IRF IRF8113TRPBF

PD - 94637B
IRF8113
HEXFET® Power MOSFET
Applications
l Synchronous MOSFET for Notebook
Processor Power
l Synchronous Rectifier MOSFET for
Isolated DC-DC Converters in
Networking Systems
Benefits
l Very Low RDS(on) at 4.5V VGS
l Low Gate Charge
l Fully Characterized Avalanche Voltage
and Current
l 100% Tested for RG
VDSS
RDS(on) max
Qg Typ.
30V 5.6m:@VGS = 10V
24nC
A
A
D
S
1
8
S
2
7
D
S
3
6
D
G
4
5
D
SO-8
Top View
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
Parameter
30
V
VGS
Gate-to-Source Voltage
± 20
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
17.2
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
13.8
IDM
Pulsed Drain Current
135
f
f
c
PD @TA = 25°C
Power Dissipation
PD @TA = 70°C
Power Dissipation
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
A
W
2.5
1.6
0.02
-55 to + 150
W/°C
°C
Thermal Resistance
Parameter
RθJL
RθJA
g
Junction-to-Ambient fg
Junction-to-Drain Lead
Typ.
Max.
Units
–––
20
°C/W
–––
50
Notes  through … are on page 10
www.irf.com
1
6/30/05
IRF8113
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.024
–––
V/°C Reference to 25°C, ID = 1mA
RDS(on)
Static Drain-to-Source On-Resistance
mΩ
–––
4.7
5.6
–––
5.8
6.8
V
Conditions
BVDSS
VGS = 10V, ID = 17.2A
VGS = 4.5V, ID = 13.8A
VGS(th)
Gate Threshold Voltage
1.5
–––
2.2
V
∆VGS(th)
Gate Threshold Voltage Coefficient
–––
- 5.4
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
73
–––
–––
Qg
IGSS
VGS = 0V, ID = 250µA
e
e
VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 15V, ID = 13.3A
Total Gate Charge
–––
24
36
Qgs1
Pre-Vth Gate-to-Source Charge
–––
6.2
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
2.0
–––
Qgd
Gate-to-Drain Charge
–––
8.5
–––
ID = 13.3A
Qgodr
Gate Charge Overdrive
–––
7.3
–––
See Fig. 16
Qsw
Switch Charge (Qgs2 + Qgd)
–––
10.5
–––
Qoss
Output Charge
–––
10
–––
nC
RG
Gate Resistance
–––
0.8
1.5
Ω
td(on)
Turn-On Delay Time
–––
13
–––
tr
Rise Time
–––
8.9
–––
td(off)
Turn-Off Delay Time
–––
17
–––
tf
Fall Time
–––
3.5
–––
Ciss
Input Capacitance
–––
2910
–––
Coss
Output Capacitance
–––
600
–––
Crss
Reverse Transfer Capacitance
–––
250
–––
VDS = 15V
nC
VGS = 4.5V
VDS = 10V, VGS = 0V
VDD = 15V, VGS = 4.5V
e
ID = 13.3A
ns
Clamped Inductive Load
pF
VDS = 15V
VGS = 0V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
Max.
Units
–––
48
mJ
–––
13.3
A
Diode Characteristics
Parameter
IS
Continuous Source Current
Min. Typ. Max. Units
–––
–––
3.1
(Body Diode)
ISM
Pulsed Source Current
c
MOSFET symbol
A
–––
–––
135
Conditions
showing the
integral reverse
(Body Diode)
VSD
Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 13.3A, VGS = 0V
trr
Reverse Recovery Time
–––
34
51
ns
TJ = 25°C, IF = 13.3A, VDD = 10V
Qrr
Reverse Recovery Charge
–––
21
32
nC
di/dt = 100A/µs
2
e
e
www.irf.com
IRF8113
1000
1000
VGS
10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
BOTTOM 2.5V
100
10
2.5V
20µs PULSE WIDTH
Tj = 25°C
1
100
2.5V
10
20µs PULSE WIDTH
Tj = 150°C
1
0.01
0.1
1
10
100
0.01
VDS, Drain-to-Source Voltage (V)
1
10
100
Fig 2. Typical Output Characteristics
1000
2.0
T J = 150°C
T J = 25°C
10
VDS = 15V
20µs PULSE WIDTH
1
2.5
3.0
3.5
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
4.0
ID = 16.6A
VGS = 10V
1.5
(Normalized)
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (Α)
0.1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
VGS
10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
BOTTOM 2.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF8113
100000
12
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
VGS , Gate-to-Source Voltage (V)
ID= 13.3A
C, Capacitance (pF)
Coss = Cds + Cgd
10000
Ciss
1000
Coss
Crss
8
6
4
2
0
100
1
10
0
100
20
30
40
50
60
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
10
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100.0
T J = 150°C
10.0
1.0
T J = 25°C
1msec
1
0.1
0.1
0.2
0.4
0.6
0.8
1.0
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
1.2
100µsec
10
VGS = 0V
4
VDS= 24V
VDS= 15V
10
10msec
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
1.0
10.0
100.0
1000.0
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF8113
18
2.2
VGS(th) Gate threshold Voltage (V)
16
ID , Drain Current (A)
14
12
10
8
6
4
2
0
2.0
1.8
ID = 250µA
1.6
1.4
1.2
1.0
0.8
25
50
75
100
125
150
-75
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T J , Junction Temperature (°C)
Fig 10. Threshold Voltage Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
Thermal Response ( Z thJA )
100
10
D = 0.50
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τC
τ
τ3
τ2
Ci= τi/Ri
Ci i/Ri
0.01
Ri (°C/W)
R4
R4
τ3
τ4
τ4
τi (sec)
0.924
0.000228
13.395
0.1728
22.046
1.5543
14.911
22.5
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF8113
D.U.T
RG
VGS
20V
DRIVER
L
VDS
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
EAS, Single Pulse Avalanche Energy (mJ)
200
15V
ID
7.3A
8.2A
BOTTOM 13.3A
TOP
160
120
80
40
0
tp
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
LD
VDS
I AS
Fig 12b. Unclamped Inductive Waveforms
+
VDD D.U.T
VGS
Current Regulator
Same Type as D.U.T.
Pulse Width < 1µs
Duty Factor < 0.1%
50KΩ
12V
.2µF
Fig 14a. Switching Time Test Circuit
.3µF
D.U.T.
+
V
- DS
VDS
90%
VGS
3mA
10%
IG
ID
Current Sampling Resistors
Fig 13. Gate Charge Test Circuit
6
VGS
td(on)
tr
td(off)
tf
Fig 14b. Switching Time Waveforms
www.irf.com
IRF8113
D.U.T
Driver Gate Drive
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
+
VDD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 16. Gate Charge Waveform
www.irf.com
7
IRF8113
Power MOSFET Selection for Non-Isolated DC/DC Converters
Control FET
Synchronous FET
Special attention has been given to the power losses
in the switching elements of the circuit - Q1 and Q2.
Power losses in the high side switch Q1, also called
the Control FET, are impacted by the Rds(on) of the
MOSFET, but these conduction losses are only about
one half of the total losses.
The power loss equation for Q2 is approximated
by;
*
Ploss = Pconduction + Pdrive + Poutput
(
2
Ploss = Irms × Rds(on)
)
Power losses in the control switch Q1 are given
by;
+ (Qg × Vg × f )
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput
⎛Q
⎞
+ ⎜ oss × Vin × f + (Qrr × Vin × f )
⎝ 2
⎠
This can be expanded and approximated by;
Ploss = (Irms × Rds(on ) )
2
⎛
⎞ ⎛
Qgs 2
⎞
Qgd
+⎜I ×
× Vin × f ⎟ + ⎜ I ×
× Vin × f ⎟
ig
ig
⎝
⎠ ⎝
⎠
+ (Qg × Vg × f )
+
⎛ Qoss
× Vin × f ⎞
⎝ 2
⎠
This simplified loss equation includes the terms Qgs2
and Qoss which are new to Power MOSFET data sheets.
Qgs2 is a sub element of traditional gate-source
charge that is included in all MOSFET data sheets.
The importance of splitting this gate-source charge
into two sub elements, Qgs1 and Qgs2, can be seen from
Fig 16.
Qgs2 indicates the charge that must be supplied by
the gate driver between the time that the threshold
voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in
reducing switching losses in Q1.
Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the
parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by
the power supply input buss voltage.
8
*dissipated primarily in Q1.
For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the
MOSFET must still be turned on and off by the control IC so the gate drive losses become much more
significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that
are transfered to Q1 and increase the dissipation in
that device. Thirdly, gate charge will impact the
MOSFETs’ susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node
of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is
a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce
a voltage spike on the gate that is sufficient to turn
the MOSFET on, resulting in shoot-through current .
The ratio of Qgd/Qgs1 must be minimized to reduce the
potential for Cdv/dt turn on.
Figure A: Qoss Characteristic
www.irf.com
IRF8113
SO-8 Package Details
D
DIM
B
8
6
7
6
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BAS IC
1.27 BAS IC
e1
A
5
H
E
1
6X
2
3
0.25 [.010]
4
A
e
e1
0.25 [.010]
MAX
.025 BAS IC
0.635 BAS IC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
A
C
A1
8X b
MILLIMETERS
MAX
5
A
INCHES
MIN
y
0.10 [.004]
8X L
8X c
7
C A B
FOOTPRINT
NOT ES :
1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994.
8X 0.72 [.028]
2. CONT ROLLING DIMENS ION: MILLIMET ER
3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ].
4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA.
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROTRUS IONS NOT T O EXCEED 0.15 [.006].
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROTRUS IONS NOT T O EXCEED 0.25 [.010].
6.46 [.255]
7 DIMENS ION IS THE LENGT H OF LEAD FOR S OLDERING TO
A S UBS T RAT E.
3X 1.27 [.050]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF7101 (MOS FET )
INT ERNAT IONAL
RECT IFIER
LOGO
XXXX
F7101
DAT E CODE (YWW)
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
Y = LAS T DIGIT OF T HE YEAR
WW = WEEK
A = ASS EMBLY S IT E CODE
LOT CODE
PART NUMBER
www.irf.com
9
IRF8113
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.54mH
RG = 25Ω, IAS = 13.3A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board
… Rθ is measured at TJ approximately 90°C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.6/05
10
www.irf.com