BTS 452 T Smart Power High-Side-Switch Features Product Summary 62 V · Overload protection Overvoltage protection Vbb(AZ) · Current limitation Operating voltage Vbb(on) · Short circuit protection On-state resistance RON 200 mW · Thermal shutdown with restart Nominal load current I L(ISO) 1.8 A · Overvoltage protection (including load dump) · Fast demagnetization of inductive loads · Reverse battery protection with external resistor · CMOS compatible input 6...52 V Loss of GND and loss of Vbb protection · ESD - Protection · · Very low standby current Application • All types of resistive, inductive and capacitive loads • µC compatible power switch for 12 V, 24 V and 42 V DC applications • Replaces electromechanical relays and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOSâ technology. Fully protected by embedded protection functions. Page 1 2000-02-22 BTS 452 T Block Diagram + V bb Voltage source Overvoltage protection Current limit Gate protection V Logic OUT Limit for unclamped ind. loads Charge pump Level shifter Temperature sensor Rectifier IN ESD Load Logic miniPROFET GND Load GND Signal GND Pin Symbol Function 1 GND Logic ground 2 IN 3 Vbb Positive power supply voltage 4 NC not connected 5 OUT Output to the load TAB Vbb Positive power supply voltage Input, activates the power switch in case of logic high signal Page 2 2000-02-22 BTS 452 T Maximum Ratings at Tj = 25°C, unless otherwise specified Parameter Symbol Value Unit Supply voltage Vbb 52 V Supply voltage for full short circuit protection Vbb(SC) 50 Continuous input voltage VIN -10 ... +16 Load current (Short - circuit current, see page 5) IL self limited Current through input pin (DC) ±5 mA Operating temperature I IN Tj -40 ...+150 °C Storage temperature T stg -55 ... +150 Power dissipation 1) Ptot 41.6 W Inductive load switch-off energy dissipation 1)2) EAS 150 mJ A single pulse, (see page 8) Tj =150 °C, I L = 1 A Load dump protection 2) VLoadDump3)= V A + V S RI=2W, t d=400ms, VIN= low or high, VA=13,5V V V/RDGGXPS RL = 13.5 W 73.5 RL = 27 W 88.5 Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 kV ESD STM5.1 - 1998 ±1 ±5 Input pin all other pins Thermal Characteristics junction - case: RthJC - - 3 K/W Thermal resistance @ min. footprint Rth(JA) - 80 - K/W Thermal resistance @ 6 cm 2 cooling area 1) Rth(JA) - 45 60 1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2not tested, specified by design 3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than Vbb(AZ) require an external current limit for the GND pin, e.g. with a 150W resistor in GND connection. A resistor for the protection of the input is integrated. Page 3 2000-02-22 BTS 452 T Electrical Characteristics Symbol Parameter and Conditions DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values min. typ. Unit max. Load Switching Capabilities and Characteristics On-state resistance mW RON T j = 25 °C, I L = 1 A, V bb = 9...52 V - 150 200 T j = 150 °C - 270 380 1.8 2.2 - A µs Nominal load current; Device on PCB 1) I L(ISO) T C = 85 °C, V ON = 0.5 V Turn-on time to 90% V OUT t on - 80 180 Turn-off time to 10% VOUT t off - 80 200 Slew rate on 10 to 30% V OUT, dV/dt on - 0.7 2 Slew rate off 70 to 40% V OUT, -dV/dtoff - 0.9 2 Operating voltage Vbb(on) 6 - 52 Undervoltage shutdown of charge pump Vbb(under) Tj = -40...+85 °C - - 4 Tj = 150 °C - - 5.5 - 4 5.5 RL = 47 W RL = 47 W RL = 47 W, V bb = 13.5 V RL = 47 W, V bb = 13.5 V V/µs Operating Parameters Undervoltage restart of charge pump Vbb(u cp) Standby current Ibb(off) µA Tj = -40...+85 °C, VIN = low - - 15 Tj = +150 °C2) , VIN = low - - 18 IL(off) - - 5 IGND - 0.8 2 Leakage output current (included in Ibb(off)) V VIN = low Operating current mA VIN = high 1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2higher current due temperature sensor Page 4 2000-02-22 BTS 452 T Electrical Characteristics Symbol Parameter and Conditions DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values min. typ. Unit max. Protection Functions Initial peak short circuit current limit (pin 3 to 5) A I L(SCp) T j = -40 °C, V bb = 20 V, tm = 150 µs - - 9 T j = 25 °C - 6.5 - T j = 150 °C 4 - - T j = -40...+150 °C, V bb > 40 V , ( see page 11 ) - 5 1) - Vbb < 40 V - 6 - Vbb > 40 V - 4.5 - VON(CL) 59 63 - Vbb(AZ) 62 - - Thermal overload trip temperature T jt 150 - - °C Thermal hysteresis DTjt - 10 - K Reverse battery3) -Vbb - - 52 V Drain-source diode voltage (VOUT > V bb) -VON - 600 - Repetitive short circuit current limit I L(SCr) T j = Tjt (see timing diagrams) Output clamp (inductive load switch off) V at V OUT = V bb - V ON(CL), I bb = 4 mA Overvoltage protection 2) I bb = 4 mA Reverse Battery mV T j = 150 °C 1not tested, specified by design 2 see also V ON(CL) in circuit diagram on page 7 3Requires a 150 W resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3). Page 5 2000-02-22 BTS 452 T Parameter and Conditions Symbol DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values Unit min. typ. max. Input Input turn-on threshold voltage VIN(T+) - - 2.2 Input turn-off threshold voltage VIN(T-) 0.8 - - Input threshold hysteresis DV IN(T) - 0.4 - Off state input current I IN(off) 1 - 25 I IN(on) 3 - 25 RI 2 3.5 5 V µA VIN = 0.7 V On state input current VIN = 5 V Input resistance (see page 7) Page 6 kW 2000-02-22 BTS 452 T Terms Inductive and overvoltage output clamp Ibb + V bb V Z Vbb V I IN IL IN PROFET ON VON OUT OUT V GND GND IN V bb R IGND VOUT GND VON clamped to 59V min. Overvoltage protection of logic part Input circuit (ESD protection) R IN + V bb I V ESD- ZD I I IN I Z2 RI L o gic GND V Z1 7KHXVHRI(6']HQHUGLRGHVDVYROWDJHFODPS DW'&FRQGLWLRQVLVQRWUHFRPPHQGHG GND R GN D S ignal GND VZ1 =6.1V typ., VZ2=Vbb(AZ)=62V min., RI=3.5 kW typ., RGND=150W Reverse battery protection Internal output pull down V - V bb bb Logic IN RI OUT Power Inverse Diode V OUT GND R RL R GND Signal GND O Power GND RGND=150W, RI=3.5kW typ., Temperature protection is not active during inverse current S ignal G N D RO = 200 kW typ. Page 7 2000-02-22 BTS 452 T Vbb disconnect with charged inductive load GND disconnect Vbb Vbb IN high OUT PROFET IN GND V bb V PROFET OUT GND V GND IN V bb GND disconnect with GND pull up Inductive Load switch-off energy dissipation Vbb IN PROFET OUT E bb E AS GND E Load Vbb V bb V IN V GND IN PROFET OUT L = GND ZL ^ R EL ER L Energy stored in load inductance: EL = ½ * L * IL2 While demagnetizing load inductance, the enérgy dissipated in PROFET is E AS = Ebb + EL - ER = ò VON(CL) * iL(t) dt, with an approximate solution for RL > 0W: E AS = Page 8 IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL 2000-02-22 BTS 452 T Typ. transient thermal impedance Typ. transient thermal impedance Z thJA=f(tp) @ 6cm 2 heatsink area ZthJA=f(tp) @ min. footprint Parameter: D=tp/T Parameter: D=tp/T 10 2 10 2 K/W D=0.5 K/W D=0.5 D=0.2 10 1 D=0.2 10 1 D=0.05 10 0 D=0.05 ZthJA ZthJA D=0.1 D=0.02 D=0.1 D=0.02 10 0 D=0.01 D=0.01 10 -1 10 -1 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 s 10 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 4 tp 10 V Vbb 50 tp Typ. on-state resistance Typ. on-state resistance RON = f(Tj) ; Vbb = 13,5V ; V in = high RON = f(Vbb ); IL = 1 A ; Vin = high 400 300 mW mW 150°C RON 300 RON s 200 250 200 150 25°C 150 100 -40°C 100 50 50 0 -40 -20 0 20 40 60 80 100 120 °C Tj 160 Page 9 0 0 5 10 15 20 25 30 35 40 2000-02-22 4 BTS 452 T Typ. turn off time Typ. turn on time toff = f(Tj); RL = 47W ton = f(Tj ); R L = 47W 160 160 µs µs 9V 120 13.5V 100 t off ton 120 100 9...42V 80 80 42V 60 60 40 40 20 20 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0 -40 -20 160 Typ. slew rate on 0 20 40 60 80 100 120 °C Tj 160 Typ. slew rate off dV/dton = f(Tj ) ; RL = 47 W dV/dtoff = f(Tj); RL = 47 W 2.0 3.5 V/µs V/µs -dV dtoff dV dton 1.6 1.4 1.2 2.5 2.0 1.0 42V 1.5 0.8 42V 0.6 1.0 13.5V 0.4 9V 0.5 160 0.0 -40 -20 13.5V 9V 0.2 0.0 -40 -20 0 20 40 60 80 100 120 °C Tj Page 10 0 20 40 60 80 100 120 °C Tj 160 2000-02-22 BTS 452 T Typ. standby current Typ. leakage current Ibb(off) = f(Tj ) ; Vbb = 42V ; VIN = low IL(off) = f(Tj) ; Vbb = 42V ; VIN = low 10 2.5 µA IL(off) Ibb(off) µA 6 1.5 4 1.0 2 0.5 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0.0 -40 -20 160 0 20 40 60 80 100 120 °C Tj 160 Typ. initial peak short circuit current limit Typ. initial short circuit shutdown time IL(SCp) = f(Vbb) toff(SC) = f(Tj,start ) ; Vbb = 20V 10 6 ms -40°C toff(SC) IL(SCp) A 25°C 6 150°C 4 3 4 2 2 1 0 0 10 20 30 40 0 -40 -20 60 V Vbb Page 11 0 20 40 60 80 100 120 °C Tj 160 2000-02-22 BTS 452 T Typ. input current Typ. input current I IN(on/off) = f(Tj); V bb = 13,5V; VIN = low/high IIN = f(VIN); Vbb = 13.5V VINlow £ 0,7V; V INhigh = 5V 50 12 µA µA -40...25°C I IN I IN 8 150°C 30 on 6 20 off 4 10 2 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0 0 160 1 2 3 4 5 Typ. input threshold voltage Typ. input threshold voltage VIN(th) = f(Tj ) ; Vbb = 13,5V VIN(th) = f(Vbb) ; Tj = 25°C 2.0 8 V on on 1.6 off 1.4 1.2 VIN(th) 1.6 VIN(th) V VIN 2.0 V 1.4 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 20 40 60 80 100 120 °C Tj 0.0 0 160 off 1.2 1.0 0.0 -40 -20 6 10 20 30 50 V Vbb Page 12 2000-02-22 BTS 452 T Maximum allowable load inductance Maximum allowable inductive switch-off for a single switch off energy, single pulse L = f(I L); T jstart=150°C, RL=0W 4500 EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V 13.5V 1200 mH mJ 3500 L EAS 3000 800 2500 600 42V 2000 1500 400 1000 200 500 0 0.0 0.2 0.5 0.8 1.0 1.2 1.5 A IL 0 0.0 2.0 Page 13 0.2 0.5 0.8 1.0 1.2 1.5 A IL 2.0 2000-02-22 BTS 452 T Timing diagrams Figure 2b: Switching a lamp, Figure 1a: Vbb turn on: IN IN OUT V bb I V L OUT t t Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition Figure 2c: Switching an inductive load IN IN V V OUT OUT 90% t on d V /d to n d V /d to f f t o ff 10% I IL L t t Page 14 2000-02-22 BTS 452 T Figure 5: Undervoltage restart of charge pump Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling Von IN t I L Vbb( ucp) I L(SCp) I Vbb( under ) L(SCr) Vbb tm t off(SC) t +HDWLQJXSRIWKHFKLSPD\UHTXLUHVHYHUDOPLOOLVHFRQGVGHSHQGLQJ RQH[WHUQDOFRQGLWLRQV Figure 4: Overtemperature: Reset if Tj < T jt IN V OUT T J t Page 15 2000-02-22 BTS 452 T Package and ordering code all dimensions in mm Ordering code: Q67060-S7406 2.3 +0.05 -0.10 A 0.9 +0.08 -0.04 1 ±0.1 0...0.15 0.51 min 0.15 max per side B 5.4 ±0.1 0.8 ±0.15 (4.17) 1 ±0.1 9.9 ±0.5 6.22 -0.2 6.5 +0.15 -0.10 0.5 +0.08 -0.04 5x0.6 ±0.1 1.14 4.56 0.1 0.25 M A B GPT09161 All metal surfaces tin plated, except area of cut. Printed circuit board (FR4, 1.5mm thick, one layer 70µm, 6cm 2 active heatsink area ) as a reference for max. power dissipation Ptot nominal load current IL(nom) and thermal resistance R thja Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 16 2000-02-22