APTGT600A60G Phase leg Trench + Field Stop IGBT® Power Module Application • Welding converters • Switched Mode Power Supplies • Uninterruptible Power Supplies • Motor control VBUS Q1 G1 E1 OUT Q2 G2 E2 0/VBUS G1 VBUS 0/VBUS VCES = 600V IC = 600A* @ Tc = 80°C Features • Trench + Field Stop IGBT® Technology - Low voltage drop - Low tail current - Switching frequency up to 20 kHz - Soft recovery parallel diodes - Low diode VF - Low leakage current - Avalanche energy rated - RBSOA and SCSOA rated • Kelvin emitter for easy drive • Very low stray inductance - Symmetrical design - M5 power connectors • High level of integration OUT E1 Benefits • Stable temperature behavior • Very rugged • Direct mounting to heatsink (isolated package) • Low junction to case thermal resistance • Easy paralleling due to positive TC of VCEsat • Low profile • RoHS Compliant E2 G2 Absolute maximum ratings Continuous Collector Current ICM VGE PD Pulsed Collector Current Gate – Emitter Voltage Maximum Power Dissipation TC = 25°C Reverse Bias Safe Operating Area Tj = 150°C 1200A @ 550V TC = 25°C TC = 80°C TC = 25°C Unit V A December, 2007 IC Max ratings 600 700 * 600 * 800 ±20 2300 RBSOA Parameter Collector - Emitter Breakdown Voltage V W * Specification of IGBT device but output current must be limited to 500A to not exceed a delta of temperature greater than 100°C for the connectors. These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com www.microsemi.com 1-5 APTGT600A60G – Rev 2 Symbol VCES APTGT600A60G All ratings @ Tj = 25°C unless otherwise specified Electrical Characteristics Symbol Characteristic ICES Zero Gate Voltage Collector Current VCE(sat) Collector Emitter Saturation Voltage VGE(th) IGES Gate Threshold Voltage Gate – Emitter Leakage Current Test Conditions Min VGE = 0V, VCE = 600V Tj = 25°C VGE =15V IC = 600A Tj = 150°C VGE = VCE , IC = 2mA VGE = 20V, VCE = 0V 5.0 Typ 1.4 1.5 5.8 Max Unit 750 1.8 µA 6.5 800 V nA Max Unit V Dynamic Characteristics Symbol Cies Coes Cres Td(on) Tr Td(off) Tf Td(on) Tr Td(off) Characteristic Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-on Delay Time Rise Time Turn-off Delay Time Test Conditions VGE = 0V VCE = 25V f = 1MHz Inductive Switching (25°C) VGE = ±15V VBus = 300V IC = 600A RG = 1Ω Inductive Switching (150°C) VGE = ±15V VBus = 300V IC = 600A RG = 1Ω Tj = 25°C VGE = ±15V Tj = 150°C VBus = 300V IC = 600A Tj = 25°C RG = 1Ω Tj = 150°C Fall Time Turn-on Delay Time Rise Time Turn-off Delay Time Tf Fall Time Eon Turn on Energy Eoff Turn off Energy Min Typ 49 3.1 1.5 130 55 250 nF ns 60 145 60 320 ns 80 3 5.5 17 21 mJ mJ Reverse diode ratings and characteristics Maximum Reverse Leakage Current IF DC Forward Current VF Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge VR=600V IF = 600A VGE = 0V IF = 600A VR = 300V di/dt =5000A/µs Er Reverse Recovery Energy www.microsemi.com Min 600 Typ Tj = 25°C Tj = 150°C Tc = 80°C Tj = 25°C Tj = 150°C Tj = 25°C Tj = 150°C Tj = 25°C 600 1.5 1.4 120 210 27 Tj = 150°C Tj = 25°C Tj = 150°C 57 6.9 14.1 Max 350 550 Unit V µA A 1.9 V ns December, 2007 IRM Test Conditions µC mJ 2-5 APTGT600A60G – Rev 2 Symbol Characteristic VRRM Maximum Peak Repetitive Reverse Voltage APTGT600A60G Thermal and package characteristics Symbol Characteristic Min IGBT Diode RthJC Junction to Case Thermal Resistance VISOL TJ TSTG TC RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz Operating junction temperature range Storage Temperature Range Operating Case Temperature Torque Mounting torque Wt Package Weight To heatsink For terminals M6 M5 2500 -40 -40 -40 3 2 Typ Max 0.065 0.11 Unit °C/W V 175 125 100 5 3.5 280 °C N.m g See application note APT0601 - Mounting Instructions for SP6 Power Modules on www.microsemi.com www.microsemi.com 3-5 APTGT600A60G – Rev 2 December, 2007 SP6 Package outline (dimensions in mm) APTGT600A60G Typical Performance Curve Output Characteristics (VGE=15V) Output Characteristics 1200 1200 1000 VGE=13V VGE=19V TJ=125°C 800 800 TJ=150°C IC (A) IC (A) TJ = 150°C TJ=25°C 1000 600 VGE=15V 600 VGE=9V 400 400 200 200 TJ=25°C 0 0 0 0.5 1 1.5 VCE (V) 2 0 2.5 40 TJ=25°C 30 E (mJ) IC (A) 800 TJ=125°C 400 TJ=150°C 25 Eoff Er 15 Eon 5 6 7 8 9 10 0 11 200 400 600 800 1000 1200 IC (A) VGE (V) Switching Energy Losses vs Gate Resistance Reverse Bias Safe Operating Area 1400 VCE = 300V VGE =15V IC = 600A TJ = 150°C Eoff 1200 Eon 1000 IC (A) E (mJ) 3.5 0 5 30 3 20 0 40 2.5 10 TJ=25°C 200 1.5 2 VCE (V) VCE = 300V VGE = 15V RG = 1Ω TJ = 150°C 35 1000 600 1 Energy losses vs Collector Current Transfert Characteristics 1200 0.5 20 10 800 600 400 Er VGE=15V TJ=150°C RG=1Ω 200 Eon 0 0 0 1 2 3 4 5 Gate Resistance (ohms) 6 0 100 200 300 400 500 600 700 VCE (V) maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration 0.9 0.05 0.7 0.04 0.5 0.03 IGBT December, 2007 0.06 0.3 0.02 0.01 0.1 0.05 0 0.00001 Single Pulse 0.0001 0.001 0.01 0.1 1 10 Rectangular Pulse Duration in Seconds www.microsemi.com 4-5 APTGT600A60G – Rev 2 Thermal Impedance (°C/W) 0.07 APTGT600A60G Forward Characteristic of diode 1200 100 VCE=300V D=50% RG=1Ω TJ=150°C ZVS 80 ZCS 1000 800 Tc=85°C IF (A) Fmax, Operating Frequency (kHz) Operating Frequency vs Collector Current 120 60 600 TJ=125°C 400 40 Hard switching 20 TJ=150°C TJ=25°C 200 0 0 0 200 400 600 IC (A) 800 0 1000 0.4 0.8 1.2 VF (V) 1.6 2 maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.12 0.1 0.08 0.06 0.04 0.02 Diode 0.9 0.7 0.5 0.3 0.1 0.05 0 0.00001 Single Pulse 0.0001 0.001 0.01 0.1 1 10 December, 2007 Rectangular Pulse Duration in Seconds Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved. www.microsemi.com 5-5 APTGT600A60G – Rev 2 Microsemi reserves the right to change, without notice, the specifications and information contained herein