IRFR/U3709Z Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use HEXFET® Power MOSFET VDSS RDS(on) max 6.5m: 30V Benefits l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current D-Pak IRFR3709Z Qg 17nC I-Pak IRFU3709Z Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage Parameter 30 V VGS Gate-to-Source Voltage ± 20 f f ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 86 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 61 IDM Pulsed Drain Current 340 PD @TC = 25°C Maximum Power Dissipation 79 PD @TC = 100°C Maximum Power Dissipation 39 TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range c A W 0.53 -55 to + 175 Soldering Temperature, for 10 seconds W/°C °C 300 (1.6mm from case) Thermal Resistance Parameter RθJC 1 / 11 RθJA Junction-to-Case Junction-to-Ambient (PCB Mount) RθJA Junction-to-Ambient g Typ. Max. Units ––– 1.9 °C/W ––– 50 ––– 110 www.freescale.net.cn IRFR/U3709Z Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 30 ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance V ––– ––– 22 ––– ––– 5.2 6.5 mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A ––– 6.5 8.2 VGS = 4.5V, ID = 12A VGS(th) Gate Threshold Voltage 1.35 1.80 2.25 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.6 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 51 ––– ––– IGSS gfs Qg Conditions ––– VGS = 0V, ID = 250µA e e VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 150°C nA VGS = 20V VGS = -20V S VDS = 15V, ID = 12A Total Gate Charge ––– 17 26 Qgs1 Pre-Vth Gate-to-Source Charge ––– 4.7 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.6 ––– Qgd Gate-to-Drain Charge ––– 5.7 ––– ID = 12A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 5.0 ––– See Fig. 16 Qsw ––– 7.3 ––– Qoss Output Charge ––– 10 ––– td(on) Turn-On Delay Time ––– 12 ––– VDD = 16V, VGS = 4.5V tr Rise Time ––– 12 ––– ID = 12A td(off) Turn-Off Delay Time ––– 15 ––– tf Fall Time ––– 3.9 ––– Ciss Input Capacitance ––– 2330 ––– Coss Output Capacitance ––– 460 ––– Crss Reverse Transfer Capacitance ––– 230 ––– VDS = 15V nC nC ns VGS = 4.5V VDS = 16V, VGS = 0V e Clamped Inductive Load VGS = 0V pF VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy c Typ. ––– d c Max. 100 Units mJ ––– 12 A ––– 7.9 mJ Diode Characteristics Parameter 2 / 11 Min. Typ. Max. Units f Conditions IS Continuous Source Current ––– ––– 86 ISM (Body Diode) Pulsed Source Current ––– ––– 340 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V trr Reverse Recovery Time ––– 29 44 ns Qrr Reverse Recovery Charge ––– 25 37 nC ton Forward Turn-On Time c MOSFET symbol A D G S e TJ = 25°C, IF = 12A, VDD = 15V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.freescale.net.cn IRFR/U3709Z 10000 10000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.25V 10 1 2.25V 0.1 1000 BOTTOM 100 VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.25V 10 2.25V 1 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 0.01 0.1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 10 Fig 2. Typical Output Characteristics 1000 100 T J = 175°C 10 T J = 25°C 1 VDS = 15V 20µs PULSE WIDTH ID = 30A VGS = 10V 1.5 1.0 0.5 0.1 0 1 2 3 4 5 6 7 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 3 / 11 1 VDS, Drain-to-Source Voltage (V) 8 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature www.freescale.net.cn IRFR/U3709Z 100000 VGS, Gate-to-Source Voltage (V) ID= 12A C oss = C ds + C gd 10000 C, Capacitance(pF) 6.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Ciss 1000 Coss Crss 100 VDS= 24V VDS= 15V 5.0 4.0 3.0 2.0 1.0 10 0.0 1 10 100 0 VDS, Drain-to-Source Voltage (V) 5 10 15 20 25 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175°C 100 10 T J = 25°C 1 100µsec 10 1msec Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 / 11 10msec 1 2.5 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.freescale.net.cn IRFR/U3709Z 100 2.5 VGS(th) Gate threshold Voltage (V) 90 Limited By Package ID, Drain Current (A) 80 70 60 50 40 30 20 2.0 1.5 ID = 250µA 1.0 0.5 10 0.0 0 25 50 75 100 125 150 -75 175 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci= τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τi (sec) 0.810 0.000260 0.640 0.001697 0.451 0.021259 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 5 / 11 www.freescale.net.cn IRFR/U3709Z 15V D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) DRIVER L VDS 450 ID 6.6A 8.4A BOTTOM 12A 400 TOP 350 300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12c. Maximum Avalanche Energy vs. Drain Current LD I AS VDS Fig 12b. Unclamped Inductive Waveforms + VDD D.U.T Current Regulator Same Type as D.U.T. VGS Pulse Width < 1µs Duty Factor < 0.1% 50KΩ 12V .2µF .3µF Fig 14a. Switching Time Test Circuit D.U.T. + V - DS VDS 90% VGS 3mA 10% IG ID Current Sampling Resistors Fig 13. Gate Charge Test Circuit VGS td(on) tr td(off) tf Fig 14b. Switching Time Waveforms 6 / 11 www.freescale.net.cn IRFR/U3709Z D.U.T Driver Gate Drive + + P.W. - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period VDD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform 7 / 11 www.freescale.net.cn IRFR/U3709Z Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Synchronous FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. The power loss equation for Q2 is approximated by; * Ploss = Pconduction + Pdrive + Poutput ( 2 Ploss = Irms × Rds(on) ) Power losses in the control switch Q1 are given by; + (Qg × Vg × f ) Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput Q + oss × Vin × f + (Qrr × Vin × f ) 2 This can be expanded and approximated by; *dissipated primarily in Q1. Ploss = (Irms × Rds(on ) ) 2 Qgs 2 Qgd +I× × Vin × f + I × × Vin × ig ig f + (Qg × Vg × f ) + Qoss × Vin × f 2 This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitances Cds and Cdg when multiplied by the power supply input buss voltage. For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Qoss Characteristic 8 / 11 www.freescale.net.cn IRFR/U3709Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.4mH, RG = 25Ω, IAS = 12A. Pulse width ≤ 400µs; duty cycle ≤ 2%. 11 / 11 Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 30A. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. www.freescale.net.cn