ETC BTS452-T

BTS 452 T
Smart Power High-Side-Switch
Features
Product Summary
62
V
·
Overload protection
Overvoltage protection
Vbb(AZ)
·
Current limitation
Operating voltage
Vbb(on)
·
Short circuit protection
On-state resistance
RON
200
mW
·
Thermal shutdown with restart
Nominal load current
I L(ISO)
1.8
A
·
Overvoltage protection (including load dump)
·
Fast demagnetization of inductive loads
·
Reverse battery protection with external resistor
·
CMOS compatible input
6...52 V
Loss of GND and loss of Vbb protection
· ESD - Protection
·
·
Very low standby current
Application
• All types of resistive, inductive and capacitive loads
• µC compatible power switch for 12 V, 24 V and 42 V DC applications
• Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input,
monolithically integrated in Smart SIPMOSâ technology. Fully protected by embedded
protection functions.
Page 1
2000-02-22
BTS 452 T
Block Diagram
+ V bb
Voltage
source
Overvoltage
protection
Current
limit
Gate
protection
V Logic
OUT
Limit for
unclamped
ind. loads
Charge pump
Level shifter
Temperature
sensor
Rectifier
IN
ESD
Load
Logic
miniPROFET
GND

Load GND
Signal GND
Pin
Symbol
Function
1
GND
Logic ground
2
IN
3
Vbb
Positive power supply voltage
4
NC
not connected
5
OUT
Output to the load
TAB
Vbb
Positive power supply voltage
Input, activates the power switch in case of logic high signal
Page 2
2000-02-22
BTS 452 T
Maximum Ratings at Tj = 25°C, unless otherwise specified
Parameter
Symbol
Value
Unit
Supply voltage
Vbb
52
V
Supply voltage for full short circuit protection
Vbb(SC)
50
Continuous input voltage
VIN
-10 ... +16
Load current (Short - circuit current, see page 5)
IL
self limited
Current through input pin (DC)
±5
mA
Operating temperature
I IN
Tj
-40 ...+150
°C
Storage temperature
T stg
-55 ... +150
Power dissipation 1)
Ptot
41.6
W
Inductive load switch-off energy dissipation 1)2)
EAS
150
mJ
A
single pulse, (see page 8)
Tj =150 °C, I L = 1 A
Load dump protection 2) VLoadDump3)= V A + V S
RI=2W, t d=400ms, VIN= low or high, VA=13,5V
V
V/RDGGXPS
RL = 13.5 W
73.5
RL = 27 W
88.5
Electrostatic discharge voltage (Human Body Model) VESD
according to ANSI EOS/ESD - S5.1 - 1993
kV
ESD STM5.1 - 1998
±1
±5
Input pin
all other pins
Thermal Characteristics
junction - case:
RthJC
-
-
3
K/W
Thermal resistance @ min. footprint
Rth(JA)
-
80
-
K/W
Thermal resistance @ 6 cm 2 cooling area 1)
Rth(JA)
-
45
60
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2not tested, specified by design
3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .
Supply voltages higher than Vbb(AZ) require an external current limit for the GND pin, e.g. with a
150W resistor in GND connection. A resistor for the protection of the input is integrated.
Page 3
2000-02-22
BTS 452 T
Electrical Characteristics
Symbol
Parameter and Conditions
DW7M ƒ&9 EE 9XQOHVVRWKHUZLVHVSHFLILHG
Values
min.
typ.
Unit
max.
Load Switching Capabilities and Characteristics
On-state resistance
mW
RON
T j = 25 °C, I L = 1 A, V bb = 9...52 V
-
150
200
T j = 150 °C
-
270
380
1.8
2.2
-
A
µs
Nominal load current; Device on PCB 1)
I L(ISO)
T C = 85 °C, V ON = 0.5 V
Turn-on time
to 90% V OUT
t on
-
80
180
Turn-off time
to 10% VOUT
t off
-
80
200
Slew rate on
10 to 30% V OUT,
dV/dt on
-
0.7
2
Slew rate off
70 to 40% V OUT,
-dV/dtoff
-
0.9
2
Operating voltage
Vbb(on)
6
-
52
Undervoltage shutdown of charge pump
Vbb(under)
Tj = -40...+85 °C
-
-
4
Tj = 150 °C
-
-
5.5
-
4
5.5
RL = 47 W
RL = 47 W
RL = 47 W, V bb = 13.5 V
RL = 47 W, V bb = 13.5 V
V/µs
Operating Parameters
Undervoltage restart of charge pump
Vbb(u cp)
Standby current
Ibb(off)
µA
Tj = -40...+85 °C, VIN = low
-
-
15
Tj = +150 °C2) , VIN = low
-
-
18
IL(off)
-
-
5
IGND
-
0.8
2
Leakage output current (included in Ibb(off))
V
VIN = low
Operating current
mA
VIN = high
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2higher current due temperature sensor
Page 4
2000-02-22
BTS 452 T
Electrical Characteristics
Symbol
Parameter and Conditions
DW7M ƒ&9 EE 9XQOHVVRWKHUZLVHVSHFLILHG
Values
min.
typ.
Unit
max.
Protection Functions
Initial peak short circuit current limit (pin 3 to 5)
A
I L(SCp)
T j = -40 °C, V bb = 20 V, tm = 150 µs
-
-
9
T j = 25 °C
-
6.5
-
T j = 150 °C
4
-
-
T j = -40...+150 °C, V bb > 40 V , ( see page 11 )
-
5 1)
-
Vbb < 40 V
-
6
-
Vbb > 40 V
-
4.5
-
VON(CL)
59
63
-
Vbb(AZ)
62
-
-
Thermal overload trip temperature
T jt
150
-
-
°C
Thermal hysteresis
DTjt
-
10
-
K
Reverse battery3)
-Vbb
-
-
52
V
Drain-source diode voltage (VOUT > V bb)
-VON
-
600
-
Repetitive short circuit current limit
I L(SCr)
T j = Tjt (see timing diagrams)
Output clamp (inductive load switch off)
V
at V OUT = V bb - V ON(CL),
I bb = 4 mA
Overvoltage protection 2)
I bb = 4 mA
Reverse Battery
mV
T j = 150 °C
1not tested, specified by design
2 see also V ON(CL) in circuit diagram on page 7
3Requires a 150 W resistor in GND connection. The reverse load current through the intrinsic drain-source diode has
to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the
voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation!
Input current has to be limited (see max. ratings page 3).
Page 5
2000-02-22
BTS 452 T
Parameter and Conditions
Symbol
DW7M ƒ&9 EE 9XQOHVVRWKHUZLVHVSHFLILHG
Values
Unit
min.
typ.
max.
Input
Input turn-on threshold voltage
VIN(T+)
-
-
2.2
Input turn-off threshold voltage
VIN(T-)
0.8
-
-
Input threshold hysteresis
DV IN(T)
-
0.4
-
Off state input current
I IN(off)
1
-
25
I IN(on)
3
-
25
RI
2
3.5
5
V
µA
VIN = 0.7 V
On state input current
VIN = 5 V
Input resistance (see page 7)
Page 6
kW
2000-02-22
BTS 452 T
Terms
Inductive and overvoltage output clamp
Ibb
+ V bb
V
Z
Vbb
V
I IN
IL
IN
PROFET
ON
VON
OUT
OUT
V
GND
GND
IN
V
bb
R
IGND
VOUT
GND
VON clamped to 59V min.
Overvoltage protection of logic part
Input circuit (ESD protection)
R
IN
+ V bb
I
V
ESD- ZD I
I
IN
I
Z2
RI
L o gic
GND
V
Z1
7KHXVHRI(6']HQHUGLRGHVDVYROWDJHFODPS
DW'&FRQGLWLRQVLVQRWUHFRPPHQGHG
GND
R GN D
S ignal GND
VZ1 =6.1V typ., VZ2=Vbb(AZ)=62V min.,
RI=3.5 kW typ., RGND=150W
Reverse battery protection
Internal output pull down
V
- V bb
bb
Logic
IN
RI
OUT
Power
Inverse
Diode
V
OUT
GND
R
RL
R GND
Signal GND
O
Power GND
RGND=150W, RI=3.5kW typ.,
Temperature protection is not active during inverse
current
S ignal G N D
RO = 200 kW typ.
Page 7
2000-02-22
BTS 452 T
Vbb disconnect with charged inductive
load
GND disconnect
Vbb
Vbb
IN
high
OUT
PROFET
IN
GND
V
bb
V
PROFET
OUT
GND
V
GND
IN
V
bb
GND disconnect with GND pull up
Inductive Load switch-off energy
dissipation
Vbb
IN
PROFET
OUT
E bb
E AS
GND
E Load
Vbb
V
bb
V
IN
V
GND
IN
PROFET
OUT
L
=
GND
ZL
^
R
EL
ER
L
Energy stored in load inductance: EL = ½ * L * IL2
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
E AS = Ebb + EL - ER = ò VON(CL) * iL(t) dt,
with an approximate solution for RL > 0W:
E AS =
Page 8
IL * R L
IL * L
)
* ( V b b + | V O U T ( C L )| ) * ln (1 +
| V O U T ( C L )|
2 * RL
2000-02-22
BTS 452 T
Typ. transient thermal impedance
Typ. transient thermal impedance
Z thJA=f(tp) @ 6cm 2 heatsink area
ZthJA=f(tp) @ min. footprint
Parameter: D=tp/T
Parameter: D=tp/T
10
2
10 2
K/W
D=0.5
K/W
D=0.5
D=0.2
10 1
D=0.2
10 1
D=0.05
10 0
D=0.05
ZthJA
ZthJA
D=0.1
D=0.02
D=0.1
D=0.02
10 0
D=0.01
D=0.01
10 -1
10 -1
D=0
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
s
10
D=0
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
4
tp
10
V
Vbb
50
tp
Typ. on-state resistance
Typ. on-state resistance
RON = f(Tj) ; Vbb = 13,5V ; V in = high
RON = f(Vbb ); IL = 1 A ; Vin = high
400
300
mW
mW
150°C
RON
300
RON
s
200
250
200
150
25°C
150
100
-40°C
100
50
50
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
160
Page 9
0
0
5
10
15
20
25
30
35
40
2000-02-22
4
BTS 452 T
Typ. turn off time
Typ. turn on time
toff = f(Tj); RL = 47W
ton = f(Tj ); R L = 47W
160
160
µs
µs
9V
120
13.5V
100
t off
ton
120
100
9...42V
80
80
42V
60
60
40
40
20
20
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
-40 -20
160
Typ. slew rate on
0
20
40
60
80 100 120
°C
Tj
160
Typ. slew rate off
dV/dton = f(Tj ) ; RL = 47 W
dV/dtoff = f(Tj); RL = 47 W
2.0
3.5
V/µs
V/µs
-dV
dtoff
dV
dton
1.6
1.4
1.2
2.5
2.0
1.0
42V
1.5
0.8
42V
0.6
1.0
13.5V
0.4
9V
0.5
160
0.0
-40 -20
13.5V
9V
0.2
0.0
-40 -20
0
20
40
60
80 100 120
°C
Tj
Page 10
0
20
40
60
80 100 120
°C
Tj
160
2000-02-22
BTS 452 T
Typ. standby current
Typ. leakage current
Ibb(off) = f(Tj ) ; Vbb = 42V ; VIN = low
IL(off) = f(Tj) ; Vbb = 42V ; VIN = low
10
2.5
µA
IL(off)
Ibb(off)
µA
6
1.5
4
1.0
2
0.5
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0.0
-40 -20
160
0
20
40
60
80 100 120
°C
Tj
160
Typ. initial peak short circuit current limit
Typ. initial short circuit shutdown time
IL(SCp) = f(Vbb)
toff(SC) = f(Tj,start ) ; Vbb = 20V
10
6
ms
-40°C
toff(SC)
IL(SCp)
A
25°C
6
150°C
4
3
4
2
2
1
0
0
10
20
30
40
0
-40 -20
60
V
Vbb
Page 11
0
20
40
60
80 100 120
°C
Tj
160
2000-02-22
BTS 452 T
Typ. input current
Typ. input current
I IN(on/off) = f(Tj); V bb = 13,5V; VIN = low/high
IIN = f(VIN); Vbb = 13.5V
VINlow £ 0,7V; V INhigh = 5V
50
12
µA
µA
-40...25°C
I IN
I IN
8
150°C
30
on
6
20
off
4
10
2
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
0
160
1
2
3
4
5
Typ. input threshold voltage
Typ. input threshold voltage
VIN(th) = f(Tj ) ; Vbb = 13,5V
VIN(th) = f(Vbb) ; Tj = 25°C
2.0
8
V
on
on
1.6
off
1.4
1.2
VIN(th)
1.6
VIN(th)
V
VIN
2.0
V
1.4
1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
20
40
60
80 100 120
°C
Tj
0.0
0
160
off
1.2
1.0
0.0
-40 -20
6
10
20
30
50
V
Vbb
Page 12
2000-02-22
BTS 452 T
Maximum allowable load inductance
Maximum allowable inductive switch-off
for a single switch off
energy, single pulse
L = f(I L); T jstart=150°C, RL=0W
4500
EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V
13.5V
1200
mH
mJ
3500
L
EAS
3000
800
2500
600
42V
2000
1500
400
1000
200
500
0
0.0
0.2
0.5
0.8
1.0
1.2
1.5
A
IL
0
0.0
2.0
Page 13
0.2
0.5
0.8
1.0
1.2
1.5
A
IL
2.0
2000-02-22
BTS 452 T
Timing diagrams
Figure 2b: Switching a lamp,
Figure 1a: Vbb turn on:
IN
IN
OUT
V
bb
I
V
L
OUT
t
t
Figure 2a: Switching a resistive load,
turn-on/off time and slew rate definition
Figure 2c: Switching an inductive load
IN
IN
V
V OUT
OUT
90%
t on
d V /d to n
d V /d to f f
t
o ff
10%
I
IL
L
t
t
Page 14
2000-02-22
BTS 452 T
Figure 5: Undervoltage restart of charge pump
Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling
Von
IN
t
I
L
Vbb( ucp)
I
L(SCp)
I
Vbb( under )
L(SCr)
Vbb
tm
t off(SC)
t
+HDWLQJXSRIWKHFKLSPD\UHTXLUHVHYHUDOPLOOLVHFRQGVGHSHQGLQJ
RQH[WHUQDOFRQGLWLRQV
Figure 4: Overtemperature:
Reset if Tj < T jt
IN
V
OUT
T
J
t
Page 15
2000-02-22
BTS 452 T
Package and ordering code
all dimensions in mm
Ordering code:
Q67060-S7406
2.3 +0.05
-0.10
A
0.9 +0.08
-0.04
1 ±0.1
0...0.15
0.51 min
0.15 max
per side
B
5.4 ±0.1
0.8 ±0.15
(4.17) 1 ±0.1
9.9 ±0.5
6.22 -0.2
6.5 +0.15
-0.10
0.5 +0.08
-0.04
5x0.6 ±0.1
1.14
4.56
0.1
0.25
M
A B
GPT09161
All metal surfaces tin plated, except area of cut.
Printed circuit board (FR4, 1.5mm thick, one
layer 70µm, 6cm 2 active heatsink area ) as
a reference for max. power dissipation Ptot
nominal load current IL(nom) and thermal
resistance R thja
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 16
2000-02-22