AOTF450L 200V, 5.8A N-Channel MOSFET General Description The AOTF450L is fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications.By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability this part can be adopted quickly into new and existing offline power supply designs.This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. Features VDS 250V@150℃ ID (at VGS=10V) 5.8A RDS(ON) (at VGS=10V) < 0.7Ω D G S Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current Pulsed Drain Current TC=100°C C ID Units V ±30 V 5.8* 4.1* A IDM 12 Avalanche Current C IAR 1.9 A Repetitive avalanche energy C EAR 54 mJ Single pulsed avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25oC EAS dv/dt 108 5 27 mJ V/ns W 0.18 -55 to 175 W/ oC °C 300 °C Max 65 5.6 Units °C/W °C/W PD Junction and Storage Temperature Range TJ, TSTG Maximum lead temperature for soldering TL purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Symbol Maximum Junction-to-Ambient A,D RθJA Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. 1/5 Max 200 www.freescale.net.cn AOTF450L 200V, 5.8A N-Channel MOSFET Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter Conditions Min ID=250µA, VGS=0V, TJ=25°C 200 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Zero Gate Voltage Drain Current IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±30V VGS(th) Gate Threshold Voltage VDS=5V, ID=250µA ID=250µA, VGS=0V, TJ=150°C 250 V ID=250µA, VGS=0V 0.25 V/ oC VDS=200V, VGS=0V 1 VDS=160V, TJ=125°C 10 ±100 3.6 4.2 4.5 nΑ V 0.7 Ω RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=2.9A 0.57 gFS Forward Transconductance VDS=40V, ID=2.9A 3.4 VSD Diode Forward Voltage IS=1A,VGS=0V 0.78 IS ISM S 1 V Maximum Body-Diode Continuous Current 5.8 A Maximum Body-Diode Pulsed Current 12 A DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance 150 194 235 pF VGS=0V, VDS=25V, f=1MHz 25 40 55 pF VGS=0V, VDS=0V, f=1MHz 1.8 3.6 5.4 Ω 2.8 3.6 4.4 nC 3.3 SWITCHING PARAMETERS Qg Total Gate Charge VGS=10V, VDS=160V, ID=5.8A pF 1.7 nC Gate Drain Charge 0.6 nC Turn-On DelayTime 11 ns Qgs Gate Source Charge Qgd tD(on) tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf trr Turn-Off Fall Time Qrr µA VGS=10V, VDS=100V, ID=5.8A, RG=25Ω IF=5.8A,dI/dt=100A/µs,VDS=100V Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=5.8A,dI/dt=100A/µs,VDS=100V 20 ns 13 ns 8 ns 95 121 150 0.40 0.51 0.62 ns µC A. The value of R θJA is measured with the device in a still air environment with TA =25°C. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C, Ratings are based on low frequency and duty cycles to keep initial TJ=25°C. D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=1.9A, VDD=150V, RG=25Ω, Starting TJ=25°C 2/5 www.freescale.net.cn AOTF450L 200V, 5.8A N-Channel MOSFET TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 12 VDS=40V 10 10V -55°C 10 ID(A) ID (A) 8 6 6.5V 125°C 4 1 6V 25°C 2 VGS=5.5V 0 0.1 0 5 10 15 20 25 30 2 4 6 8 VGS(Volts) Figure 2: Transfer Characteristics VDS (Volts) Fig 1: On-Region Characteristics 1.0 Normalized On-Resistance 4 VGS=10V 0.8 RDS(ON) (Ω Ω) 10 0.6 0.4 0.2 3.5 VGS=10V ID=2.9A 3 2.5 2 1.5 1 0.5 0 0.0 -100 0 2 4 6 8 -50 0 50 100 150 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 1.2 1.0E+02 40 1.0E+00 IS (A) BVDSS (Normalized) 1.0E+01 1.1 1 125°C 1.0E-01 1.0E-02 25°C 0.9 1.0E-03 0.8 1.0E-04 -100 -50 0 50 100 150 TJ (°°C) Figure 5:Break Down vs. Junction Temparature 3/5 200 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) www.freescale.net.cn AOTF450L 200V, 5.8A N-Channel MOSFET TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 1000 Capacitance (pF) VGS (Volts) Ciss VDS=160V ID=5.8A 12 9 6 100 Coss Crss 10 3 1 0 1 2 3 4 5 Qg (nC) Figure 7: Gate-Charge Characteristics 0.1 6 8 100 6 10 ID (Amps) Current rating ID(A) 0 4 1 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 10µs RDS(ON) limited 100µs 1ms 1 10ms DC 0.1s 0.1 2 1s TJ(Max)=175°C TC=25°C 0 0.01 0 25 50 75 100 125 150 1 175 TCASE (°°C) Figure 9: Current De-rating (Note B) 10 100 1000 VDS (Volts) Figure 10: Maximum Forward Biased Safe Operating Area for AOTF450L (Note F) Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=5.6°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton T Single Pulse 0.001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance for AOTF450L (Note F) 4/5 www.freescale.net.cn AOTF450L 200V, 5.8A N-Channel MOSFET Gate Charge Test Circuit & Waveform Vgs Qg 10V + + VDC - VDC DUT Qgs Vds Qgd - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds Vgs 90% + DUT Vdd VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vgs Vgs VDC - Rg Vdd I AR Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig 5/5 Isd L + VDC - IF trr dI/dt IRM Vdd Vdd Vds www.freescale.net.cn