MICROSEMI APT102GA60B2

APT102GA60B2
APT102GA60L
600V
APT102GA60B2
High Speed PT IGBT
POWER MOS 8® is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of
the poly-silicone gate structure help control di/dt during switching, resulting in low EMI,
even when switching at high frequency.
APT102GA60L
Single die IGBT
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Vces
Parameter
Collector Emitter Voltage
Ratings
Unit
600
V
IC1
Continuous Collector Current @ TC = 25°C
1
183
IC2
Continuous Collector Current @ TC = 100°C
102
ICM
Pulsed Collector Current 2
307
VGE
Gate-Emitter Voltage
±30
V
PD
Total Power Dissipation @ TC = 25°C
780
W
3
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
Symbol
307A @ 600V
-55 to 150
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
A
°C
300
TJ = 25°C unless otherwise specified
Parameter
Test Conditions
Min
VBR(CES)
Collector-Emitter Breakdown Voltage
VGE = 0V, IC = 250μA
600
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
2.5
VGE = 15V,
TJ = 25°C
2.0
IC = 62A
TJ = 125°C
1.9
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
V
6
VCE = 600V,
TJ = 25°C
1000
VGE = 0V
TJ = 125°C
5000
VGS = ±30V
Unit
μA
±100
nA
Typ
Max
Unit
Thermal and Mechanical Characteristics
Symbol
Characteristic
Min
RθJC
Junction to Case Thermal Resistance
-
-
0.16
°C/W
WT
Package Weight
-
5.9
-
g
10
in·lbf
Torque
Mounting Torque (TO-247 Package), 4-40 or M3 screw
Microsemi Website - http://www.microsemi.com
052-6329 Rev B 2 - 2009
Symbol
Dynamic Characteristics
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg4
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
Gate- Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
APT102GA60B2_L
TJ = 25°C unless otherwise specified
Test Conditions
Min
Typ
Capacitance
8170
VGE = 0V, VCE = 25V
630
f = 1MHz
78
Gate Charge
294
VGE = 15V
56
VCE= 300V
106
307
Inductive Switching (25°C) IGBT and Diode
VCC = 400V
37
Turn-Off Delay Time
VGE = 15V
212
IC = 62A
101
RG = 4.7Ω5
1354
Eoff7
Turn-Off Switching Energy
TJ = +25°C
1614
td(on
Turn-On Delay Time
Inductive Switching (125°C) IGBT and Diode
27
Current Rise Time
VCC = 400V
37
Turn-Off Delay Time
VGE = 15V
247
IC = 62A
142
Eon2
Turn-On Switching Energy
RG = 4.7Ω5
2106
Eoff7
Turn-Off Switching Energy
TJ = +125°C
1852
tf
Current Fall Time
nC
28
Turn-On Switching Energy
tr
pF
A
L= 100uH, VCE = 600V
Eon2
td(off)
Unit
IC = 62A
TJ = 150°C, RG = 4.7Ω5, VGE = 15V,
Current Rise Time
Current Fall Time
Max
ns
μJ
ns
μJ
052-6329 Rev B 2 - 2009
1 Continuous current limited by package lead temperature.
2 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
3 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
4 See Mil-Std-750 Method 3471.
5 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
6 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
7 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
150
V
IC, COLLECTOR CURRENT (A)
TJ= 125°C
TJ= 150°C
100
TJ= 25°C
75
50
25
250
200
150
100
TJ= 25°C
50
TJ= -55°C
TJ= 125°C
0
2
4
6
8
10
12
14
IC = 124A
3
IC = 62A
IC = 31A
2
1
0
100
6
8
10
12
14
16
8V
50
7V
6V
0
0
4
8
12 16 20
24
28 32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
16
I = 62A
C
T = 25°C
14
J
12
VCE = 120V
10
VCE = 300V
8
VCE = 480V
6
4
2
0
16
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
9V
150
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
10V
200
VGE, GATE-TO-EMITTER VOLTAGE (V)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
300
0
250
0
1
2
3
4
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
350
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
0
40
80
120
160
200 240 280
320
GATE CHARGE (nC)
FIGURE 4, Gate charge
5
4
IC = 124A
3
IC = 62A
2
IC = 31A
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
1.10
250
1.00
0.95
0.90
0.85
0.80
0.75
-.50 -.25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
IC, DC COLLECTOR CURRENT (A)
1.05
200
150
100
50
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6329 Rev B 2 - 2009
IC, COLLECTOR CURRENT (A)
11V
300
400
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
15V 13V
TJ= 55°C
125
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
= 15V
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
GE
APT102GA60B2_L
350
Typical Performance Curves
APT102GA60B2_L
300
VCE = 400V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
35
250
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
40
VGE = 15V
30
25
VGE =15V,TJ=125°C
200
150
50
0
20
0
25
50
75
100
125
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
100
RG = 4.7Ω, L = 100μH, VCE = 400V
VCE = 400V
RG = 4.7Ω
L = 100μH
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
150
125
80
TJ = 125°C, VGE = 15V
100
tr, FALL TIME (ns)
tr, RISE TIME (ns)
VGE =15V,TJ=25°C
100
60
40
20
TJ = 25 or 125°C,VGE = 15V
75
TJ = 25°C, VGE = 15V
50
25
RG = 4.7Ω, L = 100μH, VCE = 400V
0
0
20
40
60
80
0
100
0
25
50
75
100
125
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
V
= 400V
CE
V
= +15V
GE
R =4.7Ω
7000
G
6000
TJ = 125°C
5000
4000
3000
2000
TJ = 25°C
1000
5000
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
8000
0
Eoff,124A
10500
9000
7500
6000
Eon2,62A
4500
Eoff,62A
3000
Eon2,31A
1500
TJ = 125°C
3000
2500
2000
1500
TJ = 25°C
1000
500
0
25
50
75
100
125
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
052-6329 Rev B 2 - 2009
Eon2,124A
J
12000
0
3500
8000
V
= 400V
CE
= +15V
V
GE
T = 125°C
13500
G
4000
0
0
25
50
75
100
125
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
15000
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
4500
7000
V
= 400V
CE
= +15V
V
GE
R = 10Ω
G
6000
5000
Eoff124A
4000
3000
Eon2,62A
Eoff,62A
2000
Eon2,31A
1000
Eoff,31A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
Eon2,124A
0
Eoff,31A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT102GA60B2_L
1000
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
10000
Cies
1000
Coes
100
Cres
10
0
100
200
300
400
500
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
100
10
1
0.1
1
10
100
1000
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0.16
D = 0.9
0.14
0.12
0.7
0.10
0.5
0.08
Note:
0.06
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.18
0.3
t1
0.04
t2
0.1
0.02
0
t
0.05
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-5
10-3
10-2
0.1
1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
Dissipated Power
(Watts)
TC (°C)
.03899
.12064
.01136
.48575
ZEXT
TJ (°C)
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
052-6329 Rev B 2 - 2009
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
APT102GA60B_L
10%
Gate Voltage
90%
td(on)
APT30DQ60
TJ = 125°C
Collector Current
tr
IC
V CC
V CE
10%
5%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
Figure 21, Turn-on Switching Waveforms and Definitions
TJ = 125°C
90%
td(off)
Gate Voltage
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 22, Turn-off Switching Waveforms and Definitions
T-MAXTM (B2) Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
TO-264 (L) Package Outline
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
15.49 (.610)
16.26 (.640)
19.51 (.768)
20.50 (.807)
3.10 (.122)
3.48 (.137)
Collector
5.38 (.212)
6.20 (.244)
5.79 (.228)
6.20 (.244)
Collector
20.80 (.819)
21.46 (.845)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
19.81 (.780)
20.32 (.800)
25.48 (1.003)
26.49 (1.043)
2.87 (.113)
3.12 (.123)
2.29 (.090)
2.69 (.106)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
19.81 (.780)
21.39 (.842)
Gate
Collector
052-6329 Rev B 2 - 2009
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
These dimensions are equal to the TO-247 without the mounting hole.
0.48 (.019)
0.84 (.033)
2.59 (.102)
3.00 (.118)
2.29 (.090)
2.69 (.106)
Gate
Collector
Emitter
0.76 (.030)
1.30 (.051)
2.79 (.110)
3.18 (.125)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.