Application Note Usage and Application of µPC8106, µPC8109 and µPC8163 2.0 GHz Silicon Frequency Up-converter ICs for Mobile Communications Document No. P13683EJ2V0AN00 (2nd edition) Date Published April 2000 N CP(K) © Printed in Japan 1999, 2000 [MEMO] 2 Application Note P13683EJ2V0AN00 NESAT is an abbreviation of NEC Silicon Advanced Technology and a trademark of NEC Corporation. The information in this document will be updated without notice. This document outlines a typical application of this product, that is, provides a sample concept for designing an external circuit directly required for this product. NEC only assures the quality and characteristics of this product specified in the Data Sheet, and is not responsible for any user’s product designs or application sets. The peripheral circuit shown in this document is just an example prepared for evaluating the operations of this product, and does not imply that the circuit configurations or constants are recommended values or regulations. In addition, these circuits are not intended for any mass- produced application sets. This is because the RF characteristics vary depending on the external parts used, mounting patterns, and other conditions. Therefore, it is the responsibility of the user to design the external circuit according to the userdesired system requirements while referring to the information in this document and to use it after confirming the characteristics on the user’s application set. • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. M7A 98. 8 The mark shows major revised points. Application Note P13683EJ2V0AN00 3 CONTENTS 1. INTRODUCTION............................................................................................................................. 5 2. OVERVIEW OF PRODUCTS.......................................................................................................... 2.1 Characteristics and Sizes ..................................................................................................... 6 6 3. INTERNAL CIRCUIT CONFIGURATION ....................................................................................... 3.1 Differences Between µPC8106, µPC8109 and µPC8163..................................................... 3.2 Internal Circuits and Frequency Bandwidth ....................................................................... 8 8 8 4. EXTERNAL CIRCUIT CONFIGURATION ...................................................................................... 4.1 Impedance Matching at RF Output ...................................................................................... 4.2 Input Impedance Matching ................................................................................................... 4.3 Bypass Capacitor .................................................................................................................. 10 10 10 10 5. APPLICATION CHARACTERISTICS ............................................................................................. 5.1 Operating Rise/Fall Times..................................................................................................... 5.2 Leakage and Isolation Characteristics ................................................................................ 5.3 Spurious Characteristics ...................................................................................................... 5.4 Adjacent Channel Interference Power ................................................................................. 25 25 29 32 35 6. SYSTEM CONFIGURATION EXAMPLES ..................................................................................... 53 7. APPLICATION CIRCUIT EXAMPLE .............................................................................................. 7.1 Dual Band ............................................................................................................................... 54 54 8. CONCLUSION ................................................................................................................................ References ..................................................................................................................................... 55 55 Use-Related Cautions (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be wired as short as possible to decrease impedance difference (this also helps prevent operation faults, abnormal oscillation, etc.). (3) The bypass capacitor should be attached to the VCC pin. (4) The RF output pin connects an external LC matching circuit’s parallel inductor to VCC to apply a bias and RF load. (5) The DC cut capacitor must be attached to the input pin. The input pins’ voltage must not be externally adjusted. (6) A capacitor (such as a 100 pF capacitor) should be attached between the PS and VCC pins. See each product’s data sheet for more detailed cautions and descriptions of electrical characteristics. µPC8106T, µPC8109T Data Sheet (Document No. P10656E) µPC8106TB, µPC8109TB Data Sheet (Document No. P12770E) µPC8163TB Data Sheet (Document No. P13636E) 4 Application Note P13683EJ2V0AN00 1. INTRODUCTION In 1995, PDC (Personal Digital Cellular) services were launched in Japan, and PHS (Personal Handyphone System) services were started soon afterward. As of this writing near the end of the 1999 business term, Japan’s cellular phone subscriptions totaled about 42.5 million, which would indicate that approximately one out of every three people in Japan has a cellular phone account. PHS subscriptions alone totaled nearly 6 million, which represents about 4.6 percent of the nation’s population. Mobile telephones using high frequencies need a frequency up-conversion function for RF signal transmission. This up-conversion function is applied to the following two modulation methods: direct modulation (or RF modulation), in which the signal is mixed up to the transmission frequency before being modulated, and other is indirect modulation (up converter method or IF modulation), in which the modulated signal of the IF frequency is upconverted to the transmission frequency. Frequency up-converters are used in all of these methods. NEC now adds the µPC8163 to the µPC8106 and µPC8109 silicon high-frequency monolithic integrated circuit lineup, which was developed to provide core products for frequency up-converters used with any of the above frequency modulation methods. This application note describes the usage and applications of this up-converter series. Application Note P13683EJ2V0AN00 5 2. OVERVIEW OF PRODUCTS 2.1 Characteristics and Sizes The µPC8106 is designed to emphasize low-distortion characteristics and the µPC8109 is designed to emphasize low current consumption. The µPC8163 is an improved distortion version of the µPC8106. The µPC8106 and µPC8109 have the same pin connections, however the power saving pin is absent in the µPC8163 because it does not include a power saving function. The supply voltage and frequency band are similarly identical in the µPC8106 and µPC8109, but differ slightly in the µPC8163 (refer to 3.2 Internal Circuit and Frequency Band for details). The µPC8106 and µPC8109 come in 6-pin minimold (2915 size) and 6-pin super minimold (2012 size) packages, whereas only the latter is available for the µPC8163. T or TB is added to the part number, indicating a conventional minimold and super minimold package, respectively. Although products in this series with the same part number use the same circuit configuration, TB products have a smaller chip size. (By contrast, amplifier series products that have the same part number are all mounted on the same type of chip). The difference between µPC8106 and µPC8109 in the T and TB products of the µPC8106 and µPC8019 is a conversion gain specification of about 1 dB due to a slight gap in the IF input impedance. Specifications other than the conversion gain are the same. A three-character abbreviation is used for the part numbers shown on the products, due to limited marking space on these small molds. “C2D” indicates the µPC8106, “C2G” indicates the µPC8109 and “C2Y” indicates the µPC8163. For details of markings, see “Silicon High-frequency Monolithic ICs” (Document No. P10100E) in the selection guide. Table 2-1 lists NEC’s lineup of high-frequency up converter ICs. Figure 2-1 shows package drawings of the two package types. Table 2-1. NEC’s Lineup of High-Frequency Up Converter ICs Part Number Supply Voltage VCC (V) Circuit Current ICC (mA) µPC8106T 2.7 to 5.5 µPC8106TB 9 µPC8109T 2.7 to 5.5 µPC8109TB 5 µPC8163TB 2.7 to 3.3 16.5 Conversion Conversion Gain 2 Gain 1 CG2 (dB) CG1 (dB) Saturation RF Output Power 1 PO (sat) 1 (dBm) Saturation RF Output Power 2 PO (sat) 2 (dBm) Output IP31 OIP31(dBm) Output IP32 OIP32(dBm) –2 –4 +5.5 +2.0 +1.5 –1.0 +9.5 +6.0 10 7 9 7 7 5 –6 –8 6 4 –5.5 –7.5 9 5.5 0.5 –2 Test conditions: TA = +25°C, VCC = VRFout = 3.0 V, ZL = ZS = 50 Ω (µPC8106, µPC8109: VPS = 3.0 V) The above values are typical values for major characteristics. See each product’s data sheet for detailed characteristics ratings. 6 Application Note P13683EJ2V0AN00 Figure 2-1. Package Drawings of 6-pin Minimold and 6-pin Super Minimold (a) 6-pin minimold (unit: mm) 0.3 0.2 0.3 0.2 0.1 2.8 1.5 1 0.13 ± 0.1 0.1 0.0 2 3 0 to 0.1 6 5 4 0.95 0.95 0.8 1.1 1.9 0.2 0.1 2.9 ± 0.2 (b) 6-pin super minimold (unit: mm) 2.1 ± 0.1 0.1 or more 0.1 0.05 0.15 1.25 ± 0.1 0.2 0.1 0.05 0 to 0.1 0.65 0.65 1.3 2.0 ± 0.2 0.7 0.9 ± 0.1 Both of these products have been developed and manufactured using NEC’s “NESAT III” silicon bipolar process. For details of this process, see the pamphlet entitled “NESAT Process” (Document No. P12647E). Application Note P13683EJ2V0AN00 7 3. INTERNAL CIRCUIT CONFIGURATION 3.1 Differences Between µPC8106, µPC8109, and µPC8163 The µPC8106 and µPC8109 are double balanced mixer + bias circuit ICs and have the same circuit configuration. These circuits only differ in that the current across the Gilbert cell paired transistors (Q3, Q4 and Q5, Q6) in the µPC8106 is double that in the µPC8109. This results in a conversion gain difference of about 3 dB. The circuit configuration in the µPC8163 is the same as the other products in all respects except that there is no power saving control circuit. However, due to the optimization of the current distribution and the adjustment of CG and IIP3, this product has a higher IP3 value. The internal equivalent circuit is shown in Figure 3-1 below. Figure 3-1. Internal Equivalent Circuit Diagram VCC RFout LOin Q3 Q4 Q5 Q6 Q1 PS Q2 IFin GND 3.2 Internal Circuits and Frequency Bandwidth These ICs include bypass capacitors at the double balanced mixer type complementary IF inputs in order to improve the AC characteristics of the 100 MHz to 400 MHz frequency range (50 MHz to 300 MHz in the µPC8163). This lowers the conversion gain when the IF input frequency is below the minimum value. When the IF input frequency is above the maximum value, the conversion gain is lowered according to the frequency characteristics of the internal transistors. Figure 3-2 shows the dependence of the IF input frequency and the conversion gain in the µPC8106. The RF output pin is an open collector, and since there is no on-chip component that limits the lower limit of the frequency bandwidth, the user should provide an external narrow-band matching circuit for the internal transistors’ characteristic frequency range (µPC8106, µPC8109: 400 MHz to 2 GHz, µPC8163: 800 MHz to 2 GHz) to set the desired bandwidth. Since this mixer has been designed as a product for frequency up-converters, the user’s determination of the desired bandwidth should be made according to the following conditions. Note with caution that this mixer’s design and operation as a frequency down-converter are not guaranteed (other frequency down-converter mixer ICs are available). • Frequency condition: | fRFout – fLOin | = fIFin, fRFout, fLOin > fIFin 8 Application Note P13683EJ2V0AN00 Figure 3-2. Dependence of IF Input Frequency and Conversion Gain µPC8106 Measurement conditions: fRFout = 1.9 GHz, PLOin = –5 dBm, VCC = VPS = VRFout = 3.0 V, PIFin = –30 dBm 10 9 Conversion gain CG (dB) 8 7 6 5 Recommended operation range 4 3 2 1 0 100 500 1 000 1 500 2 000 IF input frequency fIFin (MHz) Application Note P13683EJ2V0AN00 9 4. EXTERNAL CIRCUIT CONFIGURATION 4.1 Impedance Matching at RF Output Since this IC has an open-collector output, an external LC matching circuit for RF should be included in the circuit configuration. The matching circuit should include a parallel inductor to the VCC side and a series capacitor to the next stage. As mentioned earlier, the bias of the output pin’s collector is applied via the inductor used for RF matching of the VCC pin’s voltage. In other words, the inductor that is connected to the output pin has two effects: its RF effect (frequency matching) and its DC effect (application of bias). For this reason, the external inductor should be a small DC-resistance and high frequency use type. The LC matching circuit constants used in the test circuits shown in the data sheet are for the evaluation board described in the data sheet. This evaluation board is used only for simple evaluations; devices evaluated using this board are not immediately suitable for application in systems. The patterns used for evaluation do not allow parts to be mounted near the IC, so the pattern size is larger. Accordingly, these are not the recommended patterns or the recommended circuit constants. The matching LC value is determined so as to produce a narrow-band power gain that suits the frequency bandwidth used, based on the IC’s own S parameters. Select a value that reduces the S22 value to about –20 dBm when the gain within the frequency bandwidth used is at the maximum. A 900 MHz high pass type and a 1.5 GHz and 1.9 GHz low pass type are shown as example of an RF matching circuit configuration. 4.2 Input Impedance Matching The IF and LO inputs in this IC are base inputs with parallel connections to bias resistors. Although their characteristic impedance is not 50 Ω, the test circuits in the data sheet show a signal generator with a 50 Ω signal source impedance. Accordingly, the data sheet’s electrical characteristics include loss due to this mismatched impedance. If impedance matching is implemented in the actual circuit, the elimination of this loss raises the IC’s input level, which lowers the required input level (by about 3 to 5 dB). When configuring an IF matching circuit, such as is shown in Figure 4-1, the response time varies according to the IF matching circuit’s DC cut series capacitance value (see 5.1 Operating Rise/Fall Times). Figure 4-3 shows S parameter values for RF, IF, and LO ports when matching is not implemented. Although the internal components are the same in the T and TB products, the packages, leads, and chip sizes are different, which means that the S parameters are slightly different, so some optimization is needed (concerning peripheral circuit constants, mounting pads, etc.) when replacing one package with the other. 4.3 Bypass Capacitor As in other ICs, in this IC the VCC pin must be GND in RF, so externally attach a bypass capacitor with a large value such as 1 000 pF. In the µPC8106 and µPC8109, the conversion value is higher or lower depending on the board. This difference is based on the relationship between the IC’s internal elements and board, and the pattern length. If the conversion gain on the board of the actual set is low, it can be improved by inserting an external chip capacitor of about 100 pF between the VCC and PS pins to readjust the matching. 10 Application Note P13683EJ2V0AN00 Figure 4-1. Examples of External Circuit Configuration (µPC8106, µPC8109) (1/2) RF output matched at 900 MHz Determine L1 and C1 according to the frequency and the RF port’s S parameter. High-pass type output matching is used. Determine whether or not attach an input matching circuit according to the impedance of the previous stage. RF = 900 MHz matching To next stage (RF filter, etc.) 1 000 pF IF matching 6 C1 From power supply L1 * RFout IFin 1 L2 From previous stage C3 5 4 1 000 pF VCC GND PS LOin 2 3 C2 100 pF From local oscillator 1 000 pF From controller * If gain is reduced on the mounting board, insert a 100 pF capacitor between the VCC and PS pins to readjust the matching. RF output matched at 1.9 GHz Determine L1 and C1 according to the frequency (including the strip line length on the mounting board) and the RF port’s S parameter. Low-pass type output matching is used. Determine whether or not attach an input matching circuit according to the impedance of the previous stage. If the conversion gain value is too low, implementing a parallel configuration of two chip capacitors for C1 can lower the Q value. RF = 1.9 GHz matching To next stage (RF filter, etc.) 1 000 pF Strip line C1 From power supply L1 * IF matching 6 RFout IFin 1 L2 C3 5 4 VCC GND PS LOin 1 000 pF 2 3 From previous stage C2 100 pF From local oscillator 1 000 pF From controller * If gain is reduced on the mounting board, insert a 100 pF capacitor between the VCC and PS pins to readjust the matching. Application Note P13683EJ2V0AN00 11 Figure 4-1. Examples of Circuit Configuration (µPC8163) (2/2) RF output matched at 830 MHz Determine L and C according to the frequency and the RF port’s S parameter. High-pass type output matching is used. Determine whether or not to attach an input matching circuit according to the impedance of the previous stage. RF = 830 MHz matching To next stage (RF filter, etc.) 1 000 pF C 6 L From power supply 5 4 RFout IFin VCC GND GND LOin 1 100 pF From previous stage 2 3 100 pF From local oscillator 1 000 pF RF output matched at 1.9 GHz Determine L and C according to the frequency (including the strip line length on the mounting board) and the RF port’s S parameter. Low-pass type output matching is used. Determine whether or not to attach an input matching circuit according to the impedance of the previous stage. If the conversion gain is too low, implementing a parallel configuration of two chip capacitors for C can lower the Q value. RF = 1.9 GHz matching To next stage (RF filter, etc.) 1 000 pF Strip line C From power supply L 6 5 4 RFout IFin VCC GND GND LOin 1 000 pF 12 Application Note P13683EJ2V0AN00 1 100 pF From previous stage 2 3 100 pF From local oscillator Figure 4-2. Examples of External Circuit Configuration on the Evaluation Board RF output matched at 900 MHz 1 000 pF C 100 pF 1 000 pF L 100 pF 1 000 pF 100 pF RF output matched at 1.9 GHz C 1 000 pF 1 000 pF 100 pF L 100 pF 1 000 pF 100 pF Caution Although the VCC and PS pins are shorted in the µPC8106 and µPC8109 data sheet due to the NEC test equipment conditions, it is possible to independently control the VCC and PS pins in actual evaluation by using a pulse generator that assumes PS pin control via logic. Application Note P13683EJ2V0AN00 13 Figure 4-3. S Parameters and Smith Charts (Without External Component) (1/10) (a) µPC8106T (1/2) (VCC = VPS = VRFout = 3.0 V, TA = +25°°C) LO port FREQUENCY RF port S22 S11 MHz 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 MAG. 0.889 0.880 0.871 0.861 0.852 0.841 0.831 0.822 0.812 0.800 0.791 0.778 0.771 0.757 0.753 0.735 0.728 0.721 0.709 0.703 0.694 0.684 0.668 0.651 0.633 0.616 0.602 0.593 0.585 0.577 0.566 ANG. –25.2 –28.2 –31.0 –34.1 –36.9 –39.7 –42.6 –45.4 –48.2 –51.0 –53.7 –56.2 –58.8 –61.6 –64.1 –66.7 –69.6 –72.0 –74.5 –77.3 –80.3 –83.0 –86.2 –88.7 –91.2 –93.0 –95.1 –96.9 –98.8 –100.6 –102.9 MAG. 0.968 0.964 0.958 0.951 0.945 0.937 0.933 0.924 0.919 0.910 0.901 0.895 0.890 0.884 0.874 0.869 0.860 0.854 0.844 0.839 0.830 0.825 0.814 0.804 0.796 0.792 0.783 0.776 0.769 0.762 0.754 ANG. –19.4 –21.8 –24.2 –26.5 –28.7 –31.1 –33.2 –35.4 –37.5 –40.0 –42.2 –44.2 –46.5 –48.5 –50.6 –52.6 –55.0 –57.0 –59.3 –61.4 –63.5 –65.3 –67.6 –69.4 –71.5 –73.5 –75.4 –77.2 –79.4 –81.3 –83.4 LO port RF port S11 Z REF 1.0 Units 200.0 mUnits/ 2 21.176 Ω −42.477 Ω hp S22 Z REF 1.0 Units 200.0 mUnits/ 2 15.357 Ω −53.604 Ω hp MARKER1···1.15 GHz 2···1.65 GHz MARKER1···900 MHz 2···1.9 GHz 2 2 1 START STOP 14 0.400000000 GHz 1.900000000 GHz Application Note P13683EJ2V0AN00 START STOP 0.400000000 GHz 1.900000000 GHz 1 Figure 4-3. S Parameters and Smith Charts (Without External Component) (2/10) (a) µPC8106T (2/2) IF port FREQUENCY MHz 100.0000 120.0000 140.0000 160.0000 180.0000 200.0000 220.0000 240.0000 260.0000 280.0000 300.0000 320.0000 340.0000 360.0000 380.0000 400.0000 S11 MAG. 0.938 0.937 0.936 0.934 0.932 0.931 0.928 0.927 0.926 0.924 0.922 0.921 0.917 0.916 0.910 0.909 ANG. –4.5 –5.2 –6.0 –6.9 –7.7 –8.5 –9.4 –10.2 –11.2 –11.9 –12.9 –13.6 –14.4 –15.3 –15.9 –16.9 IF port S11 Z REF 1.0 Units 200.0 mUnits/ 2 117.84 Ω −660.87 Ω hp MARKER1···240 MHz 1 START STOP 0.100000000 GHz 0.400000000 GHz Application Note P13683EJ2V0AN00 15 Figure 4-3. S Parameters and Smith Charts (Without External Component) (3/10) (b) µPC8109T (1/2) (VCC = VPS = VRFout = 3.0 V, TA = +25°°C) LO port FREQUENCY RF port S22 S11 MHz 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 MAG. 0.913 0.904 0.897 0.889 0.880 0.871 0.863 0.855 0.846 0.835 0.829 0.819 0.813 0.802 0.799 0.785 0.776 0.772 0.760 0.755 0.745 0.731 0.711 0.691 0.674 0.659 0.648 0.643 0.638 0.632 0.622 ANG. –23.7 –26.5 –29.3 –32.2 –34.8 –37.5 –40.3 –42.9 –45.7 –48.5 –51.1 –53.6 –56.1 –58.8 –61.5 –64.2 –66.9 –69.4 –72.1 –75.2 –78.0 –81.3 –84.2 –86.3 –88.5 –89.9 –91.9 –94.0 –95.8 –97.8 –100.3 MAG. 0.971 0.967 0.962 0.956 0.949 0.944 0.940 0.930 0.926 0.918 0.913 0.904 0.898 0.891 0.885 0.880 0.870 0.868 0.858 0.851 0.845 0.837 0.830 0.822 0.813 0.807 0.799 0.792 0.784 0.775 0.767 ANG. –19.4 –21.9 –24.2 –26.5 –28.8 –31.0 –33.3 –35.5 –37.7 –40.1 –42.5 –44.5 –46.8 –48.7 –50.9 –52.9 –55.1 –57.4 –59.7 –62.0 –63.9 –65.8 –68.1 –70.2 –72.6 –74.4 –76.5 –78.4 –80.3 –82.3 –84.7 LO port RF port S11 Z REF 1.0 Units 200.0 mUnits/ 2 19.68 Ω −45.93 Ω hp S22 Z REF 1.0 Units 200.0 mUnits/ 2 14.035 Ω −52.35 Ω hp MARKER1···1.15 GHz 2···1.65 GHz MARKER1···900 MHz 2···1.9 GHz 2 2 1 1 START STOP 16 0.400000000 GHz 1.900000000 GHz Application Note P13683EJ2V0AN00 START STOP 0.400000000 GHz 1.900000000 GHz Figure 4-3. S Parameters and Smith Charts (Without External Component) (4/10) (b) µPC8109T (2/2) IF port FREQUENCY MHz 100.0000 120.0000 140.0000 160.0000 180.0000 200.0000 220.0000 240.0000 260.0000 280.0000 300.0000 320.0000 340.0000 360.0000 380.0000 400.0000 S11 MAG. 0.949 0.950 0.950 0.948 0.945 0.944 0.940 0.940 0.939 0.937 0.935 0.936 0.931 0.930 0.925 0.923 ANG. –4.3 –5.0 –5.7 –6.6 –7.4 –8.2 –9.0 –9.9 –10.7 –11.5 –12.4 –13.2 –13.8 –14.7 –15.4 –16.2 IF port S11 Z REF 1.0 Units 200.0 mUnits/ 1 189.19 Ω −513.31 Ω hp MARKER1···240 MHz 1 START STOP 0.100000000 GHz 0.400000000 GHz Application Note P13683EJ2V0AN00 17 Figure 4-3. S Parameters and Smith Charts (Without External Component) (5/10) (c) µPC8106TB (1/2) (VCC = VPS = VRFout = 3.0 V, TA = +25°°C) LO port FREQUENCY RF port S22 S11 MHz 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 MAG. 0.902 0.894 0.888 0.878 0.870 0.858 0.852 0.842 0.834 0.824 0.810 0.801 0.796 0.781 0.777 0.760 0.749 0.739 0.728 0.716 0.702 0.684 0.666 0.651 0.636 0.627 0.618 0.608 0.600 0.591 0.579 ANG. –23.2 –26.1 –28.7 –31.5 –34.2 –36.9 –39.5 –42.1 –44.8 –47.6 –50.3 –52.7 –55.3 –57.9 –60.5 –63.0 –65.5 –67.9 –70.7 –73.2 –76.2 –78.7 –80.6 –82.5 –84.5 –86.1 –88.0 –90.0 –91.9 –94.0 –96.1 MAG. 0.966 0.962 0.959 0.951 0.948 0.939 0.934 0.928 0.922 0.915 0.907 0.901 0.897 0.889 0.879 0.871 0.862 0.851 0.839 0.827 0.809 0.797 0.781 0.773 0.775 0.774 0.774 0.772 0.766 0.763 0.760 ANG. –13.6 –15.4 –17.1 –18.5 –20.1 –21.8 –23.1 –24.8 –26.3 –27.8 –29.3 –30.8 –32.5 –33.8 –35.4 –37.0 –38.4 –40.3 –41.6 –43.2 –44.2 –45.7 –46.1 –46.3 –47.0 –47.9 –49.4 –50.6 –51.9 –53.3 –54.8 LO port RF port S11 Z REF 1.0 Units 200.0 mUnits/ 2 23.203 Ω −47.814 Ω hp S22 Z REF 1.0 Units 200.0 mUnits/ 2 30.133 Ω −88.633 Ω hp MARKER1···1.15 GHz 2···1.65 GHz MARKER1···900 MHz 2···1.9 GHz 2 2 1 START STOP 18 0.400000000 GHz 1.900000000 GHz Application Note P13683EJ2V0AN00 START STOP 0.400000000 GHz 1.900000000 GHz 1 Figure 4-3. S Parameters and Smith Charts (Without External Component) (6/10) (c) µPC8106TB (2/2) IF port FREQUENCY MHz 100.0000 120.0000 140.0000 160.0000 180.0000 200.0000 220.0000 240.0000 260.0000 280.0000 300.0000 320.0000 340.0000 360.0000 380.0000 400.0000 S11 MAG. 0.946 0.946 0.944 0.942 0.941 0.939 0.938 0.935 0.936 0.935 0.932 0.929 0.928 0.925 0.923 0.920 ANG. –4.2 –4.9 –5.6 –6.4 –7.2 –8.0 –8.8 –9.5 –10.1 –11.0 –11.8 –12.5 –13.2 –14.0 –14.7 –15.4 IF port S11 Z REF 1.0 Units 200.0 mUnits/ 2 210.88 Ω −520.97 Ω hp MARKER1···240 MHz 1 START STOP 0.100000000 GHz 0.400000000 GHz Application Note P13683EJ2V0AN00 19 Figure 4-3. S Parameters and Smith Charts (Without External Component) (7/10) (d) µPC8109TB (1/2) (VCC = VPS = VRFout = 3.0 V, TA = +25°°C) LO port FREQUENCY RF port S22 S11 MHz 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 MAG. 0.929 0.920 0.915 0.908 0.900 0.894 0.887 0.879 0.873 0.864 0.852 0.845 0.842 0.830 0.829 0.811 0.804 0.795 0.785 0.773 0.756 0.736 0.719 0.703 0.692 0.683 0.678 0.670 0.662 0.653 0.642 ANG. –21.3 –23.9 –26.4 –29.0 –31.6 –34.1 –36.5 –39.0 –41.6 –44.0 –46.6 –48.9 –51.3 –53.9 –56.6 –59.0 –61.6 –64.0 –66.5 –69.2 –72.1 –74.5 –76.2 –77.9 –79.6 –81.2 –82.9 –85.1 –86.8 –88.8 –90.9 MAG. 0.971 0.967 0.963 0.956 0.952 0.946 0.941 0.935 0.932 0.924 0.917 0.916 0.907 0.901 0.892 0.885 0.877 0.869 0.858 0.848 0.833 0.824 0.810 0.802 0.802 0.797 0.795 0.792 0.788 0.780 0.776 ANG. –13.4 –15.1 –16.8 –18.3 –19.8 –21.4 –22.8 –24.5 –25.9 –27.3 –29.0 –30.6 –32.2 –33.6 –35.2 –36.6 –38.1 –39.8 –41.3 –43.0 –44.2 –45.6 –46.4 –47.0 –48.0 –49.1 –50.5 –51.9 –53.3 –54.7 –56.2 LO port RF port S11 Z REF 1.0 Units 200.0 mUnits/ 2 21.201 Ω −53.748 Ω hp S22 Z REF 1.0 Units 200.0 mUnits/ 2 26.961 Ω −87.312 Ω hp MARKER1···1.15 GHz 2···1.65 GHz MARKER1···900 MHz 2···1.9 GHz 2 2 1 START STOP 20 0.400000000 GHz 1.900000000 GHz Application Note P13683EJ2V0AN00 START STOP 0.400000000 GHz 1.900000000 GHz 1 Figure 4-3. S Parameters and Smith Charts (Without External Component) (8/10) (d) µPC8109TB (2/2) IF port FREQUENCY MHz 100.0000 120.0000 140.0000 160.0000 180.0000 200.0000 220.0000 240.0000 260.0000 280.0000 300.0000 320.0000 340.0000 360.0000 380.0000 400.0000 S11 MAG. 0.960 0.959 0.957 0.956 0.956 0.953 0.953 0.950 0.950 0.946 0.948 0.947 0.943 0.942 0.940 0.938 ANG. –3.8 –4.5 –5.2 –6.0 –6.7 –7.4 –8.2 –8.9 –9.5 –10.4 –11.1 –11.7 –12.5 –13.1 –13.9 –14.5 IF port S11 Z REF 1.0 Units 200.0 mUnits/ 1 194.16 Ω −579.53 Ω hp MARKER1···240 MHz 1 START STOP 0.100000000 GHz 0.400000000 GHz Application Note P13683EJ2V0AN00 21 Figure 4-3. S Parameters and Smith Charts (Without External Component) (9/10) (e) µPC8163TB (1/2) (VCC = VRFout = 3.0 V, TA = +25°°C) FREQUENCY MHz 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 22 LO Port S11 MAG. ANG. −7.4 0.917 −10.7 0.915 −14.0 0.911 −17.0 0.905 −20.4 0.898 −23.8 0.893 −27.0 0.883 −30.2 0.877 −33.2 0.867 −36.5 0.860 −39.6 0.850 −42.6 0.839 −45.6 0.831 −48.7 0.822 −51.5 0.812 −54.4 0.801 −57.4 0.790 −60.3 0.778 −62.9 0.773 −65.6 0.761 −68.4 0.759 −71.0 0.743 −73.8 0.733 −76.5 0.728 −79.3 0.717 −82.4 0.711 −85.3 0.693 −88.2 0.680 −90.6 0.662 −92.7 0.646 −95.0 0.629 −96.6 0.618 −98.4 0.611 −100.4 0.601 −102.2 0.592 −104.2 0.584 −106.3 0.576 −108.2 0.568 −110.0 0.560 −112.0 0.550 −113.9 0.543 −115.6 0.535 −117.5 0.527 −119.3 0.519 −120.8 0.512 −122.6 0.505 −124.4 0.499 −126.1 0.489 −127.9 0.485 −129.4 0.478 −131.1 0.472 −132.6 0.463 −134.1 0.460 −135.6 0.454 −137.1 0.450 −139.2 0.443 −140.5 0.437 −142.2 0.430 −143.6 0.424 RF Port S22 MAG. ANG. −3.5 0.985 −5.2 0.982 −6.9 0.982 −8.5 0.977 −10.2 0.972 −12.0 0.966 −13.5 0.964 −15.1 0.959 −16.5 0.953 −18.3 0.946 −19.7 0.939 −21.3 0.932 −22.9 0.926 −24.3 0.922 −25.7 0.915 −27.3 0.907 −28.9 0.902 −30.2 0.891 −31.4 0.885 −32.9 0.880 −34.3 0.870 −35.8 0.862 −37.2 0.859 −39.3 0.850 −40.7 0.833 −41.9 0.820 −43.4 0.803 −44.3 0.788 −44.7 0.773 −45.1 0.770 −45.7 0.767 −46.8 0.766 −47.9 0.764 −49.3 0.759 −50.3 0.752 −51.5 0.753 −52.8 0.747 −54.1 0.741 −55.4 0.733 −56.6 0.730 −57.7 0.721 −58.7 0.715 −60.1 0.711 −61.2 0.703 −62.5 0.698 −63.7 0.691 −64.9 0.687 −66.4 0.666 −67.5 0.659 −68.8 0.653 −70.1 0.646 −71.3 0.640 −72.4 0.636 −73.6 0.631 −75.0 0.618 −76.4 0.616 −77.3 0.613 −78.3 0.605 −79.4 0.603 Application Note P13683EJ2V0AN00 RF port LO port S11 Z REF 1.0 Units 1 200.0 mUnits/ 22.676 Ω −77.055 Ω hp MARKER1 2 • • • • • • S22 Z REF 1.0 Units 1 200.0 mUnits/ 41.813 Ω −196.16 Ω hp 1.0 GHz 1.75 GHz MARKER1 2 • • • • • • 850 MHz 1.9 GHz 1 1 2 2 START 0.100000000 GHz STOP 3.000000000 GHz Application Note P13683EJ2V0AN00 START 0.100000000 GHz STOP 3.000000000 GHz 23 Figure 4-3. S Parameters and Smith Charts (Without External Component) (10/10) (e) µPC8163TB (2/2) IF port FREQUENCY MHz 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 S11 MAG. 0.911 0.908 0.905 0.904 0.900 0.895 0.890 0.888 0.882 0.879 0.873 0.869 0.861 0.855 0.849 0.844 0.836 0.832 0.823 0.815 ANG. −2.3 −4.2 −6.2 −8.1 −10.0 −12.0 −13.9 −15.7 −17.6 −19.5 −21.3 −23.0 −24.8 −26.5 −28.4 −30.1 −31.7 −33.4 −35.1 −36.9 IF port S11 Z REF 1.0 Units 1 200.0 mUnits/ 463.8 Ω −496.48 Ω hp MARKER1 • • • 150 MHz 1 START 0.050000000 GHz STOP 1.000000000 GHz 24 Application Note P13683EJ2V0AN00 5. APPLICATION CHARACTERISTICS 5.1 Operating Rise/Fall Times The measurement of the VCC and PS pins’ rise and fall time is carried out by using a pulse pattern generator to control the pins’ ON/OFF status at high speeds, and the zero-scan mode of a spectrum analyzer to set the maximum/minimum transition time of the output level of the desired RF frequency. Bearing in mind the dependency of the DC cut capacitor on the rise time, a DC cut capacitor of about 100 pF is required to get the same value (2 µs) as the data sheet. The measurement results are shown in Table 5-1. In addition, the rising/falling waveform of the µPC8106TB is shown in Figure 5-1 as an illustrative example. Table 5-1. Rise/Fall Times for IF Pin DC Cut Capacitance • Rise time Part Number µPC8106TB µPC8109TB µPC8163TB Note Control Pin IF Input Pin DC Cut Capacitance 1 000 pF 400 pF 100 pF PS 12 µs 5 µs 2 µs VCC 7 µs 3 µs 1.5 µs Both PS and VCC 12 µs 6 µs 2 µs PS 14 µs 6 µs 2 µs VCC 10 µs 4 µs 2 µs Both PS and VCC 14 µs 6 µs 2.5 µs VCC 4.5 µs 2 µs 1.5 µs • Fall time Part Number µPC8106TB µPC8109TB µPC8163TB Note Control Pin IF Input Pin DC Cut Capacitance 1 000 pF 400 pF 100 pF PS 7.5 µs 3 µs 1.5 µs VCC 1 µs 0.5 µs 1 µs Both PS and VCC 1 µs 0.5 µs 1 µs PS 9 µs 4 µs 1.5 µs VCC 1 µs 1 µs 1 µs Both PS and VCC 1 µs 1 µs 1 µs VCC 1 µs 1 µs 0.5 µs Note • PS pin control .....Apply 3 V constantly to the VCC pin, input the ON/OFF pulse waveform to the PS pin • VCC pin control ....Apply 3 V constantly to the PS pin, input the ON/OFF pulse waveform to the VCC pin • PS, VCC pin simultaneous control ......Input the ON/OFF pulse waveform simultaneously to the VCC and PS pins Application Note P13683EJ2V0AN00 25 Figure 5-1. Rising/Falling Waveforms of µPC8106TB (1/3) Measurement conditions: fIFin = 240 MHz, PIFin = –30 dBm, fLOin = 1 140 MHz, PLOin = –5 dBm (a) PS pin control • For 1 000 pF DC cut capacitor hp REF 0.0 dBm ATTEN 10 dB 10 dB/ Rise time Trise = 12 µs Fall time Tfall = 7.5 µs CENTER 900.000 000 MHz RES BW 3 MHz • For 400 pF DC cut capacitor VBW 3 MHz SPAN 0 Hz SWP 50 µ sec hp REF 0.0 dBm ATTEN 10 dB 10 dB/ Rise time Trise = 5 µs Fall time Tfall = 3 µs CENTER 900.000 000 MHz RES BW 3 MHz • For 100 pF DC cut capacitor VBW 3 MHz SPAN 0 Hz SWP 50 µ sec hp REF 0.0 dBm ATTEN 10 dB 10 dB/ Rise time Trise = 2 µs Fall time Tfall = 1.5 µs CENTER 900.000 000 MHz RES BW 3 MHz 26 Application Note P13683EJ2V0AN00 VBW 3 MHz SPAN 0 Hz SWP 50 µ sec Figure 5-1. Rising/Falling Waveforms of µPC8106TB (2/3) Measurement conditions: fIFin = 240 MHz, PIFin = –30 dBm, fLOin = 1 140 MHz, PLOin = –5 dBm (b) VCC pin control • For 1 000 pF DC cut capacitor hp REF 0.0 dBm ATTEN 10 dB 10 dB/ Rise time Trise = 7 µs Fall time Tfall = 1 µs CENTER 900.000 000 MHz RES BW 3 MHz • For 400 pF DC cut capacitor VBW 3 MHz SPAN 0 Hz SWP 50 µsec hp REF 0.0 dBm ATTEN 10 dB 10 dB/ Rise time Trise = 3 µs Fall time Tfall = 0.5 µs CENTER 900.000 000 MHz RES BW 3 MHz • For 100 pF DC cut capacitor VBW 3 MHz SPAN 0 Hz SWP 50 µsec hp REF 0.0 dBm ATTEN 10 dB 10 dB/ Rise time Trise = 1.5 µs Fall time Tfall = 1 µs CENTER 900.000 000 MHz RES BW 3 MHz Application Note P13683EJ2V0AN00 VBW 3 MHz SPAN 0 Hz SWP 50 µ sec 27 Figure 5-1. Rising/Falling Waveforms of µPC8106TB (3/3) Measurement conditions: fIFin = 240 MHz, PIFin = –30 dBm, fLOin = 1 140 MHz, PLOin = –5 dBm (c)Simultaneous control of PS, VCC pins • For 1 000 pF DC cut capacitor hp REF 0.0 dBm ATTEN 10 dB 10 dB/ Rise time Trise = 12 µs Fall time Tfall = 1 µs CENTER 900.000 000 MHz RES BW 3 MHz • For 400 pF DC cut capacitor VBW 3 MHz SPAN 0 Hz SWP 50 µ sec hp REF 0.0 dBm ATTEN 10 dB 10 dB/ Rise time Trise = 6 µs Fall time Tfall = 0.5 µs CENTER 900.000 000 MHz RES BW 3 MHz • For 100 pF DC cut capacitor VBW 3 MHz SPAN 0 Hz SWP 50 µsec hp REF 0.0 dBm ATTEN 10 dB 10 dB/ Rise time Trise = 2 µs Fall time Tfall = 1 µs CENTER 900.000 000 MHz RES BW 3 MHz 28 Application Note P13683EJ2V0AN00 VBW 3 MHz SPAN 0 Hz SWP 50 µsec 5.2 Leakage and Isolation Characteristics As shown below, this IC’s leakage and isolation characteristics were measured using circuits in which the matching adjustment and return loss have been optimized for frequency (a) or frequency (b). Figure 5-2 shows the corresponding characteristics curves. The µPC8106T and µPC8109T were used for these measurements. Test circuit RF port return loss (a) fRFout matched at 925 to 958 MHz S22 log MAG REF 0.0 dB 2 10.0 dB/ −17.044 dB RFout S22 1000 pF 15 pF 100 pF RFout 1.5 pF VCC 1 000 pF 1 000 pF IFin VCC GND PS LOin 50 Ω MARKER1 925.0 MHz −12.22 dB hp C MARKER 2 960.0 MHz MARKER2 960.0 MHz −17.044 dB 100 pF 2 NETWORK ANALYZER HP 8510 Port 2 Port 1 2 1 1 START STOP 0.100000000 GHz 2.100000000 GHz (b) fRFout matched at 1 015 to 1 033 MHz S22 log MAG REF 0.0 dB 1 10.0 dB/ −16.644 dB RFout S22 1.5 pF 100 pF RFout 100 pF VCC IFin 50 Ω 4.7 nH 1 000 pF 1 000 pF VCC GND PS LOin MARKER1 1.015 GHz −16.644 dB hp C MARKER 1 1.015 GHz MARKER2 1.035 GHz −12.399 dB 100 pF 2 1 NETWORK ANALYZER HP 8510 Port 2 Port 1 2 1 START STOP 0.100000000 GHz 2.100000000 GHz Note Connections in diagrams assume measurement of RF → LO. Application Note P13683EJ2V0AN00 29 Figure 5-2. Isolation Data (1/2) (µPC8109 TA = +25°C, VCC = VPS = VRFout = 3.0 V) (a) fRFout matched at 925 to 958 MHz RF → LO LO → IF S12 log MAG REF 0.0 dB 2 10.0 dB/ −14.807 dB ∗ hp C MARKER 2 960.0 MHz S21 log MAG REF 0.0 dB 1 10.0 dB/ −30.172 dB MARKER1 925.0 MHz −15.15 dB MARKER1 600.0 MHz −30.172 dB hp MARKER2 C MARKER 1 600.0 MHz 960.0 MHz −14.807 dB MARKER2 800.0 MHz −27.802 dB MARKER3 1.0 GHz −28.383 dB 2 2 1 2 1 2 START STOP 0.100000000 GHz 2.100000000 GHz START STOP RF → IF 3 MARKER4 1.2 GHz −27.004 dB 4 0.100000000 GHz 2.100000000 GHz IF → LO S12 log MAG REF 0.0 dB 1 10.0 dB/ −33.883 dB S12 log MAG REF 0.0 dB 1 10.0 dB/ −49.549 dB MARKER1 925.0 MHz −33.883 dB hp C MARKER 1 925.0 MHz MARKER1 115.0 MHz −49.549 dB hp MARKER2 C MARKER 1 115.0 MHz 960.0 MHz −35.268 dB MARKER2 300.0 MHz −39.449 dB MARKER3 500.0 MHz −37.158 dB 2 2 1 4 2 2 START STOP 30 0.100000000 GHz 2.100000000 GHz 3 START STOP Application Note P13683EJ2V0AN00 0.100000000 GHz 2.100000000 GHz MARKER4 700.0 MHz −31.428 dB Figure 5-2. Isolation Data (2/2) (b) fRFout matched at 1 015 to 1 033 MHz RF → LO LO → IF S12 log MAG REF 0.0 dB 1 10.0 dB/ −14.167 dB S21 log MAG REF 0.0 dB 1 10.0 dB/ −29.138 dB MARKER1 1.015 MHz −14.167 dB hp C MARKER 2 1.015 GHz MARKER1 700.0 MHz −29.138 dB hp MARKER2 C MARKER 1 700.0 MHz 1.035 GHz −14.271 dB MARKER2 900.0 MHz −27.52 dB MARKER3 1.1 GHz −27.335 dB 1 2 2 2 1 2 START STOP 0.100000000 GHz 2.100000000 GHz START STOP RF → IF 3 MARKER4 1.3 GHz −27.257 dB 4 0.100000000 GHz 2.100000000 GHz IF → LO S12 log MAG REF 0.0 dB 1 10.0 dB/ −33.189 dB MARKER1 1.015 GHz −33.189 dB hp C MARKER 1 1.015 GHz MARKER2 1.035 GHz −34.1 dB S12 log MAG REF 0.0 dB 1 10.0 dB/ −50.223 dB MARKER1 115.0 MHz −50.223 dB hp C MARKER 1 115.0 MHz MARKER2 300.0 MHz −39.135 dB MARKER3 500.0 MHz −37.523 dB 2 1 2 4 2 2 START STOP 0.100000000 GHz 2.100000000 GHz MARKER4 700.0 MHz −32.063 dB 3 START STOP Application Note P13683EJ2V0AN00 0.100000000 GHz 2.100000000 GHz 31 5.3 Spurious Characteristics Parts (a) and (b) of Figure 5-3 show waveforms that were monitored by a spectrum analyzer to detect the LO and RF images and the corresponding harmonic spurious levels at the µPC8106’s RF port. Figure 5-3. Harmonic Spurious Data (1/3) (a) Monitoring range: 1 GHz to 2.5 GHz (µPC8106T Conditions: fRFout = 1.9 GHz, fIFin = 240 MHz, fLOin = 1 660 MHz, PLOin = –5 dBm, VCC = VPS = VRFout = 3.0 V) PIFin = −20 dBm REF20.0 dBm ATTEN 30 dB hp MARKER 10 dB/ 1.899 GHz −13.40 dBm MKR 1.899 GHz −13.40 dBm PIFin = −15 dBm REF20.0 dBm hp 10 dB/ 1.899 GHz −8.70 dBm LO STOP 2.50 GHz SWP 450 msec PIFin = −10 dBm REF20.0 dBm ATTEN 30 dB hp 10 dB/ 1.899 GHz −4.70 dBm START 1.00 GHz RES BW 3 MHz VBW 3 kHz MKR 1.899 GHz −4.70 dBm RF Image LO START 1.00 GHz RES BW 3 MHz VBW 3 kHz 32 MKR 1.899 GHz −8.70 dBm RF Image RF Image LO START 1.00 GHz RES BW 3 MHz VBW 3 kHz ATTEN 30 dB STOP 2.50 GHz SWP 450 msec Application Note P13683EJ2V0AN00 STOP 2.50 GHz SWP 450 msec Figure 5-3. Harmonic Spurious Data (2/3) (b) Monitoring range: 2 GHz to 5.8 GHz (µPC8106T Conditions: fRFout = 1.9 GHz, fIFin = 240 MHz, fLOin = 1 660 MHz, PLOin = –5 dBm, VCC = VPS = VRFout = 3.0 V) PIFin = −20 dBm REF20.0 dBm hp 10 dB/ ATTEN 30 dB MKR 3.315 GHz −47.50 dBm START 2.00 GHz RES BW 3 MHz VBW 10 kHz STOP 5.80 GHz SWP 380 msec PIFin = −10 dBm hp 10 dB/ REF20.0 dBm hp 10 dB/ ATTEN 30 dB MKR 4.728 GHz −47.90 dBm MARKER 4.728 GHz −47.90 dBm MARKER 3.315 GHz −47.50 dBm REF20.0 dBm PIFin = −15 dBm ATTEN 30 dB START 2.00 GHz STOP 5.80 GHz RES BW 3 MHz VBW 10 kHz SWP 380 msec MKR 4.728 GHz −43.70 dBm MARKER 4.728 GHz −43.70 dBm START 2.00 GHz RES BW 3 MHz VBW 10 kHz STOP 5.80 GHz SWP 380 msec Application Note P13683EJ2V0AN00 33 Part (c) of Figure 5-3 shows the waveforms that were monitored by a spectrum analyzer when measuring the dependence of the IF input level and the spurious IF harmonic signals at the µPC8106T’s RF port. As shown in the figure, if the IF input level exceeds the 1-dB compression level, spurious IF harmonic signals may occur near the RF output. Therefore, we recommend usage within a linear region. Figure 5-3. Harmonic Spurious Data (3/3) (c) Monitoring range: 1.4 GHz to 1.8 GHz (µPC8106T Conditions: fRFout = 1.5 GHz, fIFin = 240 MHz, fLOin = 1 740 MHz, PLOin = –5 dBm, VCC = VPS = VRFout = 3.0 V) PIFin = −15 dBm (1-dB compression input level) MKR 1.499 6 GHz REF20.0 dBm ATTEN 30 dB −9.30 dBm hp MARKER 10 dB/ 1.499 6 GHz −9.30 dBm RF PIFin = −10 dBm REF20.0 dBm hp 10 dB/ ATTEN 30 dB MKR ∆ −60.4 MHz –47.00 dB RF MARKER∆ −60.4 MHz −47.00 dBm LO leakage LO leakage IF × 6 START 1.400 GHz RES BW 1 MHz VBW 30 kHz STOP 1.800 GHz SWP 40.0 msec START 1.400 GHz RES BW 1 MHz VBW 1 kHz PIFin = 0 dBm (RF output's saturation input level) MKR ∆ −60.0 MHz ATTEN 30 dB –23.50 dBm REF20.0 dBm hp 10 dB/ RF MARKER∆ −60.0 MHz −23.50 dB IF × 6 LO leakage 2RF-IF × 6 IF × 7 START 1.400 GHz RES BW 1 MHz VBW 1 kHz 34 STOP 1.800 GHz SWP 1.20 sec Application Note P13683EJ2V0AN00 STOP 1.800 GHz SWP 1.20 sec 5.4 Adjacent Channel Interference Power The adjacent channel interference power was measured under the following conditions in the µPC8106 and µPC8109: PDC800 MHz, PHS1 900 MHz, GSM900 MHz, and CDMA900 MHz, and under the following conditions in the µPC8163: PDC800 MHz, GSM900 MHz, DSC1 800 MHz, CDMA900 MHz. The resulting waveforms are shown in the Figures 5-4, 5-5, 5-6, 5-7, and 5-8. Figure 5-4. Adjacent Channel Interference Power Characteristics in µPC8106T (1/3) (a) RF output frequency fRFout = 900 MHz (IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 Padj ∆ f = ±50 kHz −50 −25 −60 −30 −70 −35 Padj ∆ f = ±100 kHz −80 −30 −25 −20 −15 −10 −5 0 5 10 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 130 MHz fLOin = 1 030 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −10.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −76.50 dB −76.25 dB ADJ CH SPACE 100.0 kHz DL −10.0 dBm Padj waveform (saturation region) ATT 10 dB REF 0.0 dBm 10 dB/ A_write B_view ADJ (UP, LOW) −58.00 dB −60.50 dB ADJ CH SPACE 100.0 kHz DL 0.0 dBm RBW 1 KHz VBW 3 kHz SWP 5.0 s RBW 1 KHz VBW 3 kHz SWP 5.0 s CENTER 900.000 MHz SPAN 250.0 kHz CENTER 900.000 MHz Application Note P13683EJ2V0AN00 SPAN 250.0 kHz 35 Figure 5-4. Adjacent Channel Interference Power Characteristics in µPC8106T (2/3) (b) RF output frequency fRFout = 900 MHz (IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate = 0.3, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 −50 Padj ∆ f = ±400 kHz −60 Padj ∆ f = ±800 kHz −70 −80 −30 −25 −30 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 246 MHz fLOin = 1 146 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −35 −25 −20 −15 −10 −5 0 5 10 −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −20.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −74.00 dB −74.50 dB ADJ CH SPACE 800.0 kHz DL −20.0 dBm REF −10.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −79.25 dB −79.00 dB ADJ CH SPACE 800 kHz DL −10.0 dBm RBW 1 KHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 900.0000 MHz 36 Padj waveform (saturation region) SPAN 2.000 MHz CENTER 900.0000 MHz Application Note P13683EJ2V0AN00 SPAN 2.000 MHz Figure 5-4. Adjacent Channel Interference Power Characteristics in µPC8106T (3/3) (c) RF output frequency fRFout = 1 900 MHz (IF input conditions: π/4QPSK modulated frequency input, transmission rate = 384 kbps, roll-off rate = 0.5, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 Padj ∆ f = ±600 kHz −50 −25 −60 −30 −70 Padj ∆ f = ±900 kHz −35 −80 −30 −25 −20 −15 −10 −5 0 5 10 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 233 MHz fLOin = 1.667 GHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −20.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −70.75 dB −70.25 dB ADJ CH SPACE 900 kHz DL −20.0 dBm Padj waveform (saturation region) REF −10.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −60.50 dB −58.50 dB ADJ CH SPACE 900 kHz DL −10.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 1.900000 GHz SPAN 2.10 MHz CENTER 1.900000 GHz Application Note P13683EJ2V0AN00 SPAN 2.10 MHz 37 Figure 5-5. Adjacent Channel Interference Power Characteristics in µPC8109T (1/3) (a) RF output frequency fRFout = 900 MHz (IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 Padj ∆ f = ±50 kHz −50 −25 −60 −30 Padj ∆ f = ±100 kHz −70 −80 −30 −25 −20 −15 −10 −5 0 5 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 130 MHz fLOin = 1 030 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −35 10 −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −20.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −73.50 dB −72.50 dB ADJ CH SPACE 100.0 kHz DL −20.0 dBm ATT 10 dB REF 0.0 dBm 10 dB/ A_write B_view ADJ (UP, LOW) −57.00 dB −56.25 dB ADJ CH SPACE 100.0 kHz DL 0.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 900.0000 MHz 38 Padj waveform (saturation region) SPAN 250.0 kHz CENTER 900.0000 MHz Application Note P13683EJ2V0AN00 SPAN 250.0 kHz Figure 5-5. Adjacent Channel Interference Power Characteristics in µPC8109T (2/3) (b) RF output frequency fRFout = 900 MHz (IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate = 0.3, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 Padj ∆ f = ±800 kHz Padj ∆ f = ±400 kHz −50 −25 −60 −30 −70 −35 −80 −30 −25 −20 −15 −10 −5 0 5 10 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 246 MHz fLOin = 1 146 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −25.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −66.75 dB −68.75 dB ADJ CH SPACE 800 kHz DL −25.0 dBm Padj waveform (saturation region) REF −15.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −76.25 dB −76.50 dB ADJ CH SPACE 800 kHz DL −15.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 900.0000 MHz SPAN 2.000 MHz CENTER 900.0000 MHz Application Note P13683EJ2V0AN00 SPAN 2.000 MHz 39 Figure 5-5. Adjacent Channel Interference Power Characteristics in µPC8109T (3/3) (c) RF output frequency fRFout = 1 900 MHz (IF input conditions: π/4QPSK modulated frequency input, transmission rate = 384 kbps, roll-off rate = 0.5, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 Padj ∆ f = ±600 kHz −50 −25 −60 −30 Padj ∆ f = ±900 kHz −70 −80 −30 −25 −20 −15 −10 −5 0 5 10 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 233 MHz fLOin = 1.667 GHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −35 −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −20.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −63.75 dB −64.50 dB ADJ CH SPACE 900 kHz DL −20.0 dBm REF −10.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −55.25 dB −55.25 dB ADJ CH SPACE 900 kHz DL −10.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 1.900000 GHz 40 Padj waveform (saturation region) SPAN 2.10 MHz CENTER 1.900000 GHz Application Note P13683EJ2V0AN00 SPAN 2.10 MHz Figure 5-6. Adjacent Channel Interference Power Characteristics in µPC8106TB (1/4) (a) RF output frequency fRFout = 900 MHz (IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 Padj ∆ f = ±50 kHz −50 −25 −60 −30 −70 Padj −35 ∆ f = ±100 kHz −80 −30 −25 −20 −15 −10 −5 0 5 10 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 130 MHz fLOin = 1 030 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −10.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −73.50 dB −73.75 dB ADJ CH SPACE 100.0 kHz DL −10.0 dBm Padj waveform (saturation region) ATT 10 dB REF 0.0 dBm 10 dB/ A_write B_view ADJ (UP, LOW) −50.00 dB −50.25 dB ADJ CH SPACE 100.0 kHz DL 0.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 900.0000 MHz SPAN 250.0 kHz CENTER 900.0000 MHz Application Note P13683EJ2V0AN00 SPAN 250.0 kHz 41 Figure 5-6. Adjacent Channel Interference Power Characteristics in µPC8106TB (2/4) (b) RF output frequency fRFout = 900 MHz (IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate = 0.3, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 −50 −25 Padj ∆ f = ±400 kHz Padj ∆ f = ±800 kHz −60 −30 −70 −80 −30 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 246 MHz fLOin = 1 146 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −35 −25 −20 −15 −10 −5 0 5 10 −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −20.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −69.25 dB −68.75 dB ADJ CH SPACE 800 kHz DL −20.0 dBm REF −5.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −75.75 dB −76.50 dB ADJ CH SPACE 800 kHz DL −5.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 900.0000 MHz 42 Padj waveform (saturation region) SPAN 2.000 MHz CENTER 900.0000 MHz Application Note P13683EJ2V0AN00 SPAN 2.000 MHz Figure 5-6. Adjacent Channel Interference Power Characteristics in µPC8106TB (3/4) (c) RF output frequency fRFout = 1 900 MHz (IF input conditions: π/4QPSK modulated frequency input, transmission rate = 384 kbps, roll-off rate = 0.5, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 Padj ∆ f = ±600 kHz −40 −20 −50 −25 −60 Padj ∆ f = ±900 kHz −70 −80 −30 −25 −20 −15 −10 −5 0 5 10 −30 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 233 MHz fLOin = 1.667 GHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −35 −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −25.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −65.00 dB −65.00 dB ADJ CH SPACE 900 kHz DL −25.0 dBm Padj waveform (saturation region) REF −10.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −51.75 dB −51.75 dB ADJ CH SPACE 900 kHz DL −10.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 1.900000 GHz SPAN 2.10 MHz CENTER 1.900000 GHz Application Note P13683EJ2V0AN00 SPAN 2.10 MHz 43 Figure 5-6. Adjacent Channel Interference Characteristics in µPC8106TB (4/4) (d) RF output frequency fRFout = 900 MHz (IF input conditions: OQPSK modulated frequency (IS-95) input, transmission rate = 1.2288 MCPS, roll-off rate = 0.2) Adjacent channel interference power and RF output power vs. IF input power 0 −5 −10 PRFout −20 −10 −30 −15 −40 −20 −50 −25 Padj D∆ f = ±900 kHz −60 −30 fIFin = 240 MHz fLOin = 1 140 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 −35 −70 −80 −30 −5 −20 −15 −10 −40 −5 0 IF input power PIFin (dBm) Padj waveform (linear region) −10 Ref Lv1 −10 dBm Marker 1 [T1] −107.48 dBm 897.75000000 MHz RBW 30 kHz VBW 3 kHz SWT 125 ms 1 [T1] RF Att 0 dB Unit −30 1AVG Marker 1 [T1] dBm −107.48 dBm A 897.75000000 MHz −43.43 dBm CH PWR ACP Up −63.82 dB −64.28 dB ACP Low AL T1 Up −64.39 dB AL T1 Low −64.24 dB −20 −40 Padj waveform (saturation region) −10 1MA −40 −60 −60 −70 −70 −90 −100 1 −110 44 Center 900 MHz −80 C0 C0 −90 c11 c11 cu1 cu1 450 kHz/ cu2 cu2 Span 4.5 MHz 30 kHz 3 kHz SWT 125 ms 1 [T1] 897.75000000 MHz 1AVG 0 dB Unit dBm −71.43 dBm A 1MA 1 c12 c12 C0 C0 c11 c11 −100 −110 RF Att 897.75000000 MHz CH PWR −23.42 dBm ACP Up −32.59 dB ACP Low −32.07 dB AL T1 Up −47.68 dB AL T1 Low −45.44 dB −30 −50 c12 c12 RBW −71.43 dBm VBW −20 −50 −80 Ref Lv1 −10 dBm Center 900 MHz Application Note P13683EJ2V0AN00 cu1 cu1 450 kHz/ cu2 cu2 Span 4.5 MHz Figure 5-7. Adjacent Channel Interference Power Characteristics in µPC8109TB (1/4) (a) RF output frequency fRFout = 900 MHz (IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 Padj ∆ f = ±50 kHz −50 −25 −60 −30 −70 Padj ∆ f = ±100 kHz −35 −80 −30 −25 −20 −15 −10 −5 0 5 10 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 130 MHz fLOin = 1 030 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −20.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −70.75 dB −70.50 dB ADJ CH SPACE 100.0 kHz DL −20.0 dBm Padj waveform (saturation region) ATT 10 dB REF 0.0 dBm 10 dB/ A_write B_view ADJ (UP, LOW) −53.00 dB −53.25 dB ADJ CH SPACE 100.0 kHz DL 0.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 900.0000 MHz SPAN 250.0 kHz CENTER 900.0000 MHz Application Note P13683EJ2V0AN00 SPAN 250.0 kHz 45 Figure 5-7. Adjacent Channel Interference Power Characteristics in µPC8109TB (2/4) (b) RF output frequency fRFout = 900 MHz (IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate = 0.3, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 −50 −25 Padj ∆ f = ±400 kHz Padj ∆ f = ±800 kHz −60 −30 −70 −80 −30 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 246 MHz fLOin = 1 146 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −35 −25 −20 −15 −10 −5 0 5 10 −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −25.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −62.00 dB −61.75 dB ADJ CH SPACE 800 kHz DL −25.0 dBm REF −10.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −75.50 dB −76.00 dB ADJ CH SPACE 800 kHz DL −10.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 900.0000 MHz 46 Padj waveform (saturation region) SPAN 2.000 MHz CENTER 900.0000 MHz Application Note P13683EJ2V0AN00 SPAN 2.000 MHz Figure 5-7. Adjacent Channel Interference Power Characteristics in µPC8109TB (3/4) (c) RF output frequency fRFout = 1 900 MHz (IF input conditions: π/4QPSK modulated frequency input, transmission rate = 384 kbps, roll-off rate = 0.5, PN9 stage [dummy random pattern]) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 Padj ∆ f = ±600 kHz −50 −25 −60 −30 Padj ∆ f = ±900 kHz −70 −80 −30 −25 −20 −15 −10 −5 0 5 10 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 fIFin = 233 MHz fLOin = 1.667 GHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V −35 −40 IF input power PIFin (dBm) Padj waveform (linear region) REF −20.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −62.25 dB −62.25 dB ADJ CH SPACE 900 kHz DL −20.0 dBm Padj waveform (saturation region) REF −10.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −49.50 dB −49.50 dB ADJ CH SPACE 900 kHz DL −10.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 1.900000 GHz SPAN 2.10 MHz CENTER 1.900000 GHz Application Note P13683EJ2V0AN00 SPAN 2.10 MHz 47 Figure 5-7. Adjacent Channel Interference Characteristics in µPC8109TB (4/4) (d) RF output frequency fRFout = 900 MHz (IF input conditions: OQPSK modulated frequency (IS-95) input, transmission rate = 1.2288 MCPS, roll-off rate = 0.2) Adjacent channel interference power and RF output power vs. IF input power 0 −10 −5 PRFout −20 −10 −30 −15 −40 −20 −50 −25 Padj ∆ f = ±900 kHz −60 −30 −70 −35 −80 −30 −25 −20 −15 −10 IF input power PIFin (dBm) −5 Padj waveform (linear region) −10 Ref Lv1 −10 dBm Marker 1 [T1] −106.74 dBm 897.75000000 MHz RBW 30 kHz VBW 3 kHz SWT 125 ms RF Att 0 dB −40 1AVG Unit dBm 1MA −50 −10 Ref Lv1 −10 dBm −40 −90 −100 1 −110 48 Center 900 MHz c11 c11 −80 cu1 cu1 450 kHz/ −90 cu2 cu2 Span 4.5 MHz 0 dB Unit dBm −77.70 dBm 897.75000000 MHz A CH PWR −27.34 dBm ACP Up −32.98 dB ACP Low −32.84 dB AL T1 Up −46.99 dB AL T1 Low −46.27 dB 1AVG −70 1 C0 897.75000000 MHz RF Att 1MA −50 −70 C0 30 kHz 3 kHz SWT 125 ms 1 [T1] −30 −60 c12 c12 RBW −77.70 dBm VBW −20 −60 −80 −40 Marker 1 [T1] −106.74 dBm A 897.75000000 MHz CH PWR −45.96 dBm ACP Up −61.16 dB ACP Low −61.14 dB AL T1 Up −61.97 dB AL T1 Low −62.00 dB −30 0 Padj waveform (saturation region) 1 [T1] −20 fIFin = 240 MHz fLOin = 1 140 MHz PLOin = −5 dBm VCC = VPS = VRFout = 3.0 V RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) 0 c12 c12 c11 c11 −100 −110 C0 C0 Center 900 MHz Application Note P13683EJ2V0AN00 cu1 cu1 450 kHz/ cu2 cu2 Span 4.5 MHz Figure 5-8. Adjacent Channel Interference Characteristics in µPC8163TB (1/4) (a) RF output frequency fRFout = 900 MHz (IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5, PN9 stage [dummy random pattern]) 0 5 −10 0 −20 −5 PRFout −30 −10 −40 −15 Padj ∆ f = ±50 kHz −50 −20 Padj ∆ f = ±100 kHz −60 −25 −70 −80 −30 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power and RF output power vs. IF input power fIFin = 150 MHz fLOin = 980 MHz PLOin = 5 dBm VCC = VRFout = 3.0 V −30 −25 −20 −15 −10 −5 −35 0 IF input power PIFin (dBm) Padj waveform (linear region) REF −15.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −69.75 dB −69.50 dB ADJ CH SPACE 100.0 kHz DL −15.0 dBm Padj waveform (saturation region) ATT 20 dB REF 5.0 dBm 10 dB/ A_write B_view ADJ (UP, LOW) −59.00 dB −56.75 dB ADJ CH SPACE 100.0 kHz DL 5.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 830.0000 MHz SPAN 250.0 kHz CENTER 830.0000 MHz Application Note P13683EJ2V0AN00 SPAN 250.0 kHz 49 Figure 5-8. Adjacent Channel Interference Characteristics in µPC8163TB (2/4) (b) RF output frequency fRFout = 900 MHz (IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate = 0.3, PN9 stage [dummy random pattern]) 0 5 −10 0 −20 −5 PRFout −30 −10 −40 −15 −50 Padj ∆ f = ±400 kHz −60 Padj ∆ f = ±800 kHz −20 −25 −70 RF output power PRFout (dBm) Adjacent channel inference power Padj (dBc) Adjacent channel interface power and RF output power vs. IF input power fIFin = 150 MHz fLOin = 980 MHz PLOin = −5 dBm VCC = VRFout = 3.0 V −30 −80 −30 −25 −20 −15 −10 −5 −35 0 IF input power PIFin (dBm) Padj waveform (linear region) REF −25.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −63.25 dB −62.75 dB ADJ CH SPACE 800 kHz DL −25.0 dBm ATT 10 dB REF 0.0 dBm 10 dB/ A_write B_view ADJ (UP, LOW) −76.00 dB −76.00 dB ADJ CH SPACE 800 kHz DL 0.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 830.000 MHz 50 Padj waveform (saturation region) SPAN 2.000 MHz CENTER 830.000 MHz Application Note P13683EJ2V0AN00 SPAN 2.000 MHz Figure 5-8. Adjacent Channel Interference Characteristics in µPC8163TB (3/4) (c) RF output frequency fRFout = 1 900 MHz (IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate = 0.3, PN9 stage [dummy random pattern]) 0 5 −10 0 −20 −5 PRFout −30 −10 −40 −15 −50 −60 −20 Padj ∆ f = ±800 kHz Padj ∆ f = ±400 kHz −25 −70 −80 −30 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power and RF output power vs. IF input power fIFin = 150 MHz fLOin = 1 750 MHz PLOin = −5 dBm VCC = VRFout = 3.0 V −30 −25 −20 −15 −10 −5 0 −35 IF input power PIFin (dBm) Padj waveform (linear region) REF −25.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −59.25 dB −59.25 dB ADJ CH SPACE 800 kHz DL −25.0 dBm Padj waveform (saturation region) REF −5.0 dBm 10 dB/ ATT 10 dB A_write B_view ADJ (UP, LOW) −73.25 dB −73.25 dB ADJ CH SPACE 800 kHz DL −5.0 dBm RBW 1 kHz VBW 3 kHz SWP 5.0 s RBW 1 kHz VBW 3 kHz SWP 5.0 s CENTER 1.900000 GHz SPAN 2.000 MHz CENTER 1.900000 GHz Application Note P13683EJ2V0AN00 SPAN 2.000 MHz 51 Figure 5-8. Adjacent Channel Interference Characteristics in µPC8163TB (4/4) (d) RF output frequency fRFout = 900 MHz (IF input conditions: OQPSK modulated frequency (IS-95) input, transmission rate = 1.2288 MCPS, roll-off rate = 0.2) 0 5 −10 0 −20 −5 PRFout −30 −10 −40 −15 −50 −20 Padj ∆ f = ±900 kHz −60 −25 −70 RF output power PRFout (dBm) Adjacent channel interference power Padj (dBc) Adjacent channel interference power and RF output power vs. IF input power fIFin = 240 MHz fLOin = 1 140 MHz PLOin = −5 dBm VCC = VRFout = 3.0 V −30 −80 −30 −25 −20 −15 −10 −5 0 −35 IF input power PIFin (dBm) Padj waveform (linear region) −10 Ref Lv1 −10 dBm Marker 1 [T1] −107.02 dBm 897.75000000 MHz RBW 30 kHz VBW 3 kHz SWT 125 ms RF Att 0 dB Unit dBm −107.02 dBm A 897.75000000 MHz −48.41 dBm CH PWR ACP Up −59.39 dB −59.53 dB ACP Low AL T1 Up −59.61 dB AL T1 Low −59.76 dB 1MA 1 [T1] −20 −30 −40 Padj waveform (saturation region) 1AVG Marker 1 [T1] −10 −40 −60 −60 −90 52 897.75000000 MHz RF Att 0 dB Unit dBm −78.60 dBm 897.75000000 MHz A −24.18 dBm CH PWR ACP Up −37.76 dB ACP Low −37.54 dB AL T1 Up −58.04 dB AL T1 Low −52.08 dB 1MA 1AVG −70 c12 c12 Center 900 MHz −80 C0 C0 c11 c11 −100 −110 30 kHz 3 kHz SWT 125 ms 1 [T1] −30 −50 −80 RBW −78.60 dBm VBW −20 −50 −70 Ref Lv1 −10 dBm cu1 cu1 450 kHz/ −90 cu2 cu2 Span 4.5 MHz c12 c12 c11 c11 −100 −110 C0 C0 Center 900 MHz Application Note P13683EJ2V0AN00 cu1 cu1 450 kHz/ cu2 cu2 Span 4.5 MHz 6. SYSTEM CONFIGURATION EXAMPLES Two examples of system applications of these ICs are shown in Figure 6-1: one is the direct modulation method, which modulates at the transmit RF stage and the other is the indirect modulation method, which modulates at the transmit IF stage. The µPC8109 is suitable as a local mixer for direct modulation because of its low current consumption. The µPC8106 is suitable as an RF up-converter for indirect modulation because of its low distortion. Figure 6-1. System Configuration Examples (a) Direct modulation method To 1st mixer (receive) To 2nd mixer 1st.LO Transmit stage I 0˚ Phase shifter 90˚ To antenna PA 2nd.LO PLL1 PLL2 SW AGC Filter Local mixer µ PC8109 Q (b) Indirect modulation method To 1st mixer (receive) ÷N PLL PLL1 RF up-converter Transmit stage 0˚ Phase shifter 90˚ To antenna PA AGC I Q µ PC8106 Application Note P13683EJ2V0AN00 53 7. APPLICATION CIRCUIT EXAMPLE 7.1 Dual Band For mobile phones that use two frequency bandwidths as transmit frequency bands, matching is required for both frequency bands, which makes it difficult to implement with just one matching circuit constant. Figure 7-1 shows an application circuit example that enables use of dual bands: inductance load is used to obtain broad-band gain and a 50 Ω pad is inserted to apply 50 Ω impedance to the next stage obtain broad-band gain. Various other application circuits can be conceived as user-side solutions. Figure 7-1. Dual Band Circuit Configuration Example BPF To next stage R R 300 nH R 10 000 pF 1 000 pF 1 000 pF VCC 54 6 5 4 RFout IFin VCC GND PS LOin Application Note P13683EJ2V0AN00 1 2 3 L C1 C2 From previous stage 100 pF From local oscillator 8. CONCLUSION This application note has briefly described the usage and application of frequency up-converter ICs for mobile communication devices. For the future, we are working to develop new core products in which the functions are improved and the integration intensified by using a new process to improve linearity and by providing support for high frequency applications. References µPC8106, µPC8109 and µPC8163 data sheets (see the document numbers listed in the Contents). Also, see other reference materials that describe double balanced mixers. Application Note P13683EJ2V0AN00 55 [MEMO] 56 Application Note P13683EJ2V0AN00 [MEMO] Application Note P13683EJ2V0AN00 57 [MEMO] 58 Application Note P13683EJ2V0AN00 Facsimile Message From: Name Company Tel. Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us. FAX Address Thank you for your kind support. North America Hong Kong, Philippines, Oceania NEC Electronics Inc. NEC Electronics Hong Kong Ltd. Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: 1-800-729-9288 1-408-588-6130 Korea Europe NEC Electronics Hong Kong Ltd. NEC Electronics (Europe) GmbH Seoul Branch Technical Documentation Dept. Fax: 02-528-4411 Fax: +49-211-6503-274 South America NEC do Brasil S.A. Fax: +55-11-6465-6829 Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583 Japan NEC Semiconductor Technical Hotline Fax: 044-548-7900 Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951 I would like to report the following error/make the following suggestion: Document title: Document number: Page number: If possible, please fax the referenced page or drawing. Document Rating Excellent Good Acceptable Poor Clarity Technical Accuracy Organization CS 99.1