ETC P13683EJ2V0AN00

Application Note
Usage and Application of µPC8106, µPC8109 and
µPC8163
2.0 GHz Silicon Frequency Up-converter ICs for
Mobile Communications
Document No. P13683EJ2V0AN00 (2nd edition)
Date Published April 2000 N CP(K)
©
Printed in Japan
1999, 2000
[MEMO]
2
Application Note P13683EJ2V0AN00
NESAT is an abbreviation of NEC Silicon Advanced Technology and a trademark of NEC Corporation.
The information in this document will be updated without notice.
This document outlines a typical application of this product, that is, provides a sample concept for
designing an external circuit directly required for this product. NEC only assures the quality and
characteristics of this product specified in the Data Sheet, and is not responsible for any user’s
product designs or application sets.
The peripheral circuit shown in this document is just an example prepared for evaluating the
operations of this product, and does not imply that the circuit configurations or constants are
recommended values or regulations.
In addition, these circuits are not intended for any mass-
produced application sets. This is because the RF characteristics vary depending on the external
parts used, mounting patterns, and other conditions.
Therefore, it is the responsibility of the user to design the external circuit according to the userdesired system requirements while referring to the information in this document and to use it after
confirming the characteristics on the user’s application set.
• The information in this document is subject to change without notice. Before using this document,
please confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
M7A 98. 8
The mark
shows major revised points.
Application Note P13683EJ2V0AN00
3
CONTENTS
1.
INTRODUCTION.............................................................................................................................
5
2.
OVERVIEW OF PRODUCTS..........................................................................................................
2.1 Characteristics and Sizes .....................................................................................................
6
6
3.
INTERNAL CIRCUIT CONFIGURATION .......................................................................................
3.1 Differences Between µPC8106, µPC8109 and µPC8163.....................................................
3.2 Internal Circuits and Frequency Bandwidth .......................................................................
8
8
8
4.
EXTERNAL CIRCUIT CONFIGURATION ......................................................................................
4.1 Impedance Matching at RF Output ......................................................................................
4.2 Input Impedance Matching ...................................................................................................
4.3 Bypass Capacitor ..................................................................................................................
10
10
10
10
5.
APPLICATION CHARACTERISTICS .............................................................................................
5.1 Operating Rise/Fall Times.....................................................................................................
5.2 Leakage and Isolation Characteristics ................................................................................
5.3 Spurious Characteristics ......................................................................................................
5.4 Adjacent Channel Interference Power .................................................................................
25
25
29
32
35
6.
SYSTEM CONFIGURATION EXAMPLES .....................................................................................
53
7.
APPLICATION CIRCUIT EXAMPLE ..............................................................................................
7.1 Dual Band ...............................................................................................................................
54
54
8.
CONCLUSION ................................................................................................................................
References .....................................................................................................................................
55
55
Use-Related Cautions
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All
the ground pins must be wired as short as possible to decrease impedance difference (this also helps prevent
operation faults, abnormal oscillation, etc.).
(3) The bypass capacitor should be attached to the VCC pin.
(4) The RF output pin connects an external LC matching circuit’s parallel inductor to VCC to apply a bias and RF
load.
(5) The DC cut capacitor must be attached to the input pin. The input pins’ voltage must not be externally adjusted.
(6) A capacitor (such as a 100 pF capacitor) should be attached between the PS and VCC pins.
See each product’s data sheet for more detailed cautions and descriptions of electrical characteristics.
µPC8106T, µPC8109T Data Sheet (Document No. P10656E)
µPC8106TB, µPC8109TB Data Sheet (Document No. P12770E)
µPC8163TB Data Sheet (Document No. P13636E)
4
Application Note P13683EJ2V0AN00
1.
INTRODUCTION
In 1995, PDC (Personal Digital Cellular) services were launched in Japan, and PHS (Personal Handyphone
System) services were started soon afterward. As of this writing near the end of the 1999 business term, Japan’s
cellular phone subscriptions totaled about 42.5 million, which would indicate that approximately one out of every
three people in Japan has a cellular phone account.
PHS subscriptions alone totaled nearly 6 million, which
represents about 4.6 percent of the nation’s population.
Mobile telephones using high frequencies need a frequency up-conversion function for RF signal transmission.
This up-conversion function is applied to the following two modulation methods: direct modulation (or RF modulation),
in which the signal is mixed up to the transmission frequency before being modulated, and other is indirect
modulation (up converter method or IF modulation), in which the modulated signal of the IF frequency is upconverted to the transmission frequency. Frequency up-converters are used in all of these methods. NEC now adds
the µPC8163 to the µPC8106 and µPC8109 silicon high-frequency monolithic integrated circuit lineup, which was
developed to provide core products for frequency up-converters used with any of the above frequency modulation
methods. This application note describes the usage and applications of this up-converter series.
Application Note P13683EJ2V0AN00
5
2.
OVERVIEW OF PRODUCTS
2.1 Characteristics and Sizes
The µPC8106 is designed to emphasize low-distortion characteristics and the µPC8109 is designed to emphasize
low current consumption. The µPC8163 is an improved distortion version of the µPC8106. The µPC8106 and
µPC8109 have the same pin connections, however the power saving pin is absent in the µPC8163 because it does
not include a power saving function. The supply voltage and frequency band are similarly identical in the µPC8106
and µPC8109, but differ slightly in the µPC8163 (refer to 3.2 Internal Circuit and Frequency Band for details). The
µPC8106 and µPC8109 come in 6-pin minimold (2915 size) and 6-pin super minimold (2012 size) packages,
whereas only the latter is available for the µPC8163. T or TB is added to the part number, indicating a conventional
minimold and super minimold package, respectively.
Although products in this series with the same part number use the same circuit configuration, TB products have a
smaller chip size. (By contrast, amplifier series products that have the same part number are all mounted on the
same type of chip). The difference between µPC8106 and µPC8109 in the T and TB products of the µPC8106 and
µPC8019 is a conversion gain specification of about 1 dB due to a slight gap in the IF input impedance.
Specifications other than the conversion gain are the same.
A three-character abbreviation is used for the part numbers shown on the products, due to limited marking space
on these small molds.
“C2D” indicates the µPC8106, “C2G” indicates the µPC8109 and “C2Y” indicates the
µPC8163.
For details of markings, see “Silicon High-frequency Monolithic ICs” (Document No. P10100E) in the selection
guide.
Table 2-1 lists NEC’s lineup of high-frequency up converter ICs. Figure 2-1 shows package drawings of the two
package types.
Table 2-1. NEC’s Lineup of High-Frequency Up Converter ICs
Part
Number
Supply
Voltage
VCC (V)
Circuit
Current
ICC (mA)
µPC8106T 2.7 to 5.5
µPC8106TB
9
µPC8109T 2.7 to 5.5
µPC8109TB
5
µPC8163TB 2.7 to 3.3
16.5
Conversion Conversion
Gain 2
Gain 1
CG2 (dB)
CG1 (dB)
Saturation RF
Output Power 1
PO (sat) 1 (dBm)
Saturation RF
Output Power 2
PO (sat) 2 (dBm)
Output IP31
OIP31(dBm)
Output IP32
OIP32(dBm)
–2
–4
+5.5
+2.0
+1.5
–1.0
+9.5
+6.0
10
7
9
7
7
5
–6
–8
6
4
–5.5
–7.5
9
5.5
0.5
–2
Test conditions: TA = +25°C, VCC = VRFout = 3.0 V, ZL = ZS = 50 Ω (µPC8106, µPC8109: VPS = 3.0 V)
The above values are typical values for major characteristics.
See each product’s data sheet for detailed
characteristics ratings.
6
Application Note P13683EJ2V0AN00
Figure 2-1. Package Drawings of 6-pin Minimold and 6-pin Super Minimold
(a) 6-pin minimold (unit: mm)
0.3
0.2
0.3
0.2
0.1
2.8
1.5
1
0.13 ± 0.1
0.1
0.0
2
3
0 to 0.1
6
5
4
0.95
0.95
0.8
1.1
1.9
0.2
0.1
2.9 ± 0.2
(b) 6-pin super minimold (unit: mm)
2.1 ± 0.1
0.1 or more
0.1
0.05
0.15
1.25 ± 0.1
0.2
0.1
0.05
0 to 0.1
0.65
0.65
1.3
2.0 ± 0.2
0.7
0.9 ± 0.1
Both of these products have been developed and manufactured using NEC’s “NESAT III” silicon bipolar process.
For details of this process, see the pamphlet entitled “NESAT Process” (Document No. P12647E).
Application Note P13683EJ2V0AN00
7
3.
INTERNAL CIRCUIT CONFIGURATION
3.1 Differences Between µPC8106, µPC8109, and µPC8163
The µPC8106 and µPC8109 are double balanced mixer + bias circuit ICs and have the same circuit configuration.
These circuits only differ in that the current across the Gilbert cell paired transistors (Q3, Q4 and Q5, Q6) in the
µPC8106 is double that in the µPC8109. This results in a conversion gain difference of about 3 dB. The circuit
configuration in the µPC8163 is the same as the other products in all respects except that there is no power saving
control circuit. However, due to the optimization of the current distribution and the adjustment of CG and IIP3, this
product has a higher IP3 value. The internal equivalent circuit is shown in Figure 3-1 below.
Figure 3-1. Internal Equivalent Circuit Diagram
VCC
RFout
LOin
Q3 Q4
Q5 Q6
Q1
PS
Q2
IFin
GND
3.2 Internal Circuits and Frequency Bandwidth
These ICs include bypass capacitors at the double balanced mixer type complementary IF inputs in order to
improve the AC characteristics of the 100 MHz to 400 MHz frequency range (50 MHz to 300 MHz in the µPC8163).
This lowers the conversion gain when the IF input frequency is below the minimum value. When the IF input
frequency is above the maximum value, the conversion gain is lowered according to the frequency characteristics of
the internal transistors. Figure 3-2 shows the dependence of the IF input frequency and the conversion gain in the
µPC8106.
The RF output pin is an open collector, and since there is no on-chip component that limits the lower limit of the
frequency bandwidth, the user should provide an external narrow-band matching circuit for the internal transistors’
characteristic frequency range (µPC8106, µPC8109: 400 MHz to 2 GHz, µPC8163: 800 MHz to 2 GHz) to set the
desired bandwidth.
Since this mixer has been designed as a product for frequency up-converters, the user’s determination of the
desired bandwidth should be made according to the following conditions. Note with caution that this mixer’s design
and operation as a frequency down-converter are not guaranteed (other frequency down-converter mixer ICs are
available).
• Frequency condition: | fRFout – fLOin | = fIFin, fRFout, fLOin > fIFin
8
Application Note P13683EJ2V0AN00
Figure 3-2. Dependence of IF Input Frequency and Conversion Gain
µPC8106
Measurement conditions: fRFout = 1.9 GHz, PLOin = –5 dBm, VCC = VPS = VRFout = 3.0 V, PIFin = –30 dBm
10
9
Conversion gain CG (dB)
8
7
6
5
Recommended
operation range
4
3
2
1
0
100
500
1 000
1 500
2 000
IF input frequency fIFin (MHz)
Application Note P13683EJ2V0AN00
9
4.
EXTERNAL CIRCUIT CONFIGURATION
4.1 Impedance Matching at RF Output
Since this IC has an open-collector output, an external LC matching circuit for RF should be included in the circuit
configuration. The matching circuit should include a parallel inductor to the VCC side and a series capacitor to the
next stage. As mentioned earlier, the bias of the output pin’s collector is applied via the inductor used for RF
matching of the VCC pin’s voltage. In other words, the inductor that is connected to the output pin has two effects: its
RF effect (frequency matching) and its DC effect (application of bias). For this reason, the external inductor should
be a small DC-resistance and high frequency use type.
The LC matching circuit constants used in the test circuits shown in the data sheet are for the evaluation board
described in the data sheet. This evaluation board is used only for simple evaluations; devices evaluated using this
board are not immediately suitable for application in systems. The patterns used for evaluation do not allow parts to
be mounted near the IC, so the pattern size is larger. Accordingly, these are not the recommended patterns or the
recommended circuit constants.
The matching LC value is determined so as to produce a narrow-band power gain that suits the frequency
bandwidth used, based on the IC’s own S parameters. Select a value that reduces the S22 value to about –20 dBm
when the gain within the frequency bandwidth used is at the maximum. A 900 MHz high pass type and a 1.5 GHz
and 1.9 GHz low pass type are shown as example of an RF matching circuit configuration.
4.2 Input Impedance Matching
The IF and LO inputs in this IC are base inputs with parallel connections to bias resistors.
Although their
characteristic impedance is not 50 Ω, the test circuits in the data sheet show a signal generator with a 50 Ω signal
source impedance. Accordingly, the data sheet’s electrical characteristics include loss due to this mismatched
impedance. If impedance matching is implemented in the actual circuit, the elimination of this loss raises the IC’s
input level, which lowers the required input level (by about 3 to 5 dB). When configuring an IF matching circuit, such
as is shown in Figure 4-1, the response time varies according to the IF matching circuit’s DC cut series capacitance
value (see 5.1 Operating Rise/Fall Times).
Figure 4-3 shows S parameter values for RF, IF, and LO ports when matching is not implemented. Although the
internal components are the same in the T and TB products, the packages, leads, and chip sizes are different, which
means that the S parameters are slightly different, so some optimization is needed (concerning peripheral circuit
constants, mounting pads, etc.) when replacing one package with the other.
4.3 Bypass Capacitor
As in other ICs, in this IC the VCC pin must be GND in RF, so externally attach a bypass capacitor with a large
value such as 1 000 pF. In the µPC8106 and µPC8109, the conversion value is higher or lower depending on the
board. This difference is based on the relationship between the IC’s internal elements and board, and the pattern
length. If the conversion gain on the board of the actual set is low, it can be improved by inserting an external chip
capacitor of about 100 pF between the VCC and PS pins to readjust the matching.
10
Application Note P13683EJ2V0AN00
Figure 4-1. Examples of External Circuit Configuration (µPC8106, µPC8109) (1/2)
RF output matched at 900 MHz
Determine L1 and C1 according to the frequency and the RF port’s S parameter.
High-pass type output matching is used.
Determine whether or not attach an input matching circuit according to the impedance of the previous stage.
RF = 900 MHz matching
To next stage
(RF filter, etc.)
1 000 pF
IF matching
6
C1
From power
supply
L1
*
RFout
IFin
1
L2
From previous stage
C3
5
4
1 000 pF
VCC
GND
PS
LOin
2
3
C2
100 pF
From local oscillator
1 000 pF
From controller
*
If gain is reduced on the mounting board, insert a 100 pF capacitor between the VCC and PS pins to readjust the matching.
RF output matched at 1.9 GHz
Determine L1 and C1 according to the frequency (including the strip line length on the mounting board) and the RF port’s S
parameter.
Low-pass type output matching is used.
Determine whether or not attach an input matching circuit according to the impedance of the previous stage.
If the conversion gain value is too low, implementing a parallel configuration of two chip capacitors for C1 can lower the Q value.
RF = 1.9 GHz matching
To next stage
(RF filter, etc.)
1 000 pF
Strip line
C1
From power
supply
L1
*
IF matching
6
RFout
IFin
1
L2
C3
5
4
VCC
GND
PS
LOin
1 000 pF
2
3
From previous stage
C2
100 pF
From local oscillator
1 000 pF
From controller
*
If gain is reduced on the mounting board, insert a 100 pF capacitor between the VCC and PS pins to readjust the matching.
Application Note P13683EJ2V0AN00
11
Figure 4-1. Examples of Circuit Configuration (µPC8163) (2/2)
RF output matched at 830 MHz
Determine L and C according to the frequency and the RF port’s S parameter.
High-pass type output matching is used.
Determine whether or not to attach an input matching circuit according to the impedance of the previous stage.
RF = 830 MHz matching
To next stage
(RF filter, etc.)
1 000 pF
C
6
L
From power
supply
5
4
RFout
IFin
VCC
GND
GND
LOin
1
100 pF
From previous stage
2
3
100 pF
From local oscillator
1 000 pF
RF output matched at 1.9 GHz
Determine L and C according to the frequency (including the strip line length on the mounting board) and the RF port’s S
parameter.
Low-pass type output matching is used.
Determine whether or not to attach an input matching circuit according to the impedance of the previous stage.
If the conversion gain is too low, implementing a parallel configuration of two chip capacitors for C can lower the Q value.
RF = 1.9 GHz matching
To next stage
(RF filter, etc.)
1 000 pF Strip line
C
From power
supply
L
6
5
4
RFout
IFin
VCC
GND
GND
LOin
1 000 pF
12
Application Note P13683EJ2V0AN00
1
100 pF
From previous stage
2
3
100 pF
From local oscillator
Figure 4-2. Examples of External Circuit Configuration on the Evaluation Board
RF output matched at 900 MHz
1 000 pF
C
100 pF
1 000 pF
L
100 pF
1 000 pF
100 pF
RF output matched at 1.9 GHz
C
1 000 pF
1 000 pF
100 pF
L
100 pF
1 000 pF
100 pF
Caution
Although the VCC and PS pins are shorted in the µPC8106 and µPC8109 data sheet due to the NEC
test equipment conditions, it is possible to independently control the VCC and PS pins in actual
evaluation by using a pulse generator that assumes PS pin control via logic.
Application Note P13683EJ2V0AN00
13
Figure 4-3. S Parameters and Smith Charts (Without External Component) (1/10)
(a) µPC8106T (1/2)
(VCC = VPS = VRFout = 3.0 V, TA = +25°°C)
LO port
FREQUENCY
RF port
S22
S11
MHz
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
MAG.
0.889
0.880
0.871
0.861
0.852
0.841
0.831
0.822
0.812
0.800
0.791
0.778
0.771
0.757
0.753
0.735
0.728
0.721
0.709
0.703
0.694
0.684
0.668
0.651
0.633
0.616
0.602
0.593
0.585
0.577
0.566
ANG.
–25.2
–28.2
–31.0
–34.1
–36.9
–39.7
–42.6
–45.4
–48.2
–51.0
–53.7
–56.2
–58.8
–61.6
–64.1
–66.7
–69.6
–72.0
–74.5
–77.3
–80.3
–83.0
–86.2
–88.7
–91.2
–93.0
–95.1
–96.9
–98.8
–100.6
–102.9
MAG.
0.968
0.964
0.958
0.951
0.945
0.937
0.933
0.924
0.919
0.910
0.901
0.895
0.890
0.884
0.874
0.869
0.860
0.854
0.844
0.839
0.830
0.825
0.814
0.804
0.796
0.792
0.783
0.776
0.769
0.762
0.754
ANG.
–19.4
–21.8
–24.2
–26.5
–28.7
–31.1
–33.2
–35.4
–37.5
–40.0
–42.2
–44.2
–46.5
–48.5
–50.6
–52.6
–55.0
–57.0
–59.3
–61.4
–63.5
–65.3
–67.6
–69.4
–71.5
–73.5
–75.4
–77.2
–79.4
–81.3
–83.4
LO port
RF port
S11
Z
REF 1.0 Units
200.0 mUnits/
2
21.176 Ω −42.477 Ω
hp
S22
Z
REF 1.0 Units
200.0 mUnits/
2
15.357 Ω −53.604 Ω
hp
MARKER1···1.15 GHz
2···1.65 GHz
MARKER1···900 MHz
2···1.9 GHz
2
2
1
START
STOP
14
0.400000000 GHz
1.900000000 GHz
Application Note P13683EJ2V0AN00
START
STOP
0.400000000 GHz
1.900000000 GHz
1
Figure 4-3. S Parameters and Smith Charts (Without External Component) (2/10)
(a) µPC8106T (2/2)
IF port
FREQUENCY
MHz
100.0000
120.0000
140.0000
160.0000
180.0000
200.0000
220.0000
240.0000
260.0000
280.0000
300.0000
320.0000
340.0000
360.0000
380.0000
400.0000
S11
MAG.
0.938
0.937
0.936
0.934
0.932
0.931
0.928
0.927
0.926
0.924
0.922
0.921
0.917
0.916
0.910
0.909
ANG.
–4.5
–5.2
–6.0
–6.9
–7.7
–8.5
–9.4
–10.2
–11.2
–11.9
–12.9
–13.6
–14.4
–15.3
–15.9
–16.9
IF port
S11
Z
REF 1.0 Units
200.0 mUnits/
2
117.84 Ω −660.87 Ω
hp
MARKER1···240 MHz
1
START
STOP
0.100000000 GHz
0.400000000 GHz
Application Note P13683EJ2V0AN00
15
Figure 4-3. S Parameters and Smith Charts (Without External Component) (3/10)
(b) µPC8109T (1/2)
(VCC = VPS = VRFout = 3.0 V, TA = +25°°C)
LO port
FREQUENCY
RF port
S22
S11
MHz
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
MAG.
0.913
0.904
0.897
0.889
0.880
0.871
0.863
0.855
0.846
0.835
0.829
0.819
0.813
0.802
0.799
0.785
0.776
0.772
0.760
0.755
0.745
0.731
0.711
0.691
0.674
0.659
0.648
0.643
0.638
0.632
0.622
ANG.
–23.7
–26.5
–29.3
–32.2
–34.8
–37.5
–40.3
–42.9
–45.7
–48.5
–51.1
–53.6
–56.1
–58.8
–61.5
–64.2
–66.9
–69.4
–72.1
–75.2
–78.0
–81.3
–84.2
–86.3
–88.5
–89.9
–91.9
–94.0
–95.8
–97.8
–100.3
MAG.
0.971
0.967
0.962
0.956
0.949
0.944
0.940
0.930
0.926
0.918
0.913
0.904
0.898
0.891
0.885
0.880
0.870
0.868
0.858
0.851
0.845
0.837
0.830
0.822
0.813
0.807
0.799
0.792
0.784
0.775
0.767
ANG.
–19.4
–21.9
–24.2
–26.5
–28.8
–31.0
–33.3
–35.5
–37.7
–40.1
–42.5
–44.5
–46.8
–48.7
–50.9
–52.9
–55.1
–57.4
–59.7
–62.0
–63.9
–65.8
–68.1
–70.2
–72.6
–74.4
–76.5
–78.4
–80.3
–82.3
–84.7
LO port
RF port
S11
Z
REF 1.0 Units
200.0
mUnits/
2
19.68 Ω −45.93 Ω
hp
S22
Z
REF 1.0 Units
200.0
mUnits/
2
14.035 Ω −52.35 Ω
hp
MARKER1···1.15 GHz
2···1.65 GHz
MARKER1···900 MHz
2···1.9 GHz
2
2
1
1
START
STOP
16
0.400000000 GHz
1.900000000 GHz
Application Note P13683EJ2V0AN00
START
STOP
0.400000000 GHz
1.900000000 GHz
Figure 4-3. S Parameters and Smith Charts (Without External Component) (4/10)
(b) µPC8109T (2/2)
IF port
FREQUENCY
MHz
100.0000
120.0000
140.0000
160.0000
180.0000
200.0000
220.0000
240.0000
260.0000
280.0000
300.0000
320.0000
340.0000
360.0000
380.0000
400.0000
S11
MAG.
0.949
0.950
0.950
0.948
0.945
0.944
0.940
0.940
0.939
0.937
0.935
0.936
0.931
0.930
0.925
0.923
ANG.
–4.3
–5.0
–5.7
–6.6
–7.4
–8.2
–9.0
–9.9
–10.7
–11.5
–12.4
–13.2
–13.8
–14.7
–15.4
–16.2
IF port
S11
Z
REF 1.0 Units
200.0 mUnits/
1
189.19 Ω −513.31 Ω
hp
MARKER1···240 MHz
1
START
STOP
0.100000000 GHz
0.400000000 GHz
Application Note P13683EJ2V0AN00
17
Figure 4-3. S Parameters and Smith Charts (Without External Component) (5/10)
(c) µPC8106TB (1/2)
(VCC = VPS = VRFout = 3.0 V, TA = +25°°C)
LO port
FREQUENCY
RF port
S22
S11
MHz
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
MAG.
0.902
0.894
0.888
0.878
0.870
0.858
0.852
0.842
0.834
0.824
0.810
0.801
0.796
0.781
0.777
0.760
0.749
0.739
0.728
0.716
0.702
0.684
0.666
0.651
0.636
0.627
0.618
0.608
0.600
0.591
0.579
ANG.
–23.2
–26.1
–28.7
–31.5
–34.2
–36.9
–39.5
–42.1
–44.8
–47.6
–50.3
–52.7
–55.3
–57.9
–60.5
–63.0
–65.5
–67.9
–70.7
–73.2
–76.2
–78.7
–80.6
–82.5
–84.5
–86.1
–88.0
–90.0
–91.9
–94.0
–96.1
MAG.
0.966
0.962
0.959
0.951
0.948
0.939
0.934
0.928
0.922
0.915
0.907
0.901
0.897
0.889
0.879
0.871
0.862
0.851
0.839
0.827
0.809
0.797
0.781
0.773
0.775
0.774
0.774
0.772
0.766
0.763
0.760
ANG.
–13.6
–15.4
–17.1
–18.5
–20.1
–21.8
–23.1
–24.8
–26.3
–27.8
–29.3
–30.8
–32.5
–33.8
–35.4
–37.0
–38.4
–40.3
–41.6
–43.2
–44.2
–45.7
–46.1
–46.3
–47.0
–47.9
–49.4
–50.6
–51.9
–53.3
–54.8
LO port
RF port
S11
Z
REF 1.0 Units
200.0 mUnits/
2
23.203 Ω −47.814 Ω
hp
S22
Z
REF 1.0 Units
200.0 mUnits/
2
30.133 Ω −88.633 Ω
hp
MARKER1···1.15 GHz
2···1.65 GHz
MARKER1···900 MHz
2···1.9 GHz
2
2
1
START
STOP
18
0.400000000 GHz
1.900000000 GHz
Application Note P13683EJ2V0AN00
START
STOP
0.400000000 GHz
1.900000000 GHz
1
Figure 4-3. S Parameters and Smith Charts (Without External Component) (6/10)
(c) µPC8106TB (2/2)
IF port
FREQUENCY
MHz
100.0000
120.0000
140.0000
160.0000
180.0000
200.0000
220.0000
240.0000
260.0000
280.0000
300.0000
320.0000
340.0000
360.0000
380.0000
400.0000
S11
MAG.
0.946
0.946
0.944
0.942
0.941
0.939
0.938
0.935
0.936
0.935
0.932
0.929
0.928
0.925
0.923
0.920
ANG.
–4.2
–4.9
–5.6
–6.4
–7.2
–8.0
–8.8
–9.5
–10.1
–11.0
–11.8
–12.5
–13.2
–14.0
–14.7
–15.4
IF port
S11
Z
REF 1.0 Units
200.0 mUnits/
2
210.88 Ω −520.97 Ω
hp
MARKER1···240 MHz
1
START
STOP
0.100000000 GHz
0.400000000 GHz
Application Note P13683EJ2V0AN00
19
Figure 4-3. S Parameters and Smith Charts (Without External Component) (7/10)
(d) µPC8109TB (1/2)
(VCC = VPS = VRFout = 3.0 V, TA = +25°°C)
LO port
FREQUENCY
RF port
S22
S11
MHz
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
MAG.
0.929
0.920
0.915
0.908
0.900
0.894
0.887
0.879
0.873
0.864
0.852
0.845
0.842
0.830
0.829
0.811
0.804
0.795
0.785
0.773
0.756
0.736
0.719
0.703
0.692
0.683
0.678
0.670
0.662
0.653
0.642
ANG.
–21.3
–23.9
–26.4
–29.0
–31.6
–34.1
–36.5
–39.0
–41.6
–44.0
–46.6
–48.9
–51.3
–53.9
–56.6
–59.0
–61.6
–64.0
–66.5
–69.2
–72.1
–74.5
–76.2
–77.9
–79.6
–81.2
–82.9
–85.1
–86.8
–88.8
–90.9
MAG.
0.971
0.967
0.963
0.956
0.952
0.946
0.941
0.935
0.932
0.924
0.917
0.916
0.907
0.901
0.892
0.885
0.877
0.869
0.858
0.848
0.833
0.824
0.810
0.802
0.802
0.797
0.795
0.792
0.788
0.780
0.776
ANG.
–13.4
–15.1
–16.8
–18.3
–19.8
–21.4
–22.8
–24.5
–25.9
–27.3
–29.0
–30.6
–32.2
–33.6
–35.2
–36.6
–38.1
–39.8
–41.3
–43.0
–44.2
–45.6
–46.4
–47.0
–48.0
–49.1
–50.5
–51.9
–53.3
–54.7
–56.2
LO port
RF port
S11
Z
REF 1.0 Units
200.0 mUnits/
2
21.201 Ω −53.748 Ω
hp
S22
Z
REF 1.0 Units
200.0 mUnits/
2
26.961 Ω −87.312 Ω
hp
MARKER1···1.15 GHz
2···1.65 GHz
MARKER1···900 MHz
2···1.9 GHz
2
2
1
START
STOP
20
0.400000000 GHz
1.900000000 GHz
Application Note P13683EJ2V0AN00
START
STOP
0.400000000 GHz
1.900000000 GHz
1
Figure 4-3. S Parameters and Smith Charts (Without External Component) (8/10)
(d) µPC8109TB (2/2)
IF port
FREQUENCY
MHz
100.0000
120.0000
140.0000
160.0000
180.0000
200.0000
220.0000
240.0000
260.0000
280.0000
300.0000
320.0000
340.0000
360.0000
380.0000
400.0000
S11
MAG.
0.960
0.959
0.957
0.956
0.956
0.953
0.953
0.950
0.950
0.946
0.948
0.947
0.943
0.942
0.940
0.938
ANG.
–3.8
–4.5
–5.2
–6.0
–6.7
–7.4
–8.2
–8.9
–9.5
–10.4
–11.1
–11.7
–12.5
–13.1
–13.9
–14.5
IF port
S11
Z
REF 1.0 Units
200.0 mUnits/
1
194.16 Ω −579.53 Ω
hp
MARKER1···240 MHz
1
START
STOP
0.100000000 GHz
0.400000000 GHz
Application Note P13683EJ2V0AN00
21
Figure 4-3. S Parameters and Smith Charts (Without External Component) (9/10)
(e) µPC8163TB (1/2)
(VCC = VRFout = 3.0 V, TA = +25°°C)
FREQUENCY
MHz
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
22
LO Port
S11
MAG.
ANG.
−7.4
0.917
−10.7
0.915
−14.0
0.911
−17.0
0.905
−20.4
0.898
−23.8
0.893
−27.0
0.883
−30.2
0.877
−33.2
0.867
−36.5
0.860
−39.6
0.850
−42.6
0.839
−45.6
0.831
−48.7
0.822
−51.5
0.812
−54.4
0.801
−57.4
0.790
−60.3
0.778
−62.9
0.773
−65.6
0.761
−68.4
0.759
−71.0
0.743
−73.8
0.733
−76.5
0.728
−79.3
0.717
−82.4
0.711
−85.3
0.693
−88.2
0.680
−90.6
0.662
−92.7
0.646
−95.0
0.629
−96.6
0.618
−98.4
0.611
−100.4
0.601
−102.2
0.592
−104.2
0.584
−106.3
0.576
−108.2
0.568
−110.0
0.560
−112.0
0.550
−113.9
0.543
−115.6
0.535
−117.5
0.527
−119.3
0.519
−120.8
0.512
−122.6
0.505
−124.4
0.499
−126.1
0.489
−127.9
0.485
−129.4
0.478
−131.1
0.472
−132.6
0.463
−134.1
0.460
−135.6
0.454
−137.1
0.450
−139.2
0.443
−140.5
0.437
−142.2
0.430
−143.6
0.424
RF Port
S22
MAG.
ANG.
−3.5
0.985
−5.2
0.982
−6.9
0.982
−8.5
0.977
−10.2
0.972
−12.0
0.966
−13.5
0.964
−15.1
0.959
−16.5
0.953
−18.3
0.946
−19.7
0.939
−21.3
0.932
−22.9
0.926
−24.3
0.922
−25.7
0.915
−27.3
0.907
−28.9
0.902
−30.2
0.891
−31.4
0.885
−32.9
0.880
−34.3
0.870
−35.8
0.862
−37.2
0.859
−39.3
0.850
−40.7
0.833
−41.9
0.820
−43.4
0.803
−44.3
0.788
−44.7
0.773
−45.1
0.770
−45.7
0.767
−46.8
0.766
−47.9
0.764
−49.3
0.759
−50.3
0.752
−51.5
0.753
−52.8
0.747
−54.1
0.741
−55.4
0.733
−56.6
0.730
−57.7
0.721
−58.7
0.715
−60.1
0.711
−61.2
0.703
−62.5
0.698
−63.7
0.691
−64.9
0.687
−66.4
0.666
−67.5
0.659
−68.8
0.653
−70.1
0.646
−71.3
0.640
−72.4
0.636
−73.6
0.631
−75.0
0.618
−76.4
0.616
−77.3
0.613
−78.3
0.605
−79.4
0.603
Application Note P13683EJ2V0AN00
RF port
LO port
S11
Z
REF 1.0 Units
1
200.0 mUnits/
22.676 Ω −77.055 Ω
hp
MARKER1
2
• • •
• • •
S22
Z
REF 1.0 Units
1
200.0 mUnits/
41.813 Ω −196.16 Ω
hp
1.0 GHz
1.75 GHz
MARKER1
2
• • •
• • •
850 MHz
1.9 GHz
1
1
2
2
START 0.100000000 GHz
STOP 3.000000000 GHz
Application Note P13683EJ2V0AN00
START 0.100000000 GHz
STOP 3.000000000 GHz
23
Figure 4-3. S Parameters and Smith Charts (Without External Component) (10/10)
(e) µPC8163TB (2/2)
IF port
FREQUENCY
MHz
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
S11
MAG.
0.911
0.908
0.905
0.904
0.900
0.895
0.890
0.888
0.882
0.879
0.873
0.869
0.861
0.855
0.849
0.844
0.836
0.832
0.823
0.815
ANG.
−2.3
−4.2
−6.2
−8.1
−10.0
−12.0
−13.9
−15.7
−17.6
−19.5
−21.3
−23.0
−24.8
−26.5
−28.4
−30.1
−31.7
−33.4
−35.1
−36.9
IF port
S11
Z
REF 1.0 Units
1
200.0 mUnits/
463.8 Ω −496.48 Ω
hp
MARKER1
• • •
150 MHz
1
START 0.050000000 GHz
STOP 1.000000000 GHz
24
Application Note P13683EJ2V0AN00
5.
APPLICATION CHARACTERISTICS
5.1 Operating Rise/Fall Times
The measurement of the VCC and PS pins’ rise and fall time is carried out by using a pulse pattern generator to
control the pins’ ON/OFF status at high speeds, and the zero-scan mode of a spectrum analyzer to set the
maximum/minimum transition time of the output level of the desired RF frequency. Bearing in mind the dependency
of the DC cut capacitor on the rise time, a DC cut capacitor of about 100 pF is required to get the same value (2 µs)
as the data sheet. The measurement results are shown in Table 5-1. In addition, the rising/falling waveform of the
µPC8106TB is shown in Figure 5-1 as an illustrative example.
Table 5-1. Rise/Fall Times for IF Pin DC Cut Capacitance
• Rise time
Part Number
µPC8106TB
µPC8109TB
µPC8163TB
Note
Control Pin
IF Input Pin DC Cut Capacitance
1 000 pF
400 pF
100 pF
PS
12 µs
5 µs
2 µs
VCC
7 µs
3 µs
1.5 µs
Both PS and VCC
12 µs
6 µs
2 µs
PS
14 µs
6 µs
2 µs
VCC
10 µs
4 µs
2 µs
Both PS and VCC
14 µs
6 µs
2.5 µs
VCC
4.5 µs
2 µs
1.5 µs
• Fall time
Part Number
µPC8106TB
µPC8109TB
µPC8163TB
Note
Control Pin
IF Input Pin DC Cut Capacitance
1 000 pF
400 pF
100 pF
PS
7.5 µs
3 µs
1.5 µs
VCC
1 µs
0.5 µs
1 µs
Both PS and VCC
1 µs
0.5 µs
1 µs
PS
9 µs
4 µs
1.5 µs
VCC
1 µs
1 µs
1 µs
Both PS and VCC
1 µs
1 µs
1 µs
VCC
1 µs
1 µs
0.5 µs
Note • PS pin control .....Apply 3 V constantly to the VCC pin, input the ON/OFF pulse waveform to the
PS pin
• VCC pin control ....Apply 3 V constantly to the PS pin, input the ON/OFF pulse waveform to the
VCC pin
• PS, VCC pin simultaneous control ......Input the ON/OFF pulse waveform simultaneously to the
VCC and PS pins
Application Note P13683EJ2V0AN00
25
Figure 5-1. Rising/Falling Waveforms of µPC8106TB (1/3)
Measurement conditions: fIFin = 240 MHz, PIFin = –30 dBm, fLOin = 1 140 MHz, PLOin = –5 dBm
(a) PS pin control
• For 1 000 pF DC cut capacitor
hp REF 0.0 dBm ATTEN 10 dB
10 dB/
Rise time
Trise = 12 µs
Fall time
Tfall = 7.5 µs
CENTER 900.000 000 MHz
RES BW 3 MHz
• For 400 pF DC cut capacitor
VBW 3 MHz
SPAN 0 Hz
SWP 50 µ sec
hp REF 0.0 dBm ATTEN 10 dB
10 dB/
Rise time
Trise = 5 µs
Fall time
Tfall = 3 µs
CENTER 900.000 000 MHz
RES BW 3 MHz
• For 100 pF DC cut capacitor
VBW 3 MHz
SPAN 0 Hz
SWP 50 µ sec
hp REF 0.0 dBm ATTEN 10 dB
10 dB/
Rise time
Trise = 2 µs
Fall time
Tfall = 1.5 µs
CENTER 900.000 000 MHz
RES BW 3 MHz
26
Application Note P13683EJ2V0AN00
VBW 3 MHz
SPAN 0 Hz
SWP 50 µ sec
Figure 5-1. Rising/Falling Waveforms of µPC8106TB (2/3)
Measurement conditions: fIFin = 240 MHz, PIFin = –30 dBm, fLOin = 1 140 MHz, PLOin = –5 dBm
(b) VCC pin control
• For 1 000 pF DC cut capacitor
hp REF 0.0 dBm ATTEN 10 dB
10 dB/
Rise time
Trise = 7 µs
Fall time
Tfall = 1 µs
CENTER 900.000 000 MHz
RES BW 3 MHz
• For 400 pF DC cut capacitor
VBW 3 MHz
SPAN 0 Hz
SWP 50 µsec
hp REF 0.0 dBm ATTEN 10 dB
10 dB/
Rise time
Trise = 3 µs
Fall time
Tfall = 0.5 µs
CENTER 900.000 000 MHz
RES BW 3 MHz
• For 100 pF DC cut capacitor
VBW 3 MHz
SPAN 0 Hz
SWP 50 µsec
hp REF 0.0 dBm ATTEN 10 dB
10 dB/
Rise time
Trise = 1.5 µs
Fall time
Tfall = 1 µs
CENTER 900.000 000 MHz
RES BW 3 MHz
Application Note P13683EJ2V0AN00
VBW 3 MHz
SPAN 0 Hz
SWP 50 µ sec
27
Figure 5-1. Rising/Falling Waveforms of µPC8106TB (3/3)
Measurement conditions: fIFin = 240 MHz, PIFin = –30 dBm, fLOin = 1 140 MHz, PLOin = –5 dBm
(c)Simultaneous control of PS, VCC pins
• For 1 000 pF DC cut capacitor
hp REF 0.0 dBm ATTEN 10 dB
10 dB/
Rise time
Trise = 12 µs
Fall time
Tfall = 1 µs
CENTER 900.000 000 MHz
RES BW 3 MHz
• For 400 pF DC cut capacitor
VBW 3 MHz
SPAN 0 Hz
SWP 50 µ sec
hp REF 0.0 dBm ATTEN 10 dB
10 dB/
Rise time
Trise = 6 µs
Fall time
Tfall = 0.5 µs
CENTER 900.000 000 MHz
RES BW 3 MHz
• For 100 pF DC cut capacitor
VBW 3 MHz
SPAN 0 Hz
SWP 50 µsec
hp REF 0.0 dBm ATTEN 10 dB
10 dB/
Rise time
Trise = 2 µs
Fall time
Tfall = 1 µs
CENTER 900.000 000 MHz
RES BW 3 MHz
28
Application Note P13683EJ2V0AN00
VBW 3 MHz
SPAN 0 Hz
SWP 50 µsec
5.2 Leakage and Isolation Characteristics
As shown below, this IC’s leakage and isolation characteristics were measured using circuits in which the
matching adjustment and return loss have been optimized for frequency (a) or frequency (b). Figure 5-2 shows the
corresponding characteristics curves. The µPC8106T and µPC8109T were used for these measurements.
Test circuit
RF port return loss
(a) fRFout matched at 925 to 958 MHz
S22
log MAG
REF 0.0 dB
2 10.0 dB/
−17.044 dB
RFout S22
1000 pF 15 pF
100 pF
RFout
1.5 pF
VCC
1 000 pF
1 000 pF
IFin
VCC
GND
PS
LOin
50 Ω
MARKER1
925.0 MHz
−12.22 dB
hp
C MARKER 2
960.0 MHz
MARKER2
960.0 MHz
−17.044 dB
100 pF
2
NETWORK ANALYZER
HP 8510
Port 2
Port 1
2
1
1
START
STOP
0.100000000 GHz
2.100000000 GHz
(b) fRFout matched at 1 015 to 1 033 MHz
S22
log MAG
REF 0.0 dB
1 10.0 dB/
−16.644 dB
RFout S22
1.5 pF
100 pF
RFout
100 pF
VCC
IFin
50 Ω
4.7 nH
1 000 pF
1 000 pF
VCC
GND
PS
LOin
MARKER1
1.015 GHz
−16.644 dB
hp
C MARKER 1
1.015 GHz
MARKER2
1.035 GHz
−12.399 dB
100 pF
2
1
NETWORK ANALYZER
HP 8510
Port 2
Port 1
2
1
START
STOP
0.100000000 GHz
2.100000000 GHz
Note Connections in diagrams assume measurement of RF → LO.
Application Note P13683EJ2V0AN00
29
Figure 5-2. Isolation Data (1/2)
(µPC8109 TA = +25°C, VCC = VPS = VRFout = 3.0 V)
(a) fRFout matched at 925 to 958 MHz
RF → LO
LO → IF
S12
log MAG
REF 0.0 dB
2 10.0 dB/
−14.807 dB
∗ hp
C MARKER 2
960.0 MHz
S21
log MAG
REF 0.0 dB
1 10.0 dB/
−30.172 dB
MARKER1
925.0 MHz
−15.15 dB
MARKER1
600.0 MHz
−30.172 dB
hp
MARKER2 C MARKER 1
600.0 MHz
960.0 MHz
−14.807 dB
MARKER2
800.0 MHz
−27.802 dB
MARKER3
1.0 GHz
−28.383 dB
2
2
1
2
1
2
START
STOP
0.100000000 GHz
2.100000000 GHz
START
STOP
RF → IF
3
MARKER4
1.2 GHz
−27.004 dB
4
0.100000000 GHz
2.100000000 GHz
IF → LO
S12
log MAG
REF 0.0 dB
1 10.0 dB/
−33.883 dB
S12
log MAG
REF 0.0 dB
1 10.0 dB/
−49.549 dB
MARKER1
925.0 MHz
−33.883 dB
hp
C MARKER 1
925.0 MHz
MARKER1
115.0 MHz
−49.549 dB
hp
MARKER2 C MARKER 1
115.0 MHz
960.0 MHz
−35.268 dB
MARKER2
300.0 MHz
−39.449 dB
MARKER3
500.0 MHz
−37.158 dB
2
2
1
4
2
2
START
STOP
30
0.100000000 GHz
2.100000000 GHz
3
START
STOP
Application Note P13683EJ2V0AN00
0.100000000 GHz
2.100000000 GHz
MARKER4
700.0 MHz
−31.428 dB
Figure 5-2. Isolation Data (2/2)
(b) fRFout matched at 1 015 to 1 033 MHz
RF → LO
LO → IF
S12
log MAG
REF 0.0 dB
1 10.0 dB/
−14.167 dB
S21
log MAG
REF 0.0 dB
1 10.0 dB/
−29.138 dB
MARKER1
1.015 MHz
−14.167 dB
hp
C MARKER 2
1.015 GHz
MARKER1
700.0 MHz
−29.138 dB
hp
MARKER2 C MARKER 1
700.0 MHz
1.035 GHz
−14.271 dB
MARKER2
900.0 MHz
−27.52 dB
MARKER3
1.1 GHz
−27.335 dB
1
2
2
2
1
2
START
STOP
0.100000000 GHz
2.100000000 GHz
START
STOP
RF → IF
3
MARKER4
1.3 GHz
−27.257 dB
4
0.100000000 GHz
2.100000000 GHz
IF → LO
S12
log MAG
REF 0.0 dB
1 10.0 dB/
−33.189 dB
MARKER1
1.015 GHz
−33.189 dB
hp
C MARKER 1
1.015 GHz
MARKER2
1.035 GHz
−34.1 dB
S12
log MAG
REF 0.0 dB
1 10.0 dB/
−50.223 dB
MARKER1
115.0 MHz
−50.223 dB
hp
C MARKER 1
115.0 MHz
MARKER2
300.0 MHz
−39.135 dB
MARKER3
500.0 MHz
−37.523 dB
2
1
2
4
2
2
START
STOP
0.100000000 GHz
2.100000000 GHz
MARKER4
700.0 MHz
−32.063 dB
3
START
STOP
Application Note P13683EJ2V0AN00
0.100000000 GHz
2.100000000 GHz
31
5.3 Spurious Characteristics
Parts (a) and (b) of Figure 5-3 show waveforms that were monitored by a spectrum analyzer to detect the LO and
RF images and the corresponding harmonic spurious levels at the µPC8106’s RF port.
Figure 5-3. Harmonic Spurious Data (1/3)
(a) Monitoring range: 1 GHz to 2.5 GHz
(µPC8106T Conditions: fRFout = 1.9 GHz, fIFin = 240 MHz, fLOin = 1 660 MHz, PLOin = –5 dBm, VCC = VPS = VRFout
= 3.0 V)
PIFin = −20 dBm
REF20.0 dBm
ATTEN 30 dB
hp
MARKER
10 dB/
1.899 GHz
−13.40 dBm
MKR 1.899 GHz
−13.40 dBm
PIFin = −15 dBm
REF20.0 dBm
hp
10 dB/ 1.899 GHz
−8.70 dBm
LO
STOP 2.50 GHz
SWP 450 msec
PIFin = −10 dBm
REF20.0 dBm
ATTEN 30 dB
hp
10 dB/ 1.899 GHz
−4.70 dBm
START 1.00 GHz
RES BW 3 MHz VBW 3 kHz
MKR 1.899 GHz
−4.70 dBm
RF
Image
LO
START 1.00 GHz
RES BW 3 MHz VBW 3 kHz
32
MKR 1.899 GHz
−8.70 dBm
RF
Image
RF
Image LO
START 1.00 GHz
RES BW 3 MHz VBW 3 kHz
ATTEN 30 dB
STOP 2.50 GHz
SWP 450 msec
Application Note P13683EJ2V0AN00
STOP 2.50 GHz
SWP 450 msec
Figure 5-3. Harmonic Spurious Data (2/3)
(b) Monitoring range: 2 GHz to 5.8 GHz
(µPC8106T Conditions: fRFout = 1.9 GHz, fIFin = 240 MHz, fLOin = 1 660 MHz, PLOin = –5 dBm, VCC = VPS = VRFout
= 3.0 V)
PIFin = −20 dBm
REF20.0 dBm
hp
10 dB/
ATTEN 30 dB
MKR 3.315 GHz
−47.50 dBm
START 2.00 GHz
RES BW 3 MHz VBW 10 kHz
STOP 5.80 GHz
SWP 380 msec
PIFin = −10 dBm
hp
10 dB/
REF20.0 dBm
hp
10 dB/
ATTEN 30 dB
MKR 4.728 GHz
−47.90 dBm
MARKER
4.728 GHz
−47.90 dBm
MARKER
3.315 GHz
−47.50 dBm
REF20.0 dBm
PIFin = −15 dBm
ATTEN 30 dB
START 2.00 GHz
STOP 5.80 GHz
RES BW 3 MHz VBW 10 kHz SWP 380 msec
MKR 4.728 GHz
−43.70 dBm
MARKER
4.728 GHz
−43.70 dBm
START 2.00 GHz
RES BW 3 MHz VBW 10 kHz
STOP 5.80 GHz
SWP 380 msec
Application Note P13683EJ2V0AN00
33
Part (c) of Figure 5-3 shows the waveforms that were monitored by a spectrum analyzer when measuring the
dependence of the IF input level and the spurious IF harmonic signals at the µPC8106T’s RF port. As shown in the
figure, if the IF input level exceeds the 1-dB compression level, spurious IF harmonic signals may occur near the RF
output. Therefore, we recommend usage within a linear region.
Figure 5-3. Harmonic Spurious Data (3/3)
(c) Monitoring range: 1.4 GHz to 1.8 GHz
(µPC8106T Conditions: fRFout = 1.5 GHz, fIFin = 240 MHz, fLOin = 1 740 MHz, PLOin = –5 dBm, VCC = VPS = VRFout
= 3.0 V)
PIFin = −15 dBm (1-dB compression input level)
MKR 1.499 6 GHz
REF20.0 dBm
ATTEN 30 dB
−9.30 dBm
hp
MARKER
10 dB/
1.499 6 GHz
−9.30 dBm
RF
PIFin = −10 dBm
REF20.0 dBm
hp
10 dB/
ATTEN 30 dB
MKR ∆ −60.4 MHz
–47.00 dB
RF
MARKER∆
−60.4 MHz
−47.00 dBm
LO leakage
LO leakage
IF × 6
START 1.400 GHz
RES BW 1 MHz VBW 30 kHz
STOP 1.800 GHz
SWP 40.0 msec
START 1.400 GHz
RES BW 1 MHz VBW 1 kHz
PIFin = 0 dBm (RF output's saturation input level)
MKR ∆ −60.0 MHz
ATTEN 30 dB
–23.50 dBm
REF20.0 dBm
hp
10 dB/
RF
MARKER∆
−60.0 MHz
−23.50 dB
IF × 6
LO leakage
2RF-IF × 6
IF × 7
START 1.400 GHz
RES BW 1 MHz VBW 1 kHz
34
STOP 1.800 GHz
SWP 1.20 sec
Application Note P13683EJ2V0AN00
STOP 1.800 GHz
SWP 1.20 sec
5.4 Adjacent Channel Interference Power
The adjacent channel interference power was measured under the following conditions in the µPC8106 and
µPC8109: PDC800 MHz, PHS1 900 MHz, GSM900 MHz, and CDMA900 MHz, and under the following conditions in
the µPC8163: PDC800 MHz, GSM900 MHz, DSC1 800 MHz, CDMA900 MHz. The resulting waveforms are shown in
the Figures 5-4, 5-5, 5-6, 5-7, and 5-8.
Figure 5-4. Adjacent Channel Interference Power Characteristics in µPC8106T (1/3)
(a) RF output frequency fRFout = 900 MHz
(IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5,
PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
Padj
∆ f = ±50 kHz
−50
−25
−60
−30
−70
−35
Padj
∆ f = ±100 kHz
−80
−30
−25
−20
−15
−10
−5
0
5
10
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 130 MHz
fLOin = 1 030 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −10.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−76.50 dB
−76.25 dB
ADJ CH SPACE
100.0 kHz
DL −10.0 dBm
Padj waveform (saturation region)
ATT 10 dB
REF 0.0 dBm
10 dB/
A_write B_view
ADJ (UP, LOW)
−58.00 dB
−60.50 dB
ADJ CH SPACE
100.0 kHz
DL 0.0 dBm
RBW
1 KHz
VBW
3 kHz
SWP
5.0 s
RBW
1 KHz
VBW
3 kHz
SWP
5.0 s
CENTER 900.000 MHz
SPAN 250.0 kHz
CENTER 900.000 MHz
Application Note P13683EJ2V0AN00
SPAN 250.0 kHz
35
Figure 5-4. Adjacent Channel Interference Power Characteristics in µPC8106T (2/3)
(b) RF output frequency fRFout = 900 MHz
(IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate =
0.3, PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
−50
Padj
∆ f = ±400 kHz
−60
Padj
∆ f = ±800 kHz
−70
−80
−30
−25
−30
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 246 MHz
fLOin = 1 146 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−35
−25
−20
−15
−10
−5
0
5
10
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −20.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−74.00 dB
−74.50 dB
ADJ CH SPACE
800.0 kHz
DL −20.0 dBm
REF −10.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−79.25 dB
−79.00 dB
ADJ CH SPACE
800 kHz
DL −10.0 dBm
RBW
1 KHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 900.0000 MHz
36
Padj waveform (saturation region)
SPAN 2.000 MHz
CENTER 900.0000 MHz
Application Note P13683EJ2V0AN00
SPAN 2.000 MHz
Figure 5-4. Adjacent Channel Interference Power Characteristics in µPC8106T (3/3)
(c) RF output frequency fRFout = 1 900 MHz
(IF input conditions: π/4QPSK modulated frequency input, transmission rate = 384 kbps, roll-off rate = 0.5,
PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
Padj
∆ f = ±600 kHz
−50
−25
−60
−30
−70
Padj
∆ f = ±900 kHz −35
−80
−30
−25
−20
−15
−10
−5
0
5
10
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 233 MHz
fLOin = 1.667 GHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −20.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−70.75 dB
−70.25 dB
ADJ CH SPACE
900 kHz
DL −20.0 dBm
Padj waveform (saturation region)
REF −10.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−60.50 dB
−58.50 dB
ADJ CH SPACE
900 kHz
DL −10.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 1.900000 GHz
SPAN 2.10 MHz
CENTER 1.900000 GHz
Application Note P13683EJ2V0AN00
SPAN 2.10 MHz
37
Figure 5-5. Adjacent Channel Interference Power Characteristics in µPC8109T (1/3)
(a) RF output frequency fRFout = 900 MHz
(IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5,
PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
Padj
∆ f = ±50 kHz
−50
−25
−60
−30
Padj
∆ f = ±100 kHz
−70
−80
−30
−25
−20
−15
−10
−5
0
5
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 130 MHz
fLOin = 1 030 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−35
10
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −20.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−73.50 dB
−72.50 dB
ADJ CH SPACE
100.0 kHz
DL −20.0 dBm
ATT 10 dB
REF 0.0 dBm
10 dB/
A_write B_view
ADJ (UP, LOW)
−57.00 dB
−56.25 dB
ADJ CH SPACE
100.0 kHz
DL 0.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 900.0000 MHz
38
Padj waveform (saturation region)
SPAN 250.0 kHz
CENTER 900.0000 MHz
Application Note P13683EJ2V0AN00
SPAN 250.0 kHz
Figure 5-5. Adjacent Channel Interference Power Characteristics in µPC8109T (2/3)
(b) RF output frequency fRFout = 900 MHz
(IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate =
0.3, PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
Padj
∆ f = ±800 kHz
Padj
∆ f = ±400 kHz
−50
−25
−60
−30
−70
−35
−80
−30
−25
−20
−15
−10
−5
0
5
10
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 246 MHz
fLOin = 1 146 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −25.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−66.75 dB
−68.75 dB
ADJ CH SPACE
800 kHz
DL −25.0 dBm
Padj waveform (saturation region)
REF −15.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−76.25 dB
−76.50 dB
ADJ CH SPACE
800 kHz
DL −15.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 900.0000 MHz
SPAN 2.000 MHz
CENTER 900.0000 MHz
Application Note P13683EJ2V0AN00
SPAN 2.000 MHz
39
Figure 5-5. Adjacent Channel Interference Power Characteristics in µPC8109T (3/3)
(c) RF output frequency fRFout = 1 900 MHz
(IF input conditions: π/4QPSK modulated frequency input, transmission rate = 384 kbps, roll-off rate = 0.5,
PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
Padj
∆ f = ±600 kHz
−50
−25
−60
−30
Padj
∆ f = ±900 kHz
−70
−80
−30
−25
−20
−15
−10
−5
0
5
10
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 233 MHz
fLOin = 1.667 GHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−35
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −20.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−63.75 dB
−64.50 dB
ADJ CH SPACE
900 kHz
DL −20.0 dBm
REF −10.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−55.25 dB
−55.25 dB
ADJ CH SPACE
900 kHz
DL −10.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 1.900000 GHz
40
Padj waveform (saturation region)
SPAN 2.10 MHz
CENTER 1.900000 GHz
Application Note P13683EJ2V0AN00
SPAN 2.10 MHz
Figure 5-6. Adjacent Channel Interference Power Characteristics in µPC8106TB (1/4)
(a) RF output frequency fRFout = 900 MHz
(IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5,
PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
Padj
∆ f = ±50 kHz
−50
−25
−60
−30
−70
Padj
−35
∆ f = ±100 kHz
−80
−30
−25
−20
−15
−10
−5
0
5
10
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 130 MHz
fLOin = 1 030 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −10.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−73.50 dB
−73.75 dB
ADJ CH SPACE
100.0 kHz
DL −10.0 dBm
Padj waveform (saturation region)
ATT 10 dB
REF 0.0 dBm
10 dB/
A_write B_view
ADJ (UP, LOW)
−50.00 dB
−50.25 dB
ADJ CH SPACE
100.0 kHz
DL 0.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 900.0000 MHz
SPAN 250.0 kHz
CENTER 900.0000 MHz
Application Note P13683EJ2V0AN00
SPAN 250.0 kHz
41
Figure 5-6. Adjacent Channel Interference Power Characteristics in µPC8106TB (2/4)
(b) RF output frequency fRFout = 900 MHz
(IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate =
0.3, PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
−50
−25
Padj
∆ f = ±400 kHz
Padj
∆ f = ±800 kHz
−60
−30
−70
−80
−30
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 246 MHz
fLOin = 1 146 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−35
−25
−20
−15
−10
−5
0
5
10
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −20.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−69.25 dB
−68.75 dB
ADJ CH SPACE
800 kHz
DL −20.0 dBm
REF −5.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−75.75 dB
−76.50 dB
ADJ CH SPACE
800 kHz
DL −5.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 900.0000 MHz
42
Padj waveform (saturation region)
SPAN 2.000 MHz
CENTER 900.0000 MHz
Application Note P13683EJ2V0AN00
SPAN 2.000 MHz
Figure 5-6. Adjacent Channel Interference Power Characteristics in µPC8106TB (3/4)
(c) RF output frequency fRFout = 1 900 MHz
(IF input conditions: π/4QPSK modulated frequency input, transmission rate = 384 kbps, roll-off rate = 0.5,
PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
Padj
∆ f = ±600 kHz
−40
−20
−50
−25
−60
Padj
∆ f = ±900 kHz
−70
−80
−30
−25
−20
−15
−10
−5
0
5
10
−30
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 233 MHz
fLOin = 1.667 GHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−35
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −25.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−65.00 dB
−65.00 dB
ADJ CH SPACE
900 kHz
DL −25.0 dBm
Padj waveform (saturation region)
REF −10.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−51.75 dB
−51.75 dB
ADJ CH SPACE
900 kHz
DL −10.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 1.900000 GHz
SPAN 2.10 MHz
CENTER 1.900000 GHz
Application Note P13683EJ2V0AN00
SPAN 2.10 MHz
43
Figure 5-6. Adjacent Channel Interference Characteristics in µPC8106TB (4/4)
(d) RF output frequency fRFout = 900 MHz
(IF input conditions: OQPSK modulated frequency (IS-95) input, transmission rate = 1.2288 MCPS, roll-off
rate = 0.2)
Adjacent channel interference power and RF output power vs. IF input power
0
−5
−10
PRFout
−20
−10
−30
−15
−40
−20
−50
−25
Padj
D∆ f = ±900 kHz
−60
−30
fIFin = 240 MHz
fLOin = 1 140 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
−35
−70
−80
−30
−5
−20
−15
−10
−40
−5
0
IF input power PIFin (dBm)
Padj waveform (linear region)
−10
Ref Lv1
−10 dBm
Marker 1 [T1]
−107.48 dBm
897.75000000 MHz
RBW 30 kHz
VBW
3 kHz
SWT 125 ms
1 [T1]
RF Att
0 dB
Unit
−30
1AVG
Marker 1 [T1]
dBm
−107.48 dBm A
897.75000000 MHz
−43.43 dBm
CH PWR
ACP Up
−63.82 dB
−64.28 dB
ACP Low
AL T1 Up
−64.39 dB
AL T1 Low
−64.24 dB
−20
−40
Padj waveform (saturation region)
−10
1MA
−40
−60
−60
−70
−70
−90
−100 1
−110
44
Center 900 MHz
−80
C0
C0
−90
c11
c11
cu1
cu1
450 kHz/
cu2
cu2
Span 4.5 MHz
30 kHz
3 kHz
SWT 125 ms
1 [T1]
897.75000000 MHz
1AVG
0 dB
Unit
dBm
−71.43 dBm A
1MA
1
c12
c12
C0
C0
c11
c11
−100
−110
RF Att
897.75000000 MHz
CH PWR
−23.42 dBm
ACP Up
−32.59 dB
ACP Low
−32.07 dB
AL T1 Up
−47.68 dB
AL T1 Low
−45.44 dB
−30
−50
c12
c12
RBW
−71.43 dBm VBW
−20
−50
−80
Ref Lv1
−10 dBm
Center 900 MHz
Application Note P13683EJ2V0AN00
cu1
cu1
450 kHz/
cu2
cu2
Span 4.5 MHz
Figure 5-7. Adjacent Channel Interference Power Characteristics in µPC8109TB (1/4)
(a) RF output frequency fRFout = 900 MHz
(IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5,
PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
Padj
∆ f = ±50 kHz
−50
−25
−60
−30
−70
Padj
∆ f = ±100 kHz −35
−80
−30
−25
−20
−15
−10
−5
0
5
10
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 130 MHz
fLOin = 1 030 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −20.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−70.75 dB
−70.50 dB
ADJ CH SPACE
100.0 kHz
DL −20.0 dBm
Padj waveform (saturation region)
ATT 10 dB
REF 0.0 dBm
10 dB/
A_write B_view
ADJ (UP, LOW)
−53.00 dB
−53.25 dB
ADJ CH SPACE
100.0 kHz
DL 0.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 900.0000 MHz
SPAN 250.0 kHz
CENTER 900.0000 MHz
Application Note P13683EJ2V0AN00
SPAN 250.0 kHz
45
Figure 5-7. Adjacent Channel Interference Power Characteristics in µPC8109TB (2/4)
(b) RF output frequency fRFout = 900 MHz
(IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate =
0.3, PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
−50
−25
Padj
∆ f = ±400 kHz
Padj
∆ f = ±800 kHz
−60
−30
−70
−80
−30
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 246 MHz
fLOin = 1 146 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−35
−25
−20
−15
−10
−5
0
5
10
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −25.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−62.00 dB
−61.75 dB
ADJ CH SPACE
800 kHz
DL −25.0 dBm
REF −10.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−75.50 dB
−76.00 dB
ADJ CH SPACE
800 kHz
DL −10.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 900.0000 MHz
46
Padj waveform (saturation region)
SPAN 2.000 MHz
CENTER 900.0000 MHz
Application Note P13683EJ2V0AN00
SPAN 2.000 MHz
Figure 5-7. Adjacent Channel Interference Power Characteristics in µPC8109TB (3/4)
(c) RF output frequency fRFout = 1 900 MHz
(IF input conditions: π/4QPSK modulated frequency input, transmission rate = 384 kbps, roll-off rate = 0.5,
PN9 stage [dummy random pattern])
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
Padj
∆ f = ±600 kHz
−50
−25
−60
−30
Padj
∆ f = ±900 kHz
−70
−80
−30
−25
−20
−15
−10
−5
0
5
10
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
fIFin = 233 MHz
fLOin = 1.667 GHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
−35
−40
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −20.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−62.25 dB
−62.25 dB
ADJ CH SPACE
900 kHz
DL −20.0 dBm
Padj waveform (saturation region)
REF −10.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−49.50 dB
−49.50 dB
ADJ CH SPACE
900 kHz
DL −10.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 1.900000 GHz
SPAN 2.10 MHz
CENTER 1.900000 GHz
Application Note P13683EJ2V0AN00
SPAN 2.10 MHz
47
Figure 5-7. Adjacent Channel Interference Characteristics in µPC8109TB (4/4)
(d) RF output frequency fRFout = 900 MHz
(IF input conditions: OQPSK modulated frequency (IS-95) input, transmission rate = 1.2288 MCPS, roll-off
rate = 0.2)
Adjacent channel interference power and RF output power vs. IF input power
0
−10
−5
PRFout
−20
−10
−30
−15
−40
−20
−50
−25
Padj
∆ f = ±900 kHz
−60
−30
−70
−35
−80
−30
−25
−20
−15
−10
IF input power PIFin (dBm)
−5
Padj waveform (linear region)
−10
Ref Lv1
−10 dBm
Marker 1 [T1]
−106.74 dBm
897.75000000 MHz
RBW 30 kHz
VBW
3 kHz
SWT 125 ms
RF Att
0 dB
−40
1AVG
Unit
dBm
1MA
−50
−10
Ref Lv1
−10 dBm
−40
−90
−100 1
−110
48
Center 900 MHz
c11
c11
−80
cu1
cu1
450 kHz/
−90
cu2
cu2
Span 4.5 MHz
0 dB
Unit
dBm
−77.70 dBm
897.75000000 MHz A
CH PWR
−27.34 dBm
ACP Up
−32.98 dB
ACP Low
−32.84 dB
AL T1 Up
−46.99 dB
AL T1 Low
−46.27 dB
1AVG
−70 1
C0
897.75000000 MHz
RF Att
1MA
−50
−70
C0
30 kHz
3 kHz
SWT 125 ms
1 [T1]
−30
−60
c12
c12
RBW
−77.70 dBm VBW
−20
−60
−80
−40
Marker 1 [T1]
−106.74 dBm A
897.75000000 MHz
CH PWR
−45.96 dBm
ACP Up
−61.16 dB
ACP Low
−61.14 dB
AL T1 Up
−61.97 dB
AL T1 Low
−62.00 dB
−30
0
Padj waveform (saturation region)
1 [T1]
−20
fIFin = 240 MHz
fLOin = 1 140 MHz
PLOin = −5 dBm
VCC = VPS = VRFout = 3.0 V
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
0
c12
c12
c11
c11
−100
−110
C0
C0
Center 900 MHz
Application Note P13683EJ2V0AN00
cu1
cu1
450 kHz/
cu2
cu2
Span 4.5 MHz
Figure 5-8. Adjacent Channel Interference Characteristics in µPC8163TB (1/4)
(a) RF output frequency fRFout = 900 MHz
(IF input conditions: π/4QPSK modulated frequency input, transmission rate = 42 kbps, roll-off rate = 0.5,
PN9 stage [dummy random pattern])
0
5
−10
0
−20
−5
PRFout
−30
−10
−40
−15
Padj
∆ f = ±50 kHz
−50
−20
Padj
∆ f = ±100 kHz
−60
−25
−70
−80
−30
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power and RF output power vs. IF input power
fIFin = 150 MHz
fLOin = 980 MHz
PLOin = 5 dBm
VCC = VRFout = 3.0 V
−30
−25
−20
−15
−10
−5
−35
0
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −15.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−69.75 dB
−69.50 dB
ADJ CH SPACE
100.0 kHz
DL −15.0 dBm
Padj waveform (saturation region)
ATT 20 dB
REF 5.0 dBm
10 dB/
A_write B_view
ADJ (UP, LOW)
−59.00 dB
−56.75 dB
ADJ CH SPACE
100.0 kHz
DL 5.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 830.0000 MHz
SPAN 250.0 kHz
CENTER 830.0000 MHz
Application Note P13683EJ2V0AN00
SPAN 250.0 kHz
49
Figure 5-8. Adjacent Channel Interference Characteristics in µPC8163TB (2/4)
(b) RF output frequency fRFout = 900 MHz
(IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate =
0.3, PN9 stage [dummy random pattern])
0
5
−10
0
−20
−5
PRFout
−30
−10
−40
−15
−50
Padj
∆ f = ±400 kHz
−60
Padj
∆ f = ±800 kHz
−20
−25
−70
RF output power PRFout (dBm)
Adjacent channel inference power Padj (dBc)
Adjacent channel interface power and RF output power vs. IF input power
fIFin = 150 MHz
fLOin = 980 MHz
PLOin = −5 dBm
VCC = VRFout = 3.0 V
−30
−80
−30
−25
−20
−15
−10
−5
−35
0
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −25.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−63.25 dB
−62.75 dB
ADJ CH SPACE
800 kHz
DL −25.0 dBm
ATT 10 dB
REF 0.0 dBm
10 dB/
A_write B_view
ADJ (UP, LOW)
−76.00 dB
−76.00 dB
ADJ CH SPACE
800 kHz
DL 0.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 830.000 MHz
50
Padj waveform (saturation region)
SPAN 2.000 MHz
CENTER 830.000 MHz
Application Note P13683EJ2V0AN00
SPAN 2.000 MHz
Figure 5-8. Adjacent Channel Interference Characteristics in µPC8163TB (3/4)
(c) RF output frequency fRFout = 1 900 MHz
(IF input conditions: GMSK modulated frequency input, transmission rate = 270.833 kbps, roll-off rate =
0.3, PN9 stage [dummy random pattern])
0
5
−10
0
−20
−5
PRFout
−30
−10
−40
−15
−50
−60
−20
Padj
∆ f = ±800 kHz
Padj
∆ f = ±400 kHz
−25
−70
−80
−30
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power and RF output power vs. IF input power
fIFin = 150 MHz
fLOin = 1 750 MHz
PLOin = −5 dBm
VCC = VRFout = 3.0 V
−30
−25
−20
−15
−10
−5
0
−35
IF input power PIFin (dBm)
Padj waveform (linear region)
REF −25.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−59.25 dB
−59.25 dB
ADJ CH SPACE
800 kHz
DL −25.0 dBm
Padj waveform (saturation region)
REF −5.0 dBm
10 dB/
ATT 10 dB
A_write B_view
ADJ (UP, LOW)
−73.25 dB
−73.25 dB
ADJ CH SPACE
800 kHz
DL −5.0 dBm
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
RBW
1 kHz
VBW
3 kHz
SWP
5.0 s
CENTER 1.900000 GHz
SPAN 2.000 MHz
CENTER 1.900000 GHz
Application Note P13683EJ2V0AN00
SPAN 2.000 MHz
51
Figure 5-8. Adjacent Channel Interference Characteristics in µPC8163TB (4/4)
(d) RF output frequency fRFout = 900 MHz
(IF input conditions: OQPSK modulated frequency (IS-95) input, transmission rate = 1.2288 MCPS, roll-off
rate = 0.2)
0
5
−10
0
−20
−5
PRFout
−30
−10
−40
−15
−50
−20
Padj
∆ f = ±900 kHz
−60
−25
−70
RF output power PRFout (dBm)
Adjacent channel interference power Padj (dBc)
Adjacent channel interference power and RF output power vs. IF input power
fIFin = 240 MHz
fLOin = 1 140 MHz
PLOin = −5 dBm
VCC = VRFout = 3.0 V
−30
−80
−30
−25
−20
−15
−10
−5
0
−35
IF input power PIFin (dBm)
Padj waveform (linear region)
−10
Ref Lv1
−10 dBm
Marker 1 [T1]
−107.02 dBm
897.75000000 MHz
RBW 30 kHz
VBW
3 kHz
SWT 125 ms
RF Att
0 dB
Unit
dBm
−107.02 dBm A
897.75000000 MHz
−48.41 dBm
CH PWR
ACP Up
−59.39 dB
−59.53 dB
ACP Low
AL T1 Up
−59.61 dB
AL T1 Low
−59.76 dB 1MA
1 [T1]
−20
−30
−40
Padj waveform (saturation region)
1AVG
Marker 1 [T1]
−10
−40
−60
−60
−90
52
897.75000000 MHz
RF Att
0 dB
Unit
dBm
−78.60 dBm
897.75000000 MHz A
−24.18 dBm
CH PWR
ACP Up
−37.76 dB
ACP Low
−37.54 dB
AL T1 Up
−58.04 dB
AL T1 Low
−52.08 dB 1MA
1AVG
−70
c12
c12
Center 900 MHz
−80
C0
C0
c11
c11
−100
−110
30 kHz
3 kHz
SWT 125 ms
1 [T1]
−30
−50
−80
RBW
−78.60 dBm VBW
−20
−50
−70
Ref Lv1
−10 dBm
cu1
cu1
450 kHz/
−90
cu2
cu2
Span 4.5 MHz
c12
c12
c11
c11
−100
−110
C0
C0
Center 900 MHz
Application Note P13683EJ2V0AN00
cu1
cu1
450 kHz/
cu2
cu2
Span 4.5 MHz
6.
SYSTEM CONFIGURATION EXAMPLES
Two examples of system applications of these ICs are shown in Figure 6-1: one is the direct modulation method,
which modulates at the transmit RF stage and the other is the indirect modulation method, which modulates at the
transmit IF stage.
The µPC8109 is suitable as a local mixer for direct modulation because of its low current
consumption. The µPC8106 is suitable as an RF up-converter for indirect modulation because of its low distortion.
Figure 6-1. System Configuration Examples
(a) Direct modulation method
To 1st mixer (receive)
To 2nd mixer
1st.LO
Transmit stage
I
0˚
Phase
shifter
90˚
To antenna
PA
2nd.LO
PLL1 PLL2
SW
AGC
Filter
Local mixer
µ PC8109
Q
(b) Indirect modulation method
To 1st mixer (receive)
÷N
PLL
PLL1
RF up-converter
Transmit stage
0˚
Phase
shifter
90˚
To antenna
PA
AGC
I
Q
µ PC8106
Application Note P13683EJ2V0AN00
53
7.
APPLICATION CIRCUIT EXAMPLE
7.1 Dual Band
For mobile phones that use two frequency bandwidths as transmit frequency bands, matching is required for both
frequency bands, which makes it difficult to implement with just one matching circuit constant. Figure 7-1 shows an
application circuit example that enables use of dual bands: inductance load is used to obtain broad-band gain and a
50 Ω pad is inserted to apply 50 Ω impedance to the next stage obtain broad-band gain. Various other application
circuits can be conceived as user-side solutions.
Figure 7-1. Dual Band Circuit Configuration Example
BPF
To next stage
R
R
300 nH
R
10 000 pF 1 000 pF
1 000 pF
VCC
54
6
5
4
RFout
IFin
VCC
GND
PS
LOin
Application Note P13683EJ2V0AN00
1
2
3
L
C1
C2
From previous stage
100 pF
From local oscillator
8.
CONCLUSION
This application note has briefly described the usage and application of frequency up-converter ICs for mobile
communication devices. For the future, we are working to develop new core products in which the functions are
improved and the integration intensified by using a new process to improve linearity and by providing support for high
frequency applications.
References
µPC8106, µPC8109 and µPC8163 data sheets (see the document numbers listed in the Contents).
Also, see other reference materials that describe double balanced mixers.
Application Note P13683EJ2V0AN00
55
[MEMO]
56
Application Note P13683EJ2V0AN00
[MEMO]
Application Note P13683EJ2V0AN00
57
[MEMO]
58
Application Note P13683EJ2V0AN00
Facsimile Message
From:
Name
Company
Tel.
Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.
FAX
Address
Thank you for your kind support.
North America
Hong Kong, Philippines, Oceania
NEC Electronics Inc.
NEC Electronics Hong Kong Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044
Fax: 1-800-729-9288
1-408-588-6130
Korea
Europe
NEC Electronics Hong Kong Ltd.
NEC Electronics (Europe) GmbH
Seoul Branch
Technical Documentation Dept.
Fax: 02-528-4411
Fax: +49-211-6503-274
South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829
Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583
Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900
Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951
I would like to report the following error/make the following suggestion:
Document title:
Document number:
Page number:
If possible, please fax the referenced page or drawing.
Document Rating
Excellent
Good
Acceptable
Poor
Clarity
Technical Accuracy
Organization
CS 99.1