MICROSEMI APT100GT120JR

APT100GT120JR
1200V, 100A, VCE(ON) = 3.2V Typical
Thunderbolt IGBT®
The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using NonPunch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and
ultrafast switching speed.
E
E
C
G
Features
S
• Low Forward Voltage Drop
• RBSOA and SCSOA Rated
• Low Tail Current
• High Frequency Switching to 50KHz
• Integrated Gate Resistor
• Ultra Low Leakage Current
OT
22
7
"UL Recognized"
ISOTOP ®
file # E145592
Low EMI, High Reliability
• RoHS Compliant
Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is made with two parallel
IGBT die. It is intended for switch-mode operation. It is not suitable for linear mode operation.
All Ratings: TC = 25°C unless otherwise specified.
Maximum Ratings
Symbol Parameter
Ratings
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
IC1
Continuous Collector Current @ TC = 25°C
123
IC2
Continuous Collector Current @ TC = 100°C
67
ICM
SSOA
PD
TJ, TSTG
TL
Pulsed Collector Current
Unit
Volts
Amps
200
1
Switching Safe Operating Area @ TJ = 150°C
200A @ 1200V
Total Power Dissipation
570
Operating and Storage Junction Temperature Range
Watts
-55 to 150
Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec.
°C
300
Static Electrical Characteristics
Min
Typ
Max
1200
-
-
Unit
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA)
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 4mA, Tj = 25°C)
4.5
5.5
6.5
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C)
2.7
3.2
3.7
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C)
-
4.0
-
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2
-
-
100
-
-
TBD
Gate-Emitter Leakage Current (VGE = ±20V)
-
-
600
nA
Integrated Gate Resistor
-
5
-
Ω
VCE(ON)
ICES
IGES
RG(int)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
2
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Volts
μA
052-6288 Rev A 10-2007
Symbol Characteristic / Test Conditions
Dynamic Characteristics
Symbol
APT100GT120JR
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
VGE = 0V, VCE = 25V
f = 1MHz
Gate Charge
Min
Typ
Max
-
6700
-
-
6530
-
-
4380
-
-
10
-
Qg
Total Gate Charge
VGE = 15V
-
685
-
Qge
Gate-Emitter Charge
VCE= 600V
-
75
-
Gate-Collector Charge
IC = 100A
-
400
-
Qgc
SSOA
td(on)
tr
td(off)
tf
Eon1
Switching Safe Operating Area
TJ = 150°C, RG = 1.0Ω , VGE = 15V,
L = 100μH, VCE= 1200V
Turn-On Delay Time
-
50
-
Inductive Switching (25°C)
-
100
-
Turn-Off Delay Time
VCC = 800V
630
-
Current Fall Time
VGE = 15V
-
36
-
RG = 4.7Ω
-
TBD
-
TJ = +25°C
-
17600
-
Current Rise Time
IC = 100A
Eon2
Turn-On Switching Energy
Eoff
Turn-Off Switching Energy 6
-
7240
-
td(on)
Turn-On Delay Time
-
50
-
Inductive Switching (125°C)
-
100
-
Turn-Off Delay Time
VCC = 800V
-
710
-
Current Fall Time
VGE = 15V
-
37
-
Turn-On Switching Energy
4
IC = 100A
TBD
-
Turn-On Switching Energy
RG = 4.7Ω
-
5
-
22380
-
Turn-Off Switching Energy
6
-
10950
-
Eon1
Eon2
Eoff
Current Rise Time
TJ = 125°C
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
R
θJC
WT
VIsolation
nC
A
5
tf
V
150
Turn-On Switching Energy
td(off)
pF
7
4
tr
Unit
ns
μJ
ns
μJ
Min
Typ
Max
Unit
Junction to Case
-
-
0.22
°C/W
Package Weight
-
29.2
-
gm
2500
-
-
Volts
RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
052-6288 Rev A 10-2007
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
V
GE
APT100GT120JR
250
= 15V
15V
13V
12V
125
TJ= 25°C
100
TJ= 125°C
75
TJ= 150°C
50
25
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
150
200
11V
150
10V
100
9V
50
8V
7V
125
100
75
50
TJ= -55°C
TJ= 25°C
25
TJ= 125°C
0
8
6
IC = 200A
5
4
IC = 100A
3
IC = 50A
2
1
0
6
4
2
0.75
-.50 -.25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
100
200 300 400 500 600
GATE CHARGE (nC)
FIGURE 4, Gate charge
700
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
6
IC = 200A
5
IC = 100A
4
IC = 50A
3
2
1
0
100
0.80
0
7
1.05
0.85
VCE = 960V
8
120
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
10
1.10
0.90
VCE = 600V
12
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
9
10
11 12
13 14 15 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
0.95
VCE = 240V
J
0
8
1.00
I = 100A
C
T = 25°C
14
0
10
12
14
2
4
6
8
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
7
16
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6288 Rev A 10-2007
250μs PULSE
TEST<0.5 % DUTY
CYCLE
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
5
10
15
20
25
30
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
0
1
2
3
4
5
6
7
8
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
150
0
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
APT100GT120JR
80
900
70
800
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
Typical Performance Curves
60
VGE = 15V
50
40
30
20
VCE = 800V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
10
0
700
600
300
200
0
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
120
RG = 4.7Ω, L = 100μH, VCE = 800V
300
tr, FALL TIME (ns)
tr, RISE TIME (ns)
200
150
100
50
TJ = 25°C, VGE = 15V
60
40
TJ = 125°C, VGE = 15V
0
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
18000
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
80000
V
= 800V
CE
V
= +15V
GE
R = 4.7Ω
70000
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
80
20
TJ = 25 or 125°C,VGE = 15V
0
G
60000
50000
TJ = 125°C
40000
30000
20000
TJ = 25°C
10000
0
V
= 800V
CE
V
= +15V
GE
R = 4.7Ω
16000
G
14000
12000
10000
8000
TJ = 25°C
6000
4000
2000
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
80000
140000
Eon2,200A
J
120000
100000
80000
60000
40000
Eoff,200A
Eon2,100A
20000
0
Eoff,100A
Eon2,50A
Eoff,50A
4
8
12
16
20
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
160000
V
= 800V
CE
V
= +15V
GE
T = 125°C
TJ = 125°C
0
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
RG = 4.7Ω, L = 100μH, VCE = 800V
100
250
052-6288 Rev A 10-2007
VCE = 800V
RG = 4.7Ω
L = 100μH
100
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
VGE =15V,TJ=25°C
400
0
350
VGE =15V,TJ=125°C
500
V
= 800V
CE
V
= +15V
GE
R = 4.7Ω
70000
Eon2,200A
G
60000
50000
40000
30000
Eoff,200A
20000
Eon2,100A
10000
0
Eoff,100A
Eon2,50A
Eoff,50A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT100GT120JR
250
10000
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
1000
Coes
100
Cres
10
200
150
100
50
0
0 100 200 300 400 500 600 700 800 900
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
0 200 400 600 800 1000 1200 1400
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
D = 0.9
0. 2
0.7
0.15
0.5
Note:
0. 1
PDM
0.3
t1
t2
0.05
t
0.1
SINGLE PULSE
0.05
0
10-4
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-3
10-2
10-1
0.1
1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
TC (°C)
.045
Dissipated Power
(Watts)
.034
.0135
.0618
.039
ZEXT
TJ (°C)
17.42
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
40
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 4.7Ω
30
G
75°C
10
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
20
10
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
100°C
0
0
10
20 30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6288 Rev A 10-2007
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT100GT120JR
Gate Voltage
10%
a -46.0ns 780.4V
b 422ns 34.13V
∆468ns ∆746.3V
TJ = 125°C
td(on)
APT100DQ120
Collector Current
tr
90%
V CE
IC
V CC
5%
10%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
TJ = 125°C
a -226ns 97.34V
b 928ns 0.000V
∆1.15μs ∆97.34V
Gate Voltage
Collector Voltage
90%
td(off)
tf
10%
0
Collector Current
Switching Energy
052-6288 Rev A 10-2007
Figure 23, Turn-off Switching Waveforms and Definitions
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. US and Foreign patents pending. All Rights Reserved.