode
fCK / (2xD)
fCK / (2xDx2)
fCK / (2xDx4)
fCK / (2xDx8)
NOTE
FLM
External
clock
fCK
- 99 -
NJU6825
APPLIED TERMINALS and CONDITIONS
Note 1)
Note 2)
Note 3)
Note 4)
Note 5)
D0-D15, CSb, RS, RDb, WRb, P/S, SEL68, RESb
D0-D15
CL, FLM, FR, CLK
CSb, RS, SEL68, RDb, WRb, P/S, RESb, OSC1
D0-D15 in the high impedance
Note 6) SEGA0-SEGA127, SEGB0-SEGB127, SEGC0-SEGC127, COM0-COM161
- Defines the resistance between the COM/SEG terminals and each of the power supply terminals
(VLCD, V1, V2, V3 and V4) at the condition of 0.5V deference and 1/9 LCD bias ratio.
Note 7) VDD
- The oscillator is halted, CSb=”1” (disabled), No-load on the COM/SEG drivers
Note 8) OSC
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the variable gradation mode.
Note 9) OSC
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the fixed gradation mode.
Note 10) OSC
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the Black & White mode.
Note 11) VDD=3V, Ta=25°C
Note 12) VOUT
- Applies to the condition when the internal voltage booster, the internal oscillator and internal
power circuits are used.
- VEE=2.4V to 3.3V, EVR= (1,1,1,1,1,1,1), 1/5 to 1/12 LCD bias, 1/163 duty cycle, No-load on
COM/SEG drivers.
- RL=500KΩ between the VOUT and the VSS, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”
Note 13) VDD
- Applies to the condition when using the internal oscillator and internal power circuits, no access
between the LSI and MPU.
- EVR= (1,1,1,1,1,1,1), All pixels turned-on or checkerboard display in gradation mode. No-load on
the COM/SEG drivers.
- VDD=VEE, VREF=0.9VEE, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”, NLIN=”0” 1/163
Duty cycle, Ta=25°C
Note 14) VBA
- Applies to the condition that VBA=VREF and voltage booster N= 1. When DCON=”0”, VOUT=13.5V
input.
Note 15) VREG
- VEE=2.4V to 3.3V, VREF=0.9VEE, VOUT=18V, 1/5 to 1/12 LCD bias ratio, 1/163 duty cycle,
EVR=(1,1,1,1,1,1,1)
- Checkerboard display, No-load on the COM/SEG drivers, the voltage booster N=2 to 7
CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1”, NLIN=”0”
Note 16) VLCD, V1, V2, V3, V4
- VEE=3.0V, VREF=0.9VEE, VOUT=15V, 1/5 to 1/12 LCD Bias, EVR= (1,1,1,1,1,1,1), Display OFF, Noload on the COM/SEG drivers, voltage booster N=5, CA1=CA2=1.0uF, CA3=0.1uF,
DCON=”0”, AMPON=”1”
(1)
(2)
(3)
(4)
- 100 -
VLCD
V1
V2
V3
V4
VSS
VD12: (1)-(2)
VD34: (3)-(4)
VD24: (2)-(4)
NJU6825
■ AC CHARACTERISTICS
# Write operation (80-type MPU)
tAS8
tAH8
CSb
RS
WRb
tWRLW8
tWRHW8
tDS8
tDH8
D0 to D15
tCYC8
PARAMETER
Address hold time
Address setup time
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
Data setup time
Data hold time
PARAMETER
Address hold time
Address setup time
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
Data setup time
Data hold time
SYMBOL
tAH8
tAS8
CONDITION
MIN.
0
0
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
ns
CSb
ns
RS
tCYC8
tWRLW8
tWRHW8
90
35
35
ns
ns
ns
WRb
tDS8
tDH8
30
5
ns
ns
D0 to D15
SYMBOL
tAH8
tAS8
CONDITION
MIN.
0
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
ns
CSb
ns
RS
tCYC8
tWRLW8
tWRHW8
160
70
70
ns
ns
ns
WRb
tDS8
tDH8
40
5
ns
ns
D0 to D15
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)
PARAMETER
Address hold time
Address setup time
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
SYMBOL
tAH8
tAS8
tCYC8
tWRLW8
tWRHW8
CONDITION
MIN.
0
0
MAX.
UNIT
ns
ns
TERMINAL
CSb
RS
180
80
80
ns
ns
ns
WRb
Data setup time
tDS8
70
Data hold time
tDH8
10
Note) Each timing is specified based on 20% and 80% of VDD.
ns
ns
D0 to D15
- 101
NJU6825
#
Read operation (80-type MPU)
tAH8
tAS8
CSb
RS
tWRLR8
RDb
tWRHR8
tRDH8
D0 to D15
tRDD8
tCYC8
PARAMETER
Address hold time
Address setup time
SYMBOL
tAH8
tAS8
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
tCYC8
tWRLR8
tWRHR8
Read Data delay time
Read Data hold time
TRDD8
TRDH8
PARAMETER
Address hold time
Address setup time
SYMBOL
tAH8
tAS8
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
tCYC8
tWRLR8
tWRHR8
Read Data delay time
Read Data hold time
TRDD8
TRDH8
CONDITION
MIN.
0
0
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
ns
CSb
ns
RS
180
80
80
CL=15pF
CONDITION
0
MIN.
0
0
60
0
RDb
ns
ns
D0 to D15
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
ns
CSb
ns
RS
180
80
80
CL=15pF
ns
ns
ns
60
ns
ns
ns
RDb
ns
ns
D0 to D15
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)
PARAMETER
Address hold time
Address setup time
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
SYMBOL
tAH8
tAS8
tCYC8
tWRLR8
tWRHR8
CONDITION
MIN.
0
0
250
120
120
Read Data delay time
tRDD8
CL=15pF
Read Data hold time
tRDH8
0
Note) Each timing is specified based on 20% and 80% of VDD.
- 102 -
MAX.
110
UNIT
ns
ns
TERMINAL
CSb
RS
ns
ns
ns
RDb
ns
ns
D0 to D15
NJU6825
# Write operation (68-type MPU)
tAS6
tAH6
CSb
RS
R/W
(WRb)
tELW6
tEHW6
E
(RDb)
tDS6
tDH6
D0 to D15
tCYC6
PARAMETER
Address hold time
Address setup time
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
Data setup time
Data hold time
PARAMETER
Address hold time
Address setup time
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
Data setup time
Data hold time
SYMBOL
tAH6
tAS6
CONDITION
MIN.
0
0
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
ns
CSb
ns
RS
tCYC6
tELW6
tEHW6
90
35
35
ns
ns
ns
E
tDS6
tDH6
40
5
ns
ns
D0 to D15
SYMBOL
tAH6
tAS6
CONDITION
MIN.
0
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
ns
CSb
ns
RS
tCYC6
tELW6
tEHW6
160
70
70
ns
ns
ns
E
tDS6
tDH6
50
5
ns
ns
D0 to D15
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)
PARAMETER
Address hold time
Address setup time
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
SYMBOL
tAH6
tAS6
tCYC6
tELW6
tEHW6
CONDITION
MIN.
0
0
MAX.
UNIT
ns
ns
TERMINAL
CSb
RS
180
80
80
ns
ns
ns
E
Data setup time
tDS6
70
Data hold time
tDH6
10
Note) Each timing is specified based on 20% and 80% of VDD.
ns
ns
D0 to D15
- 103
NJU6825
# Read operation (68-type MPU)
tAS6
tAH6
CSb
RS
R/W
(WRb)
tELR6
tEHR6
E
(RDb)
tRDH6
D0 to D15
tRDD6
tCYC6
PARAMETER
Address hold time
Address setup time
SYMBOL
tAH6
tAS6
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
tCYC6
tELR6
tEHR6
Read Data delay time
Read Data hold time
tRDD6
tRDH6
PARAMETER
Address hold time
Address setup time
SYMBOL
tAH6
tAS6
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
tCYC6
tELR6
tEHR6
Read Data delay time
Read Data hold time
tRDD6
tRDH6
PARAMETER
Address hold time
Address setup time
SYMBOL
tAH6
tAS6
System cycle time
Enable ”L” level pulse width
Enable ”H” level pulse width
tCYC6
tELR6
tEHR6
Read Data delay time
Read Data hold time
tRDD6
tRDH6
CONDITION
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
ns
CSb
ns
RS
180
80
80
CL=15pF
0
CONDITION
MIN.
0
0
70
CL=15pF
0
CONDITION
MIN.
0
0
70
0
E
ns
ns
D0 to D15
ns
ns
ns
E
ns
ns
D0 to D15
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
ns
CSb
ns
RS
250
120
120
CL=15pF
ns
ns
ns
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
ns
CSb
ns
RS
180
80
80
Note) Each timing is specified based on 20% and 80% of VDD.
- 104 -
MIN.
0
0
110
ns
ns
ns
E
ns
ns
D0 to D15
NJU6825
# Serial interface
CSb
tCSH
tCSS
RS
tASS
SCL
tAHS
tSLW
tSHW
tCYCS
tDSS
tDHS
SDA
PARAMETER
Serial clock cycle
SCL ”H” level pulse width
SCL ”L” level pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CSb – SCL time
CSb hold time
PARAMETER
Serial clock cycle
SCL ”H” level pulse width
SCL ”L” level pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CSb – SCL time
CSb hold time
SYMBOL CONDITION
tCYCS
tSHW
tSLW
tASS
tAHS
tDSS
tDHS
tCSS
tCSH
SYMBOL CONDITION
tCYCS
tSHW
tSLW
tASS
tAHS
tDSS
tDHS
tCSS
tCSH
MIN.
50
20
20
20
20
20
20
20
20
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)
UNIT
MAX.
TERMINAL
ns
ns
SCL
ns
ns
RS
ns
ns
SDA
ns
ns
CSb
ns
MIN.
50
20
20
20
20
20
20
20
20
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)
UNIT
MAX.
TERMINAL
ns
ns
SCL
ns
ns
RS
ns
ns
SDA
ns
ns
CSb
ns
PARAMETER
SYMBOL CONDITION
MIN.
80
Serial clock cycle
tCYCS
35
SCL ”H” level pulse width
tSHW
35
tSLW
SCL ”L” level pulse width
35
Address setup time
tASS
35
Address hold time
tAHS
35
Data setup time
tDSS
35
Data hold time
tDHS
35
CSb – SCL time
tCSS
35
t
CSH
CSb hold time
Note) Each timing is specified based on 20% and 80% of VDD.
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)
UNIT
MAX.
TERMINAL
ns
ns
SCL
ns
ns
RS
ns
ns
SDA
ns
ns
CSb
ns
- 105
NJU6825
# Display control timing
CLK
tDCL
CL
tDFLM
tDFLM
FLM
tFR
FR
Output timing
PARAMETER
FLM delay time
FR delay time
CL delay time
SYMBOL CONDITION
tDFLM
CL=15pF
tFR
tDCL
MIN.
0
0
0
Output timing
PARAMETER
SYMBOL CONDITION
MIN.
FLM delay time
tDFLM
CL=15pF
0
FR delay time
tFR
0
CL delay time
tDCL
0
Note) Each timing is specified based on 20% and 80% of VDD.
- 106 -
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
500
ns
FLM
500
ns
FR
200
ns
CL
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)
MAX.
UNIT
TERMINAL
1000
ns
FLM
1000
ns
FR
200
ns
CL
NJU6825
# Input clock timing
tCKLW
OSC1
PARAMETER
OSC1 “H” level pulse width (1)
OSC1 “L” level pulse width (1)
OSC1 “H” level pulse width (2)
OSC1 “L” level pulse width (2)
OSC1 “H” level pulse width (3)
OSC1 “L” level pulse width (3)
tCKHW
SYMBOL
tCKHW1
tCKLW1
tCKHW2
tCKLW2
tCKHW3
tCKLW3
CONDITION
MIN.
0.555
0.555
2.46
2.46
16.9
16.9
(VDD=1.7 to 3.3V, Ta=-30 to +85°C)
UNIT
MAX.
TERMINAL
OSC1
0.800
µs
∗1
0.800
µs
OSC1
3.54
µs
∗2
3.54
µs
OSC1
24.4
µs
∗3
24.4
µs
Note) Each timing is specified based on 20% and 80% of VDD.
Note 1) Applied to the variable gradation mode / MON=”0”,PWM=”0”
Note 2) Applied to the fixed gradation mode / MON=”0”,PWM=”1”
Note 3) Applied to the B&W mode / MON=”1”
- 107
NJU6825
# Reset input timing
tRW
RESb
tR
Internal circuit
status
PARAMETER
Reset time
RESb “L” level pulse width
PARAMETER
Reset time
RESb “L” level pulse width
SYMBOL CONDITION
MIN.
tR
tRW
SYMBOL CONDITION
MIN.
RESb
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)
UNIT
MAX.
Terminal
1.5
10.0
µs
µs
10.0
tR
tRW
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)
UNIT
MAX.
Terminal
1.0
Note) Each timing is specified based on 20% and 80% of VDD.
- 108 -
End of reset
During reset
µs
µs
RESb
NJU6825
# Typical characteristic
PARAMETER
Basic delay time of gate
SYMBOL
Ta=+25°C, VSS=0V, VDD=3.0V
MIN
TYP
10
MAX
UNIT
ns
# Input output terminal type
(a) Input circuit
VDD
Terminals:
I
CSb, RS, RDb, WRb, SEL68,
P/S, RESb
Input signal
VSS(0V)
(b) Output circuit
Terminals:
VDD
FLM, CL, FR, CLK
Output control signal
O
Output signal
VSS(0V)
(c) Input/Output circuit
VDD
Terminals:
I/O
D0 to D15
Input signal
VSS(0V)
VSS(0V)
Input control signal
VDD
Output control signal
Output signal
VSS(0V)
- 109
NJU6825
(d) Display output circuit
VLCD
VLCD
VLCD
V1/V2
Output control
signal 1
Output control signal 2
Output control
signal 3
Output control signal 4
O
VSS(0V)
Terminals:
- 110 -
V3/V4
SEGA0 to SEGA127
SEGB0 to SEGB127
SEGC0 to SEGC127
COM0 to COM161
VSS(0V)
VSS(0V)
NJU6825
■ APPLICATION CIRCUIT EXAMPLES
(1) MPU Connections
80-type MPU interface
1.7V to 3.3V
VCC
A0
A1 to A7
(80-type MPU) IORQb
D0 to D7
RS
7
8
RDb
WRb
GND
Decoder
RESb
VDD
CSb
D0 to D7
RDb
WRb
RESb V
SS
RESET
68-type MPU interface
1.7V to 3.3V
VCC
A0
A1 to A15
(68-type MPU) VMA
RS
15
D0 to D7
8
E
R/W
GND
Decoder
RESb
VDD
CSb
D0 to D7
RDb(E)
WRb(R/W)
RESb
VSS
RESET
Serial interface
1.7V to 3.3V
VCC
(MPU)
A0
A1 to A7
GND
RS
7
Decoder
VDD
CSb
PORT1
PORT2
SDA
SCL
RESb
RESb
VSS
RESET
- 111
NJU6825
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
- 112 -