APT20GS60BRDQ1(G) APT20GS60SRDQ1(G) 600V, 20A, VCE(ON) = 2.8V Typical Thunderbolt® High Speed NPT IGBT with Anti-Parallel 'DQ' Diode The Thunderbolt HS™ series is based on thin wafer non-punch through (NPT) technology similar to the Thunderbolt® series, but trades higher VCE(ON) for significantly lower turn-on energy Eoff. The low switching losses enable operation at switching frequencies over 100kHz, approaching power MOSFET performance but lower cost. An extremely tight parameter distribution combined with a positive VCE(ON) temperature coefficient make it easy to parallel Thunderbolts HS™ IGBT's. Controlled slew rates result in very good noise and oscillation immunity and low EMI. The short circuit duration rating of 10µs make these IGBT's suitable for motor drive and inverter applications. Reliability is further enhanced by avalanche energy ruggedness. Combi versions are packaged with a high speed, soft recovery DQ series diode. TO -2 47 D3PAK APT20GS60BRDQ1(G) APT20GS60SRDQ1(G) Features Typical Applications • Fast Switching with low EMI • ZVS Phase Shifted and other Full Bridge • Very Low EOFF for Maximum Efficiency • Half Bridge • Short circuit rated • High Power PFC Boost • Low Gate Charge • Welding • Tight parameter distribution • Induction heating • Easy paralleling • High Frequency SMPS Single die IGBT with separate DQ diode die • RoHS Compliant Absolute Maximum Ratings Symbol Parameter Rating I C1 Continuous Collector Current TC = @ 25°C 37 I C1 Continuous Collector Current TC = @ 100°C 20 I CM Pulsed Collector Current 1 80 VGE Gate-Emitter Voltage SSOA Unit A ±30V V Switching Safe Operating Area 80 EAS Single Pulse Avalanche Energy 2 115 mJ tSC Short Circut Withstand Time 3 10 µs IF Diode Continuous Forward Current I FRM TC = 25°C 43 TC = 100°C 26 Diode Max. Repetitive Forward Current A 80 Thermal and Mechanical Characteristics RθJC Junction to Case Thermal Resistance RθCS Case to Sink Thermal Resistance, Flat Greased Surface TJ, TSTG Soldering Temperature for 10 Seconds (1.6mm from case) WT Package Weight Max Unit - - 180 W - - 0.70 Diode Operating and Storage Junction Temperature Range TL Torque IGBT Typ Mounting Torque (TO-247), 6-32 M3 Screw 1.35 - 0.11 - -55 - 150 - - 300 - 0.22 - oz - 5.9 - g - - 10 in·lbf - - 1.1 N·m CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should be Followed. Microsemi Website - http://www.microsemi.com °C/W °C 8-2007 Total Power Dissipation TC = @ 25°C Min Rev A Parameter 052-6304 Symbol PD Static Characteristics Symbol VBR(CES) ∆VBR(CES)/∆TJ VCE(ON) VEC VGE(th) TJ = 25°C unless otherwise specified Parameter Collector-Emitter Breakdown Voltage Breakdown Voltage Temperature Coeff Collector-Emitter On Voltage 4 Diode Forward Voltage 4 ∆VGE(th)/∆TJ Threshold Voltage Temp Coeff ICES Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Dynamic Characteristics Symbol gfs Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Co(cr) Reverse Transfer Capacitance Charge Related 5 Co(er) Reverse Transfer Capacitance Current Related 6 Qg Total Gate Charge Gate-Emitter Charge Ggc Gate-Collector Charge td(on) Turn-On Delay Time td(off) tf 8-2007 Fall Time Turn-On Switching Energy Turn-On Switching Energy 9 Eoff Turn-Off Switching Energy 10 td(on) Turn-On Delay Time Eon1 Unit 600 - - V Reference to 25°C, IC = 250µA - 0.60 - V/°C VGE = 15V IC = 20A TJ = 25°C - 2.8 3.15 TJ = 125°C - 3.25 - TJ = 25°C - 2.2 - TJ = 125°C VGE = VCE, IC = 1mA VCE = 600V, VGE = 0V Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy 8 Eon2 Turn-On Switching Energy 9 Eoff Turn-Off Switching Energy 10 trr Diode Reverse Recovery Time Qrr Diode Reverse Recovery Charge Irrm Peak Reverse Recovery Current - 1.75 - 3 4 5 V - 6.7 - TJ = 25°C - - 50 TJ = 125°C - - 1000 - - ±100 nA Min Typ Max Unit - 12 - S - 1085 - - 100 - - 65 - - 95 - VGE = ±20V VGE = 0V, VCE = 25V f = 1MHz VGE = 0V VCE = 0 to 400V Inductive Switching IGBT and Diode: Turn-Off Delay Time Eon2 tf Rev A Rise Time 8 td(off) Max VGE = 0 to 15V IC = 20A, VCE = 300V Eon1 tr Typ Test Conditions VCE = 50V, IC = 20A Forward Transconductance Qge Min TJ = 25°C unless otherwise specified Cies tr 052-6304 Parameter Test Conditions VGE = 0V, IC = 250µA IC = 20A Gate-Emitter Threshold Voltage APT20GS60B_SRDQ1(G) TJ = 25°C, VCC = 400V, IC = 20A RG = 9.1Ω 7, VGG = 15V mV/°C µA pF 90 - 100 - - 8 - - 48 - - 8 - - 14 - - 130 - - 12 - - TBD - - 295 - - 200 - nC ns µJ - 8 - Inductive Switching IGBT and Diode: - 14 - - 145 - TJ = 125°C, VCC = 400V, IC = 20A RG = 9.1Ω 7, VGG = 15V - 23 - - TBD - - 465 - - 300 - - 19 - ns - 21 - nC - 2 - A IF = 20A VR = 400V diF/dt = 200A/µs ns µJ TYPICAL PERFORMANCE CURVES 80 VGE = 15V J IC, COLLECTOR CURRENT (A) 50 TJ = 125°C 40 TJ = 150°C 30 20 10 TJ = 25°C 50 TJ = -55°C 40 30 20 10 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics 4 IC = 20A 3 IC = 10A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 16 IC = 40A IC = 20A IC = 10A 2 1 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 5, On State Voltage vs Junction Temperature VCE = 300V 10 8 VCE = 480V 6 4 2 0 0 VCE = 120V 12 0 20 40 60 80 100 GATE CHARGE (nC) FIGURE 6, Gate Charge 120 40 P Cies 100 Coes Cres 0 100 200 300 400 500 600 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 7, Capacitance vs Collector-To-Emitter Voltage IC, DC COLLECTOR CURRENT(A) 2000 35 30 25 20 15 10 5 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 8-2007 3 14 Rev A 4 10 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE IC = 50A FIGURE 4, On State Voltage vs Gate-to- Emitter Voltage VGE, GATE-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 1000 6V 10 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) TJ = 125°C 7V 20 5 60 8V 30 80 250µs PULSE TEST<0.5 % DUTY CYCLE 9V 40 0 FIGURE 1, Output Characteristics C, CAPACITANCE ( F) 50 0 0 1 2 3 4 5 6 7 VCE(ON), COLLECTER-TO-EMITTER VOLTAGE (V) 70 10V 60 052-6304 IC, COLLECTOR CURRENT (A) TJ = 25°C 60 0 VGE = 13 & 15V 11V T = 125°C 70 70 0 APT20GS60B_SRDQ1(G) 80 TYPICAL PERFORMANCE CURVES 180 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 10 8 VGE = 15V 6 4 2 VCE = 400V TJ = 25°C, TJ =125°C RG = 9.1Ω L = 100µH 0 VGE =15V,TJ=125°C 100 VGE =15V,TJ=25°C 80 60 40 VCE = 400V RG = 9.1Ω L = 100µH 20 30 35 RG = 9.1Ω, L = 100µH, VCE = 400V 25 TJ = 25 or 125°C,VGE = 15V tf, FALL TIME (ns) tr, RISE TIME (ns) 120 0 10 20 30 40 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current RG = 9.1Ω, L = 100µH, VCE = 400V 30 140 0 0 10 20 30 40 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 40 160 25 20 15 20 15 TJ = 125°C, VGE = 15V 10 10 5 0 0 0 10 20 30 40 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 700 = 400V V CE = +15V V GE R = 9.1Ω 1200 G TJ = 125°C,VGE =15V 1000 800 600 400 200 0 10 20 30 40 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 1400 TJ = 25°C,VGE =15V SWITCHING ENERGY LOSSES (mJ) = 400V V CE = +15V V GE R = 9.1Ω 600 G TJ = 125°C, VGE = 15V 500 400 300 200 TJ = 25°C, VGE = 15V 100 0 0 10 20 30 40 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 10 20 30 40 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 2000 1400 V = 400V CE V = +15V GE T = 125°C J 1500 Eon2,40A Eoff,40A 1000 Eon2,20A 500 Eoff,10A 0 Eoff,20A Eon2 10A , 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (mJ) Rev A 8-2007 0 052-6304 TJ = 25°C, VGE = 15V 5 = 400V V CE = +15V V GE R = 9.1Ω 1200 G Eon2,40A 1000 800 Eoff,40A 600 400 Eon2,20A Eoff,20A 200 0 Eon2,10A Eoff,10A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature APT20GS60B_SRDQ1(G) 100 100 I CM IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) ICM 10 VCE(on) 13µs 100µs 1ms 1 10ms 100ms 0.1 DC line TJ = 125°C TC = 75°C 10 VCE(on) 13µs 100µs 1ms 1 0.1 1 10 100 800 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) Figure 17, Forward Safe Operating Area 10ms 100ms TJ = 150°C TC = 25°C DC line Scaling for Different Case & Junction Temperatures: IC = IC(T = 25°C)*(TJ - TC)/125 C 1 10 100 800 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) Figure 18, Maximum Forward Safe Operating Area 0.70 0.9 0.60 0.7 0.50 0.40 0.5 Note: 0.30 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.80 0.3 0.20 t2 SINGLE PULSE 0.1 0.05 0.10 0 t1 10-5 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.00169 0.0602 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. Figure 20, Transient Thermal Impedance Model T = 100°C C 100 T = 75°C Fmax = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf C T = 125°C J T = 75°C C D = 50 % = 400V V CE R = 9.1Ω 50 0 G 0 fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 5 10 15 20 25 30 35 40 IC, COLLECTOR CURRENT (A) Figure 21, Operating Frequency vs Collector Current 8-2007 0.305 150 Rev A 0.396 Dissipated Power (Watts) 200 052-6304 TC (°C) ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 250 APT20GS60B_SRDQ1(G) Gate Voltage APT15DQ60 10% TJ = 125°C td(on) Collector Current 90% tr V CE IC V CC 5% A 10% 5% Collector Voltage Switching Energy D.U.T. Figure 23, Turn-on Switching Waveforms and Definitions Figure 22, Inductive Switching Test Circuit Gate Voltage TJ = 125°C 90% td(off) Collector Voltage 90% tf 10% 0 Collector Current Switching Energy Figure 24, Turn-off Switching Waveforms and Definitions FOOT NOTE: 052-6304 Rev A 8-2007 1 2 3 4 5 6 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. Starting at TJ = 25°C, L = 224µH, RG = 25Ω, IC = 20A Short circuit time: VGE = 15V, VCC ≤ 600V, TJ ≤ 150°C Pulse test: Pulse width < 380µs, duty cycle < 2% Co(cr) is defined as a fixed capacitance with the same stored charge as Coes with VCE = 67% of V(BR)CES. Co(er) is defined as a fixed capacitance with the same stored energy as Coes with VCE = 67% of V(BR)CES. To calculate Co(er) for any value of VCE less than V(BR)CES, use this equation: Co(er) = -3.43E-8/VDS^2 + 1.44E-8/VDS + 5.38E-11. 7 RG is external gate resistance, not including internal gate resistance or gate driver impedance (MIC4452). 8 Eon1 is IGBT turn-on switching loss. It is measured by clamping the inductance with a Silicon Carbide Schottky diode. 9 Eon2 is the inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on energy. 10 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. APT20GS60B_SRDQ1(G) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC Collector (Cathode) e1 SAC: Tin, Silver, Copper 5.38 (.212) 6.20 (.244) Drain (Heat Sink) TO-247 Package Outline D3 Pak Package Outline 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) 1.04 (.041) 1.15(.045) 13.41 (.528) 13.51(.532) 13.79 (.543) 13.99(.551) 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} Emitter (Anode) 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Emitter (Anode) Collector (Cathode) Gate Dimensions in Millimeters (Inches) 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads (Cathode) are Plated 8-2007 1.65 (.065) 2.13 (.084) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) Rev A 19.81 (.780) 20.32 (.800) 2.87 (.113) 3.12 (.123) 052-6304 0.46 (.018) 0.56 (.022) {3 Plcs} 0.40 (.016) 0.79 (.031) 5,256,583 4 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. Microsemi Revised 8/29/97