MICROSEMI APT100GT60B2RG

APT100GT60B2R(G)
APT100GT60LR(G)
600V, 100A, VCE(ON) = 2.1V Typical
Thunderbolt IGBT®
The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using
Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed.
Features
• Low Forward Voltage Drop
• RBSOA and SCSOA Rated
• Low Tail Current
• High Frequency Switching to 50KHz
• Integrated Gate Resistor
• Ultra Low Leakage Current
G
C
E
G
C
E
C
Low EMI, High Reliability
• RoHS Compliant
G
E
All Ratings: TC = 25°C unless otherwise specified.
Maximum Ratings
Symbol Parameter
Ratings
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
IC1
Continuous Collector Current @ TC = 25°C
148
IC2
Continuous Collector Current @ TC = 100°C
80
ICM
Pulsed Collector Current 1
300
SSOA
PD
TJ, TSTG
Unit
Volts
Switching Safe Operating Area @ TJ = 150°C
Amps
300A @ 600V
Total Power Dissipation
Operating and Storage Junction Temperature Range
500
Watts
-55 to 150
°C
Static Electrical Characteristics
Min
Typ
Max
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 4mA)
600
-
-
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 1.5mA, Tj = 25°C)
3
4
5
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C)
1.7
2.1
2.5
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C)
-
2.5
-
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2
-
-
25
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2
-
-
1000
Gate-Emitter Leakage Current (VGE = ±30V)
-
-
300
VCE(ON)
ICES
IGES
Volts
μA
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Unit
nA
052-6297 Rev A 7 - 2008
Symbol Characteristic / Test Conditions
Dynamic Characteristic
Symbol
APT100GT60B2R_LR(G)
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Min
Typ
Max
-
5150
-
-
475
-
-
295
-
-
8.0
-
VGE = 15V
-
460
-
VGE = 0V, VCE = 25V
f = 1MHz
Gate Charge
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
VCE= 300V
-
40
-
Gate-Collector Charge
IC = 100A
-
210
-
TJ = 150°C, RG = 4.3Ω , VGE = 15V,
300
Qgc
SSOA
td(on)
tr
td(off)
tf
3
Switching Safe Operating Area
L = 100μH, VCE= 600V
Current Rise Time
Turn-Off Delay Time
40
-
Inductive Switching (25°C)
-
75
-
VCC = 400V
-
320
-
-
100
-
RG = 4.3Ω
-
3250
-
TJ = +25°C
-
3525
-
VGE = 15V
Current Fall Time
IC = 100A
Eon1
Turn-On Switching Energy
4
Eon2
Turn-On Switching Energy
5
Eoff
Turn-Off Switching Energy 6
-
3125
-
td(on)
Turn-On Delay Time
-
40
-
Inductive Switching (125°C)
-
75
-
Turn-Off Delay Time
VCC = 400V
-
350
-
Current Fall Time
VGE = 15V
-
100
-
Turn-On Switching Energy
4
IC = 100A
3275
-
Eon2
Turn-On Switching Energy
RG = 4.3Ω
-
5
-
4650
-
Eoff
Turn-Off Switching Energy 6
-
3750
-
tr
td(off)
tf
Eon1
Current Rise Time
TJ = +125°C
pF
V
nC
A
-
Turn-On Delay Time
Unit
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
Min
Typ
Max
RθJC
Junction to Case (IGBT)
-
-
0.25
RθJC
Junction to Case (DIODE)
-
-
N/A
WT
Package Weight
-
29.2
-
g
-
-
10
in·lbf
-
-
1.1
N·m
Torque
Unit
°C/W
Terminals and Mounting Screws
052-6297 Rev A 7 - 2008
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages.
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
APT100GT60B2R_LR(G)
300
200
V
GE
12, 13, &15V
= 15V
10V
IC, COLLECTOR CURRENT (A)
160
140
TC = 25°C
120
TC = 125°C
100
80
TC = -55°C
60
40
250
9V
200
8V
150
100
7V
50
6V
20
0
0
0 0.5
1
1.5
2
2.5
3
3.5
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
IC, COLLECTOR CURRENT (A)
180
TJ = -55°C
160
140
120
100
80
TC = 25°C
60
TC = 125°C
40
20
0
0
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
200
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 100A
C
T = 25°C
14
0
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
3.0
IC = 100A
2.5
2.0
1.5
IC = 50A
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
3
2.5
1.5
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.85
IC = 50A
1
VGE = 15V.
250µs
PULSE TEST <0.5 %
DUTY CYCLE
0.5
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
180
0.90
IC = 100A
2
1.10
0.95
IC = 200A
3.5
200
1.00
500
4
1.15
1.05
200
300
400
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC = 200A
4.0
(NORMALIZED)
VGS(TH), THRESHOLD VOLTAGE
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.5
100
0
160
140
120
100
80
60
40
20
0
-50 -25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6297 Rev A 7 - 2008
IC, COLLECTOR CURRENT (A)
180
Typical Performance Curves
APT100GT60B2R_LR(G)
450
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
35
VGE = 15V
30
25
20
15
10
VCE = 400V
5 TJ = 25°C, or 125°C
RG = 4.3Ω
L = 100µH
0
350
300
VGE =15V,TJ=25°C
250
VGE =15V,TJ=125°C
200
150
100
VCE = 400V
RG = 4.3Ω
L = 100µH
50
0
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
250
400
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
200
RG = 4.3Ω, L = 100µH, VCE = 400V
RG = 4.3Ω, L = 100µH, VCE = 400V
180
160
tf, FALL TIME (ns)
tr, RISE TIME (ns)
200
150
100
TJ = 25 or 125°C,VGE = 15V
16000
60
TJ = 25°C, VGE = 15V
12000
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
14000
G
12000
TJ = 125°C
10000
8000
6000
4000
2000
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
80
0
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
TJ = 25°C
0
Eon2,200A
J
25000
20000
15000
Eoff,200A
10000
Eon2,100A
Eoff,100A
5000
Eoff,50A
Eon2,50A
0
TJ = 125°C
8000
6000
4000
2000
TJ = 25°C
16000
V
= 400V
CE
= +15V
V
GE
T = 125°C
30000
G
10000
0 25 50 70 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
35000
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
0
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
100
20
0
052-6297 Rev A 7 - 2008
120
40
50
0
TJ = 125°C, VGE = 15V
140
Eon2,200A
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
14000
G
12000
Eoff,200A
10000
8000
6000
4000 Eon2,100A
Eoff,100A
2000 Eoff,50A
0
Eon2,50A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT100GT60B2R_LR(G)
10,000
IC, COLLECTOR CURRENT (A)
350
Cies
P
C, CAPACITANCE ( F)
5,000
1,000
500
C0es
300
250
200
150
100
50
Cres
0
100
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.25
0.9
0.20
0.7
0.15
0.5
0.10
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
0.3
t1
t2
0.05
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
0
10
-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
TC (°C)
0.0587
0.132
0.0587
Dissipated Power
(Watts)
0.0120
0.420
4.48
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
100
50
T = 75°C
C
F
10
T = 100°C
C
5
T = 125°C
J
D = 50 %
V
= 400V
CE
R = 4.3Ω
1
= min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
max
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
G
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6297 Rev A 7 - 2008
10 20
APT100GT60B2R_LR(G)
Gate Voltage
APT100DQ60
10%
TJ = 125°C
td(on)
tr
V CE
IC
V CC
90%
5%
Collector Current
5%
10%
A
CollectorVoltage
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
Gate Voltage
TJ = 125°C
td(off)
CollectorVoltage
90%
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
T-MAXTM (B2) Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
TO-264 (L) Package Outline
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
15.49 (.610)
16.26 (.640)
19.51 (.768)
20.50 (.807)
3.10 (.122)
3.48 (.137)
Collector
5.38 (.212)
6.20 (.244)
5.79 (.228)
6.20 (.244)
Collector
20.80 (.819)
21.46 (.845)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
19.81 (.780)
20.32 (.800)
25.48 (1.003)
26.49 (1.043)
2.87 (.113)
3.12 (.123)
2.29 (.090)
2.69 (.106)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
19.81 (.780)
21.39 (.842)
Gate
Collector
052-6297 Rev A 7 - 2008
5.45 (.215) BSC
2-Plcs.
These dimensions are equal to the TO-247 without the mounting hole.
Gate
Collector
Emitter
Emitter
2.21 (.087)
2.59 (.102)
2.29 (.090)
2.69 (.106)
0.48 (.019)
0.84 (.033)
2.59 (.102)
3.00 (.118)
0.76 (.030)
1.30 (.051)
2.79 (.110)
3.18 (.125)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.