APT102GA60B2 APT102GA60L 600V APT102GA60B2 High Speed PT IGBT POWER MOS 8® is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency. APT102GA60L Single die IGBT FEATURES TYPICAL APPLICATIONS • Fast switching with low EMI • ZVS phase shifted and other full bridge • Very Low Eoff for maximum efficiency • Half bridge • Ultra low Cres for improved noise immunity • High power PFC boost • Low conduction loss • Welding • Low gate charge • UPS, solar, and other inverters • Increased intrinsic gate resistance for low EMI • High frequency, high efficiency industrial • RoHS compliant Absolute Maximum Ratings Vces Parameter Collector Emitter Voltage Ratings Unit 600 V IC1 Continuous Collector Current @ TC = 25°C 1 183 IC2 Continuous Collector Current @ TC = 100°C 102 ICM Pulsed Collector Current 2 307 VGE Gate-Emitter Voltage ±30 V PD Total Power Dissipation @ TC = 25°C 780 W 3 SSOA Switching Safe Operating Area @ TJ = 150°C TJ, TSTG Operating and Storage Junction Temperature Range TL Symbol 307A @ 600V -55 to 150 Lead Temperature for Soldering: 0.063" from Case for 10 Seconds Static Characteristics A °C 300 TJ = 25°C unless otherwise specified Parameter Test Conditions Min VBR(CES) Collector-Emitter Breakdown Voltage VGE = 0V, IC = 250μA 600 VCE(on) Collector-Emitter On Voltage VGE(th) Gate Emitter Threshold Voltage Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 2.5 VGE = 15V, TJ = 25°C 2.0 IC = 62A TJ = 125°C 1.9 VGE =VCE , IC = 1mA ICES Typ 3 4.5 V 6 VCE = 600V, TJ = 25°C 1000 VGE = 0V TJ = 125°C 5000 VGS = ±30V Unit μA ±100 nA Typ Max Unit Thermal and Mechanical Characteristics Symbol Characteristic Min RθJC Junction to Case Thermal Resistance - - 0.16 °C/W WT Package Weight - 5.9 - g 10 in·lbf Torque Mounting Torque (TO-247 Package), 4-40 or M3 screw Microsemi Website - http://www.microsemi.com 052-6329 Rev B 2 - 2009 Symbol Dynamic Characteristics Symbol Parameter Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg4 Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf Gate- Collector Charge Switching Safe Operating Area Turn-On Delay Time APT102GA60B2_L TJ = 25°C unless otherwise specified Test Conditions Min Typ Capacitance 8170 VGE = 0V, VCE = 25V 630 f = 1MHz 78 Gate Charge 294 VGE = 15V 56 VCE= 300V 106 307 Inductive Switching (25°C) IGBT and Diode VCC = 400V 37 Turn-Off Delay Time VGE = 15V 212 IC = 62A 101 RG = 4.7Ω5 1354 Eoff7 Turn-Off Switching Energy TJ = +25°C 1614 td(on Turn-On Delay Time Inductive Switching (125°C) IGBT and Diode 27 Current Rise Time VCC = 400V 37 Turn-Off Delay Time VGE = 15V 247 IC = 62A 142 Eon2 Turn-On Switching Energy RG = 4.7Ω5 2106 Eoff7 Turn-Off Switching Energy TJ = +125°C 1852 tf Current Fall Time nC 28 Turn-On Switching Energy tr pF A L= 100uH, VCE = 600V Eon2 td(off) Unit IC = 62A TJ = 150°C, RG = 4.7Ω5, VGE = 15V, Current Rise Time Current Fall Time Max ns μJ ns μJ 052-6329 Rev B 2 - 2009 1 Continuous current limited by package lead temperature. 2 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 3 Pulse test: Pulse Width < 380μs, duty cycle < 2%. 4 See Mil-Std-750 Method 3471. 5 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 6 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode. 7 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves 150 V IC, COLLECTOR CURRENT (A) TJ= 125°C TJ= 150°C 100 TJ= 25°C 75 50 25 250 200 150 100 TJ= 25°C 50 TJ= -55°C TJ= 125°C 0 2 4 6 8 10 12 14 IC = 124A 3 IC = 62A IC = 31A 2 1 0 100 6 8 10 12 14 16 8V 50 7V 6V 0 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 16 I = 62A C T = 25°C 14 J 12 VCE = 120V 10 VCE = 300V 8 VCE = 480V 6 4 2 0 16 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 9V 150 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4 10V 200 VGE, GATE-TO-EMITTER VOLTAGE (V) 250μs PULSE TEST<0.5 % DUTY CYCLE 300 0 250 0 1 2 3 4 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 350 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 0 40 80 120 160 200 240 280 320 GATE CHARGE (nC) FIGURE 4, Gate charge 5 4 IC = 124A 3 IC = 62A 2 IC = 31A 1 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 1.10 250 1.00 0.95 0.90 0.85 0.80 0.75 -.50 -.25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature IC, DC COLLECTOR CURRENT (A) 1.05 200 150 100 50 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6329 Rev B 2 - 2009 IC, COLLECTOR CURRENT (A) 11V 300 400 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 15V 13V TJ= 55°C 125 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) = 15V VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) GE APT102GA60B2_L 350 Typical Performance Curves APT102GA60B2_L 300 VCE = 400V TJ = 25°C, or 125°C RG = 4.7Ω L = 100μH 35 250 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 40 VGE = 15V 30 25 VGE =15V,TJ=125°C 200 150 50 0 20 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 100 RG = 4.7Ω, L = 100μH, VCE = 400V VCE = 400V RG = 4.7Ω L = 100μH 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 150 125 80 TJ = 125°C, VGE = 15V 100 tr, FALL TIME (ns) tr, RISE TIME (ns) VGE =15V,TJ=25°C 100 60 40 20 TJ = 25 or 125°C,VGE = 15V 75 TJ = 25°C, VGE = 15V 50 25 RG = 4.7Ω, L = 100μH, VCE = 400V 0 0 20 40 60 80 0 100 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current V = 400V CE V = +15V GE R =4.7Ω 7000 G 6000 TJ = 125°C 5000 4000 3000 2000 TJ = 25°C 1000 5000 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 8000 0 Eoff,124A 10500 9000 7500 6000 Eon2,62A 4500 Eoff,62A 3000 Eon2,31A 1500 TJ = 125°C 3000 2500 2000 1500 TJ = 25°C 1000 500 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) SWITCHING ENERGY LOSSES (μJ) 052-6329 Rev B 2 - 2009 Eon2,124A J 12000 0 3500 8000 V = 400V CE = +15V V GE T = 125°C 13500 G 4000 0 0 25 50 75 100 125 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 15000 V = 400V CE V = +15V GE R = 4.7Ω 4500 7000 V = 400V CE = +15V V GE R = 10Ω G 6000 5000 Eoff124A 4000 3000 Eon2,62A Eoff,62A 2000 Eon2,31A 1000 Eoff,31A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance Eon2,124A 0 Eoff,31A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT102GA60B2_L 1000 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) 10000 Cies 1000 Coes 100 Cres 10 0 100 200 300 400 500 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 100 10 1 0.1 1 10 100 1000 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0.16 D = 0.9 0.14 0.12 0.7 0.10 0.5 0.08 Note: 0.06 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.18 0.3 t1 0.04 t2 0.1 0.02 0 t 0.05 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-5 10-3 10-2 0.1 1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration Dissipated Power (Watts) TC (°C) .03899 .12064 .01136 .48575 ZEXT TJ (°C) ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. 052-6329 Rev B 2 - 2009 FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL APT102GA60B_L 10% Gate Voltage 90% td(on) APT30DQ60 TJ = 125°C Collector Current tr IC V CC V CE 10% 5% 5% Collector Voltage Switching Energy A D.U.T. Figure 20, Inductive Switching Test Circuit Figure 21, Turn-on Switching Waveforms and Definitions TJ = 125°C 90% td(off) Gate Voltage Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 22, Turn-off Switching Waveforms and Definitions T-MAXTM (B2) Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) TO-264 (L) Package Outline 4.60 (.181) 5.21 (.205) 1.80 (.071) 2.01 (.079) 15.49 (.610) 16.26 (.640) 19.51 (.768) 20.50 (.807) 3.10 (.122) 3.48 (.137) Collector 5.38 (.212) 6.20 (.244) 5.79 (.228) 6.20 (.244) Collector 20.80 (.819) 21.46 (.845) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 25.48 (1.003) 26.49 (1.043) 2.87 (.113) 3.12 (.123) 2.29 (.090) 2.69 (.106) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) 19.81 (.780) 21.39 (.842) Gate Collector 052-6329 Rev B 2 - 2009 Emitter 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. These dimensions are equal to the TO-247 without the mounting hole. 0.48 (.019) 0.84 (.033) 2.59 (.102) 3.00 (.118) 2.29 (.090) 2.69 (.106) Gate Collector Emitter 0.76 (.030) 1.30 (.051) 2.79 (.110) 3.18 (.125) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.