MICROSEMI APT36GA60S

APT36GA60B
APT36GA60S
600V
High Speed PT IGBT
APT36GA60S
TO
-2
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
47
D3PAK
through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
APT36GA60B
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
Single die IGBT
®
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
600
V
IC1
Continuous Collector Current @ TC = 25°C
65
IC2
Continuous Collector Current @ TC = 100°C
36
ICM
Pulsed Collector Current
109
VGE
Gate-Emitter Voltage
PD
Total Power Dissipation @ TC = 25°C
Vces
Parameter
1
2
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
Symbol
VBR(CES)
VGE(th)
Gate Emitter Threshold Voltage
°C
300
TJ = 25°C unless otherwise specified
Collector-Emitter Breakdown Voltage
Collector-Emitter On Voltage
V
W
-55 to 150
Parameter
VCE(on)
±30
290
109A @ 600V
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
A
Test Conditions
Min
VGE = 0V, IC = 1.0mA
600
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
2.5
VGE = 15V,
TJ = 25°C
2.0
IC = 20A
TJ = 125°C
1.9
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
V
6
VCE = 600V,
TJ = 25°C
250
VGE = 0V
TJ = 125°C
2500
VGS = ±30V
Unit
μA
±100
nA
Thermal and Mechanical Characteristics
Symbol
RθJC
WT
Torque
Characteristic
Min
Typ
Max
Unit
Junction to Case Thermal Resistance
-
-
0.43
°C/W
Package Weight
-
5.9
Mounting Torque (TO-247 Package), 4-40 or M3 screw
Microsemi Website - http://www.microsemi.com
-
g
10
in·lbf
052-6327 Rev B 12 - 2008
Symbol
Dynamic Characteristics
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
Gate- Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
APT36GA60B
TJ = 25°C unless otherwise specified
Test Conditions
Min
Typ
Capacitance
2880
VGE = 0V, VCE = 25V
226
f = 1MHz
328
Gate Charge
102
VGE = 15V
18
IC = 20A
L= 100uH, VCE = 600V
Inductive Switching (25°C)
109
A
16
VCC = 400V
14
Turn-Off Delay Time
VGE = 15V
122
IC = 20A
77
Eon2
Turn-On Switching Energy
RG = 10Ω4
307
Eoff6
Turn-Off Switching Energy
TJ = +25°C
254
td(on
Turn-On Delay Time
Inductive Switching (125°C)
14
tr
td(off)
Current Rise Time
VCC = 400V
15
Turn-Off Delay Time
VGE = 15V
149
IC = 20A
113
Eon2
Turn-On Switching Energy
RG = 10Ω4
508
Eoff6
Turn-Off Switching Energy
TJ = +125°C
439
tf
Current Fall Time
pF
34
Current Rise Time
Current Fall Time
Unit
nC
VCE= 300V
TJ = 150°C, RG = 10Ω4, VGE = 15V,
Max
ns
μJ
ns
μJ
052-6327 Rev B 12 - 2008
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
TJ= 125°C
30
TJ= 25°C
TJ= 150°C
20
10
250
200
150
100
TJ= 25°C
50
TJ= -55°C
TJ= 125°C
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
0
12V
160
11V
120
2
4
6
8
10
12
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
3
IC = 40A
IC = 20A
2
IC = 10A
1
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
0.80
0.75
-.50 -.25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
J
VCE = 120V
VCE = 300V
VCE = 480V
8
6
4
2
0
0 10
20 30 40 50 60 70 80
GATE CHARGE (nC)
FIGURE 4, Gate charge
90 100
5
4
IC = 40A
3
IC = 20A
2
IC = 10A
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
70
0.85
I = 20A
C
T = 25°C
10
1.05
0.90
0
4
8
12 16 20
24 28 32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
12
80
0.95
8V
6V
14
1.10
1.00
9V
40
16
14
10V
80
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
0
200
VGE, GATE-TO-EMITTER VOLTAGE (V)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
13V
240
0
0.5 1
1.5
2
2.5 3
3.5 4
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
300
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
IC, COLLECTOR CURRENT (A)
TJ= 55°C
0
IC, COLLECTOR CURRENT (A)
= 15V
IC, DC COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
GE
15V
0
25
60
50
40
30
20
10
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6327 Rev B 12 - 2008
V
APT36GA60B_S
280
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
40
Typical Performance Curves
APT36GA60B_S
200
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
20
18
16
VGE = 15V
14
VCE = 400V
TJ = 25°C, or 125°C
RG = 10Ω
L = 100μH
12
10
160
VGE =15V,TJ=125°C
120
40
0
5
10
15 20 25 30
35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
150
RG = 10Ω, L = 100μH, VCE = 400V
35
VCE = 400V
RG = 10Ω
L = 100μH
0
0
5
10 15 20
25 30 35
40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
40
VGE =15V,TJ=25°C
80
RG = 10Ω, L = 100μH, VCE = 400V
125
25
tr, FALL TIME (ns)
tr, RISE TIME (ns)
30
20
15
10
TJ = 25 or 125°C,VGE = 15V
0
TJ = 25°C, VGE = 15V
50
0
5
10
15
20 25 30
35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1200
V
= 400V
CE
V
= +15V
GE
R =10Ω
G
1250
1000
TJ = 125°C
750
500
TJ = 25°C
250
0
EOFF, TURN OFF ENERGY LOSS (μJ)
FIGURE 11, Current Rise Time vs Collector Current
1500
Eon2, TURN ON ENERGY LOSS (μJ)
75
0
0ICE, COLLECTOR-TO-EMITTER
5 10 15 20 25 30
35 40
CURRENT
(A)
0
J
1600
Eon2,40A
1400
Eoff,40A
1200
1000
800
Eon2,20A
600
Eoff,20A
400
0
Eon2,10A
Eoff,10A
200
0
800
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
TJ = 125°C
600
400
200
1600
V
= 400V
CE
V
= +15V
GE
T = 125°C
1800
G
1000
TJ = 25°C
0
5
10 15
20 25 30
35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
2000
V
= 400V
CE
V
= +15V
GE
R = 10Ω
0
5
10 15 20 25
30 35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
TJ = 125°C, VGE = 15V
25
5
052-6327 Rev B 12 - 2008
100
1400
V
= 400V
CE
V
= +15V
GE
R = 10Ω
G
Eon2,40A
1200
1000
800
600
400
200
0
Eoff,40A
Eon2,20A
Eoff,20A
Eon2,10A
Eoff,10A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT36GA60B_S
10000
200
100
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
1000
Coes
100
Cres
10
0
100
200
300
400
500
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
10
1
0.1
1
10
100
1000
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0.45
D = 0.9
0.40
0.35
0.7
0.30
0.25
0.5
Note:
PDM
0.20
0.3
0.15
t2
0.10
t
0.1
0.05
0
0.05
SINGLE PULSE
10-5
10
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10 -3
10 -2
10 -1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
-4
TJ (°C)
Dissipated Power
(Watts)
t1
1.0
TC (°C)
.1853
.2443
.0069
.239
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
0.50
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
052-6327 Rev B 12 - 2008
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
APT36GA60B_S
10%
Gate Voltage
TJ = 125°C
td(on)
90%
APT30DQ120
tr
IC
V CC
V CE
Collector Current
10%
5%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
Figure 21, Turn-on Switching Waveforms and Definitions
TJ = 125°C
90%
td(off)
Gate Voltage
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 22, Turn-off Switching Waveforms and Definitions
D3PAK Package Outline
TO-247 (B) Package Outline
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
(Heat Sink)
e3 100% Sn Plated
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
052-6327 Rev B 12 - 2008
13.41 (.528)
13.51(.532)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Gate
Collector
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Drain)
and Leads
are Plated
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.