TYPICAL PERFORMANCE CURVES APT35GN120B APT35GN120B_S(G) APT35GN120S APT35GN120BG APT35GN120SG 1200V *G Denotes RoHS Compliant, Pb Free Terminal Finish. Utilizing the latest Non-Punch Through (NPT) Field Stop technology, these IGBT’s have a very short, low amplitude tail current and low Eoff. The Trench Gate design results in superior VCE(on) performance. Easy paralleling results from very tight parameter distribution and slightly positive VCE(on) temperature coefficient. Built-in gate resistance ensures ultra-reliable operation. Low gate charge simplifies gate drive design and minimizes losses. (B) TO D3PAK 47 (S) C G G • 1200V NPT Field Stop • • • • -2 C E E Trench Gate: Low VCE(on) Easy Paralleling 10µs Short Circuit Capability Intergrated Gate Resistor: Low EMI, High Reliability C G E Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT35GN120B_S(G) VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 94 I C2 Continuous Collector Current @ TC = 110°C 46 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 @ TC = 150°C UNIT Volts Amps 105 Switching Safe Operating Area @ TJ = 150°C 105A @ 1200V Total Power Dissipation Watts 379 Operating and Storage Junction Temperature Range -55 to 150 °C Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) VGE(TH) Gate Threshold Voltage VCE(ON) MIN (VCE = VGE, I C = 1mA, Tj = 25°C) Gate-Emitter Leakage Current (VGE = ±20V) RGINT Intergrated Gate Resistor 5.8 6.5 1.4 1.7 2.1 1.9 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) I GES 5 Units Volts Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) MAX 1200 Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C) I CES TYP 100 2 600 6 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com µA TBD nA Ω Rev D 7-2009 Characteristic / Test Conditions 050-7601 Symbol APT35GN120B_S(G) DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Total Gate Charge Qge Gate-Emitter Charge 2500 VGE = 0V, VCE = 25V 150 f = 1 MHz 120 Gate Charge 9.5 VGE = 15V 220 VCE = 600V 15 130 Qgc Gate-Collector ("Miller ") Charge I C = 35A SSOA Switching Safe Operating Area TJ = 150°C, R G = 2.2Ω 7, VGE = SCSOA 15V, L = 100µH,VCE = 1200V Short Circuit Safe Operating Area TYP Capacitance 3 Qg MIN VCC = 960V, VGE = 15V, TJ = 125°C, R G = 2.2Ω 7 tr Current Rise Time VCC = 800V 22 Turn-off Delay Time VGE = 15V 300 I C = 35A 55 RG = 2.2Ω 7 TBD TJ = +25°C 2395 Eon1 Eon2 Turn-on Switching Energy Turn-on Switching Energy (Diode) 5 Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Inductive Switching (125°C) 24 tr Current Rise Time VCC = 800V 22 Turn-off Delay Time VGE = 15V 365 I C = 35A RG = 2.2Ω 7 100 TBD TJ = +125°C 3745 td(off) tf 6 44 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy ns µJ 2315 Current Fall Time Eon1 nC µs 24 4 V 10 Inductive Switching (25°C) Current Fall Time pF A Turn-on Delay Time tf UNIT 105 td(on) td(off) MAX 55 66 ns µJ 3435 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .33 RθJC Junction to Case (DIODE) N/A WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 050-7601 Rev D 7-2009 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RGint nor gate driver impedance. (MIC4452) Microsemi Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT35GN120B_S(G) 120 120 15V 12V 80 11V 60 10V 40 9V 20 100 12V 80 11V 60 10V 40 9V 20 8V 8V 7V 7V 0 2 4 6 8 10 12 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0 0 FIGURE 1, Output Characteristics(TJ = 25°C) 80 TJ = 125°C TJ = 25°C TJ = -55°C 40 20 0 0 J VCE = 240V 12 VCE = 600V 10 VCE = 960V 8 6 4 2 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 35A C T = 25°C 14 0 50 3.5 IC = 70A 3 2.5 IC = 35A 2 1.5 IC = 17.5A 1.0 0.5 0 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 8 1.05 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 3 IC = 70A 2.5 2 IC = 35A 1.5 IC = 17.5A 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 140 1.10 IC, DC COLLECTOR CURRENT(A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 250 FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4 100 150 200 GATE CHARGE (nC) 120 100 80 Lead Temperature Limited 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev D 7-2009 250µs PULSE TEST<0.5 % DUTY CYCLE 60 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 100 0 2 4 6 8 10 12 14 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 050-7601 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 15V 100 APT35GN120B_S(G) 450 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 30 25 VGE = 15V 20 15 10 VCE = 800V 5 T = 25°C, T =125°C J J RG = 2.2Ω L = 100 µH 0 350 300 VGE =15V,TJ=125°C 250 VGE =15V,TJ=25°C 200 150 100 VCE = 800V RG = 2.2Ω L = 100 µH 50 0 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 80 150 RG = 2.2Ω, L = 100µH, VCE = 800V 70 RG = 2.2Ω, L = 100µH, VCE = 800V 125 50 40 30 TJ = 25 or 125°C,VGE = 15V 20 tf, FALL TIME (ns) tr, RISE TIME (ns) 60 TJ = 125°C, VGE = 15V 100 75 TJ = 25°C, VGE = 15V 50 25 10 0 0 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 8000 V = 800V CE V = +15V GE R = 2.2Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 12000 G 10000 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 125°C,VGE =15V 8000 6000 4000 2000 TJ = 25°C,VGE =15V 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current J 15000 Eoff,70A 10000 Eon2,35A Eoff,35A Eon2,17.5A 0 TJ = 125°C, VGE = 15V 6000 5000 4000 3000 2000 TJ = 25°C, VGE = 15V 1000 10 20 30 40 50 60 70 80 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current Eoff,17.5A 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) Rev D 7-2009 050-7601 Eon2,70A 20000 0 G 12000 V = 800V CE V = +15V GE T = 125°C 5000 7000 0 0 25000 V = 800V CE V = +15V GE R = 2.2Ω V = 800V CE V = +15V GE R = 2.2Ω G 10000 Eon2,70A 8000 Eoff,70A 6000 Eon2,35A 4000 Eoff,17.5A 2000 0 Eoff,35A Eon2,17.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT35GN120B_S(G) IC, COLLECTOR CURRENT (A) 4,000 Cies P C, CAPACITANCE ( F) 1,000 500 C0es 100 Cres 50 120 100 80 60 40 20 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.30 0.9 0.25 0.7 0.20 0.5 0.15 PDM Note: 0.3 0.10 t1 t2 0.05 SINGLE PULSE 0.1 0.05 0 10-5 10-4 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 140 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf 10 1 T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 2.2Ω f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC G 20 30 40 50 60 70 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Rev D 7-2009 10 050-7601 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) 0.35 APT35GN120B_S(G) APT40DQ120 Gate Voltage 10% TJ = 125°C td(on) V CE IC V CC Collector Current 90% tr A 5% 5% 10% D.U.T. CollectorVoltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST 90% *DRIVER SAME TYPE AS D.U.T. Gate Voltage TJ = 125°C A td(off) CollectorVoltage V CE 90% IC 100uH V CLAMP tf 10% A 0 Collector Current Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions 3 TO-247 Package Outline D PAK Package Outline e1 SAC: Tin, Silver, Copper Collector 5.38 (.212) 6.20 (.244) Collector (Heat Sink) e3 SAC: Tin, Silver, Copper 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC D.U.T. DRIVER* Switching Energy 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) Rev D 7-2009 13.41 (.528) 13.51(.532) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 0.46 (.018) 0.56 (.022) {3 Plcs} 050-7601 B 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Gate Collector Emitter 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated Emitter Collector Gate Dimensions in Millimeters (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.