APT100GT120JR 1200V, 100A, VCE(ON) = 3.2V Typical Thunderbolt IGBT® The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using NonPunch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed. E E C G Features S • Low Forward Voltage Drop • RBSOA and SCSOA Rated • Low Tail Current • High Frequency Switching to 50KHz • Integrated Gate Resistor • Ultra Low Leakage Current OT 22 7 "UL Recognized" ISOTOP ® file # E145592 Low EMI, High Reliability • RoHS Compliant Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is made with two parallel IGBT die. It is intended for switch-mode operation. It is not suitable for linear mode operation. All Ratings: TC = 25°C unless otherwise specified. Maximum Ratings Symbol Parameter Ratings VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 IC1 Continuous Collector Current @ TC = 25°C 123 IC2 Continuous Collector Current @ TC = 100°C 67 ICM SSOA PD TJ, TSTG TL Pulsed Collector Current Unit Volts Amps 200 1 Switching Safe Operating Area @ TJ = 150°C 200A @ 1200V Total Power Dissipation 570 Operating and Storage Junction Temperature Range Watts -55 to 150 Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec. °C 300 Static Electrical Characteristics Min Typ Max 1200 - - Unit V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA) VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 4mA, Tj = 25°C) 4.5 5.5 6.5 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C) 2.7 3.2 3.7 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C) - 4.0 - Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2 - - 100 - - TBD Gate-Emitter Leakage Current (VGE = ±20V) - - 600 nA Integrated Gate Resistor - 5 - Ω VCE(ON) ICES IGES RG(int) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Volts μA 052-6288 Rev A 10-2007 Symbol Characteristic / Test Conditions Dynamic Characteristics Symbol APT100GT120JR Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage VGE = 0V, VCE = 25V f = 1MHz Gate Charge Min Typ Max - 6700 - - 6530 - - 4380 - - 10 - Qg Total Gate Charge VGE = 15V - 685 - Qge Gate-Emitter Charge VCE= 600V - 75 - Gate-Collector Charge IC = 100A - 400 - Qgc SSOA td(on) tr td(off) tf Eon1 Switching Safe Operating Area TJ = 150°C, RG = 1.0Ω , VGE = 15V, L = 100μH, VCE= 1200V Turn-On Delay Time - 50 - Inductive Switching (25°C) - 100 - Turn-Off Delay Time VCC = 800V 630 - Current Fall Time VGE = 15V - 36 - RG = 4.7Ω - TBD - TJ = +25°C - 17600 - Current Rise Time IC = 100A Eon2 Turn-On Switching Energy Eoff Turn-Off Switching Energy 6 - 7240 - td(on) Turn-On Delay Time - 50 - Inductive Switching (125°C) - 100 - Turn-Off Delay Time VCC = 800V - 710 - Current Fall Time VGE = 15V - 37 - Turn-On Switching Energy 4 IC = 100A TBD - Turn-On Switching Energy RG = 4.7Ω - 5 - 22380 - Turn-Off Switching Energy 6 - 10950 - Eon1 Eon2 Eoff Current Rise Time TJ = 125°C Thermal and Mechanical Characteristics Symbol Characteristic / Test Conditions R θJC WT VIsolation nC A 5 tf V 150 Turn-On Switching Energy td(off) pF 7 4 tr Unit ns μJ ns μJ Min Typ Max Unit Junction to Case - - 0.22 °C/W Package Weight - 29.2 - gm 2500 - - Volts RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. 052-6288 Rev A 10-2007 Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves V GE APT100GT120JR 250 = 15V 15V 13V 12V 125 TJ= 25°C 100 TJ= 125°C 75 TJ= 150°C 50 25 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 150 200 11V 150 10V 100 9V 50 8V 7V 125 100 75 50 TJ= -55°C TJ= 25°C 25 TJ= 125°C 0 8 6 IC = 200A 5 4 IC = 100A 3 IC = 50A 2 1 0 6 4 2 0.75 -.50 -.25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature 100 200 300 400 500 600 GATE CHARGE (nC) FIGURE 4, Gate charge 700 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 6 IC = 200A 5 IC = 100A 4 IC = 50A 3 2 1 0 100 0.80 0 7 1.05 0.85 VCE = 960V 8 120 IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 10 1.10 0.90 VCE = 600V 12 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 9 10 11 12 13 14 15 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 0.95 VCE = 240V J 0 8 1.00 I = 100A C T = 25°C 14 0 10 12 14 2 4 6 8 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 7 16 80 60 40 20 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6288 Rev A 10-2007 250μs PULSE TEST<0.5 % DUTY CYCLE VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 5 10 15 20 25 30 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 0 1 2 3 4 5 6 7 8 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 150 0 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 APT100GT120JR 80 900 70 800 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) Typical Performance Curves 60 VGE = 15V 50 40 30 20 VCE = 800V TJ = 25°C, or 125°C RG = 4.7Ω L = 100μH 10 0 700 600 300 200 0 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 120 RG = 4.7Ω, L = 100μH, VCE = 800V 300 tr, FALL TIME (ns) tr, RISE TIME (ns) 200 150 100 50 TJ = 25°C, VGE = 15V 60 40 TJ = 125°C, VGE = 15V 0 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 18000 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 80000 V = 800V CE V = +15V GE R = 4.7Ω 70000 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) 80 20 TJ = 25 or 125°C,VGE = 15V 0 G 60000 50000 TJ = 125°C 40000 30000 20000 TJ = 25°C 10000 0 V = 800V CE V = +15V GE R = 4.7Ω 16000 G 14000 12000 10000 8000 TJ = 25°C 6000 4000 2000 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 80000 140000 Eon2,200A J 120000 100000 80000 60000 40000 Eoff,200A Eon2,100A 20000 0 Eoff,100A Eon2,50A Eoff,50A 4 8 12 16 20 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (μJ) 160000 V = 800V CE V = +15V GE T = 125°C TJ = 125°C 0 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) RG = 4.7Ω, L = 100μH, VCE = 800V 100 250 052-6288 Rev A 10-2007 VCE = 800V RG = 4.7Ω L = 100μH 100 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 VGE =15V,TJ=25°C 400 0 350 VGE =15V,TJ=125°C 500 V = 800V CE V = +15V GE R = 4.7Ω 70000 Eon2,200A G 60000 50000 40000 30000 Eoff,200A 20000 Eon2,100A 10000 0 Eoff,100A Eon2,50A Eoff,50A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT100GT120JR 250 10000 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 1000 Coes 100 Cres 10 200 150 100 50 0 0 100 200 300 400 500 600 700 800 900 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area D = 0.9 0. 2 0.7 0.15 0.5 Note: 0. 1 PDM 0.3 t1 t2 0.05 t 0.1 SINGLE PULSE 0.05 0 10-4 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-3 10-2 10-1 0.1 1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration TC (°C) .045 Dissipated Power (Watts) .034 .0135 .0618 .039 ZEXT TJ (°C) 17.42 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) 40 T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 4.7Ω 30 G 75°C 10 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf 20 10 f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC 100°C 0 0 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6288 Rev A 10-2007 ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT100GT120JR Gate Voltage 10% a -46.0ns 780.4V b 422ns 34.13V ∆468ns ∆746.3V TJ = 125°C td(on) APT100DQ120 Collector Current tr 90% V CE IC V CC 5% 10% 5% Collector Voltage Switching Energy A D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% TJ = 125°C a -226ns 97.34V b 928ns 0.000V ∆1.15μs ∆97.34V Gate Voltage Collector Voltage 90% td(off) tf 10% 0 Collector Current Switching Energy 052-6288 Rev A 10-2007 Figure 23, Turn-off Switching Waveforms and Definitions Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. US and Foreign patents pending. All Rights Reserved.