ETC P11997EJ2V0AN00

Application Note
USAGE AND APPLICATION CHARACTERISTICS OF
µPC2757, µPC2758, AND µPC8112, 3-V POWER
SUPPLY, 1.9-GHz FREQUENCY DOWN-CONVERTER
ICS FOR MOBILE COMMUNICATION
Document No. P11997EJ2V0AN00 (2nd edition)
Date Published August 1999 N CP(K)
©
Printed in Japan
1997, 1999
[MEMO]
2
Application Note P11997EJ2V0AN00
NESAT is the abbreviation for NEC Silicon Advanced Technology and a trademark of NEC Corporation.
The information in this document will be updated without notice.
This document introduces general applications of the products in this series. The application circuits and
circuit constants in this document are examples and not intended for use in actual mass production design.
In addition, please take note that restrictions of the application circuit or standardization of the application
circuit characteristics are not intended.
Especially, characteristics of high-frequency ICs change depending on the external components and
mounting pattern. Therefore, the external circuit constants should be determined based on the required
characteristics on your planned system referring to this document and characteristics should be checked
before using these ICs.
• The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98. 8
The mark
shows major revised points.
Application Note P11997EJ2V0AN00
3
[MEMO]
4
Application Note P11997EJ2V0AN00
CONTENTS
1.
INTRODUCTION ............................................................................................................................................
7
2.
OVERVIEW OF PRODUCTS........................................................................................................................
8
2.1 Lineup by External Size .........................................................................................................................
8
2.2 Lineup by Characteristics and IF Output Format ...................................................................................
8
3.
MEASUREMENT AND CALCULATION OF MAIN CHARACTERISTICS ................................................
11
4.
APPLICATION CIRCUITS AND CHARACTERISTICS ...............................................................................
13
4.1 Input Pin Connections with Front Stage .................................................................................................
13
4.2 Output Pin Connection with Secondary Stage .......................................................................................
19
4.3 Description of Application Circuit Characteristics...................................................................................
20
5.
SYSTEM APPLICATION EXAMPLES .........................................................................................................
37
6.
SUMMARY .....................................................................................................................................................
38
7.
CONCLUSION................................................................................................................................................
38
APPENDIX. REFERENCE PARAMETERS ...........................................................................................................
39
Precautions for Design-ins
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation).
All the ground pins must be connected together in a wide ground pattern to decrease impedance difference.
(3) Keep the track length of the ground pins as short as possible.
(4) The bypass capacitor should be attached to the VCC pin.
(5) The DC cut capacitor must be each attached to the input and output pins.
(6) Refer to the data sheet of each product for the relevant cautions and electrical characteristics.
µPC2757T, µPC2758T Data Sheet (P10716E)
µPC8112T Data Sheet (P10764E)
µPC2757TB, µPC2758TB Data Sheet (P12771E)
µPC8112TB Data Sheet (P12808E)
Some of data sheets may be preliminary versions. However preliminary versions are not marked as such.
Application Note P11997EJ2V0AN00
5
[MEMO]
6
Application Note P11997EJ2V0AN00
1.
INTRODUCTION
Japan’s Personal Digital Cellular (PDC) service was started in 1995. Shortly after that, the service of Personal
Handy Phone Systems (PHS) was also introduced to the market. As of December, 1998, 38,998,000 cellular
subscribers and 5,981,000 PHS subscribers had signed up, accounting for 44,979,000 handsets in total and for 35.5
percent of the population.
In keeping with the trends of widespread use, the demand for handset downsizing has increased. To meet such
downsizing demands, in addition to the frequency down-converter ICs µPC2757T, µPC2758T, and µPC8112T
currently marketed as conventional products, NEC has developed and commercialized further miniaturized 6-pin mini
mold types µPC2757TB, µPC2758TB, and µPC8112TB.
This application note describes the usage method and selected application examples of these ICs.
Application Note P11997EJ2V0AN00
7
2.
OVERVIEW OF PRODUCTS
2.1 Lineup by External Size
The µPC2757, µPC2758, and µPC8112 are high-frequency silicon monolithic ICs, which are developed as 1st
frequency down-converter IC receivers for cellular and cordless telephones. In addition to the existing 6-pin mini
mold package (size 2915), a 6-pin super mini mold (size 2012) is also available. Suffixes T and TB, which are
appended in the part number represent packages and denote mini mold and super mini mold, respectively. In this
lineup, one part number includes only one type of circuitry with the package size distinction made by the suffix T
(conventional) or TB (shrink), which is the same rule employed for the up-converter series (but is not the case for the
amplifier series). Since the chip layout and size are changed when the TB type is employed, impedance values
between T and TB types differ slightly. Other electrical characteristics, however, are identical between the two types.
2.2 Lineup by Characteristics and IF Output Format
The lineup offers the option of choosing a product and its external circuitry according to the desired characteristics.
The features of products taking the µPC2757 as the basis of comparison are shown below.
µPC2758: µPC2757 with higher gain and higher output intercept points
µPC8112: µPC2757 with higher input intercept points, and an improved input conversion IM3 level
* Circuit current comparisons (from least to greatest current): µPC2757 < µPC8112 < µPC2758
Figure 2-1 shows internal block diagrams of these products.
The µPC2757 has the same block configuration as the µPC2758, which includes an input mixer, LO amplifier, and
IF output amplifier. The input mixer blocks in the µPC2758 have almost the same characteristics as the µPC2757.
In the µPC2758, increasing the IF output amplifier’s current raises the output intercept point while obtaining high
gain. Concerning the intermodulation distortion characteristic, although the graphed plot for the input level and thirdorder intermodulation distortion (IM3) level is weighted slightly toward the second-order level (2.7) when compared to
the ordinary third-order plot, the IM3 level is higher compared to the third-order plot, which is calculated from the
crosspoint IP3 using a logical expression.
The µPC8112 excludes an emitter-follower-type IF output amplifier; instead the mixer is designed as an open
collector output. The mixer without the IF output amplifier has a larger circuit current. The circuit can be optimized in
output return loss and input intercept points by externally matching the output impedance with the next connected
device, which improves the IM3 level for the relatively high input intercept point and input conversion. The IM3 level is
also improved by the intermodulation distortion characteristic of the output circuit, in which the input level and IM3
level’s graphed plot is closer to a third-order plot than the µPC2757 and µPC2758.
A double balanced mixer (DBM) and a high-isolation LO amplifier are used to prevent leakage, which effectively
minimizes LO leakage to RF/IF ports and RF leakage to LO ports.
8
Application Note P11997EJ2V0AN00
Table 2-1 shows the lineup of NEC frequency down-converter ICs and Figure 2-2 shows the package drawings.
The lineup is developed and commercialized using NEC’s own silicon bipolar process “NESAT III”. For details of this
process, refer to Pamphlet NESAT Process (Doc. No. P12647E).
Figure 2-1. Internal Block Diagrams
µPC2757, 2758
µPC8112
RF input
IF output
RF input
IF output
LO input
LO input
Table 2-1. Lineup of Frequency Down-converter IC
Item
Product
µPC2757T
No RF
ICC
(mA)
900 MHz
SSB NF
(dB)
1.5 GHz
SSB NF
(dB)
1.9 GHz
SSB NF
(dB)
900 MHz
CG
(dB)
1.5 GHz
CG
(dB)
1.9 GHz
CG
(dB)
900 MHz
IIP3
(dBm)
1.5 GHz
IIP3
(dBm)
1.9 GHz
IIP3
(dBm)
5.6
10
10
13
15
15
13
−14
−14
−12
11
9
10
13
19
18
17
−13
−12
−11
8.5
9
11
11
15
13
13
−10
−9
−7
900 MHz
PO (sat)
(dBm)
1.5 GHz
PO (sat)
(dBm)
1.9 GHz
PO (sat)
(dBm)
900 MHz
RFIo
(dB)
1.5 GHz
RFIo
(dB)
1.9 GHz
RFIo
(dB)
−3
−
−8
−
−
−
µPC2757TB
µPC2758T
µPC2758TB
µPC8112T
µPC8112TB
Item
Product
µPC2757T
IF Output Format
Emitter follower
µPC2757TB
µPC2758T
6-pin mini mold
6-pin super mini mold
1
−
−4
−
−
−
6-pin mini mold
µPC2758TB
µPC8112T
Package
6-pin super mini mold
−2.5
−3
−3
−80
−57
−55
µPC8112TB
Open collector
6-pin mini mold
6-pin super mini mold
TA = +25°C, VCC = 3.0 V
Remark
The typical value is used for each major characteristic.
Application Note P11997EJ2V0AN00
9
Figure 2-2. (a) 6-Pin Mini-Mold Package Drawing (Unit: mm)
+0.1
–0.0
0.3
+0.2
–0.3
+0.2
–0.1
2.8
1.5
1
0.13±0.1
2
3
0 to 0.1
6
5
4
0.95
0.95
0.8
+0.2
1.1 –0.1
1.9
2.9±0.2
(b) 6-Pin Super Mini-Mold Package Drawing (Unit: mm)
+0.1
0.15 –0
2.1±0.1
1.25±0.1
0.1 to
0.2 +0.1
–0
0 to 0.1
0.65
0.65
1.3
2.0±0.2
10
0.7
0.9±0.1
Application Note P11997EJ2V0AN00
3.
MEASUREMENT AND CALCULATION OF MAIN CHARACTERISTICS
In this product series, the electrical characteristics are specified by the test circuit shown in the data sheets which
RF input port and LO input port coupled to the signal generator with capacitor only. The purpose of these ratings is
to set a common point of reference since the impedance at the input port is high in relation to 50 Ω and input
conversion characteristics vary according to the external circuitry.
The main items to be measured are the input/output levels, conversion gain (CG), and third-order intermodulation
distortion (IM3). As a rating for various items, CG is a ratio of the RF input power (PRFin) and the IF output’s
fundamental wave power (PIFin), and IM3 refers to the frequency relationship between the IF output’s fundamental
waves (fIFout1, fIFout2) and distorted wave (fIM3) when there are two frequencies input to the RF input (for a detailed
theoretical description, see the literature on high-frequency electronic circuits).
CG (dB)
= PIFout − PRFin
fIM31 (Hz) = 2 × fIFout1 − fIFout2
fIM32 (Hz) = 2 × fIFout2 − fIFout1
These signal levels are obtained by measurements under certain frequency conditions. On the other hand, the
third-order distortion intercept point (IP3) is an extrapolated value from these measured characteristics. Therefore,
IP3 is a virtual point that is used to calculate a value when we could not measure item under noise level of a
measuring instrument. Thus, there is an input level value (IIP3) and an output level value (OIP3). OIP3 is intrinsically
rated according to the IC’s current efficiency due to D/U ratio of signals level appeared in output, while IIP3 is
established according to the relation between OIP3 and CG. The relationships among these characteristics are
graphed Figure 3-1. You should note that IIP3 and OIP3 are extrapolated values and are not actually measured
values.
In particular, the gradient (∆IM3) for input to IM3 has almost 3, but accurate value may deviate from 3.0. This is
because, mathematically, ∆IM3 is a third-order gradient, which deviate from the theoretical condition based on the
internal chip, the mounted parasitic path, etc. Accordingly, you should calculate using actually measured values to
describe accurate distortion behavior.
OIP3 =
IIP3 =
∆IM3 × PIFout − IM3
∆IM3 − 1
(dBm)
∆IM3 × PRFin + CG − IM3
∆IM3 − 1
(dBm)
(Where OIP3 = IIP3 + CG)
Application Note P11997EJ2V0AN00
11
Figure 3-1. Conceptual Diagram of Input/Output Characteristics, Conversion Gain (CG),
and 3rd Order Intermodulation Distortion (IM3)
3rd order distortion intercept point
1-dB gain
compression point
OIP3
Fundamental wave signal
IF output level (dB)
−1 dB
1
=
G
C
1
∆
1
3rd order distortion IM3
Approx.
10.5 dB
∆IM3
About 3
1
IIP3
RF input level (dB)
12
Application Note P11997EJ2V0AN00
4.
APPLICATION CIRCUITS AND CHARACTERISTICS
In this series, according to the measuring circuit in the data sheet, the electrical characteristics specified only by
coupling the signal generator and capacitor are standardized for the RF input port and LO input port. For actual use,
however, the external circuits connected to the input pins differ according to the application and required
characteristics.
4.1 Input Pin Connections with Front Stage
(1) Internal circuitry of input pins
In each product, each input pin is a base input of an NPN transistor, with high impedance in relation to 50 Ω for
frequencies up to 1.9 GHz. Figure 4-1 shows Smith charts for the RF port and LO port in each product.
Figure 4-1. Smith Charts of RF Port and LO Port (Input Ports)
S Parameter µPC2757T
1
1
2
2
5
5
3
4
RF port
VCC = VPS = 3.0 V
1: 500 MHz 64.273 Ω –j250.85 Ω
2: 900 MHz 40.93 Ω –j141.55 Ω START 0.050000000 GHz
3: 1500 MHz 31.09 Ω –j82.902 Ω STOP 3.000000000 GHz
4: 1900 MHz 27.545 Ω –j62.115 Ω
5: 2500 MHz 26.459 Ω –j41.922 Ω
RF port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
4
3
VPS = GND
109.98 Ω –j363.47 Ω
79.687 Ω –j214.84 Ω START 0.050000000 GHz
60.195 Ω –j141.38 Ω STOP 3.000000000 GHz
50.621 Ω –j114.52 Ω
42.488 Ω –j87.531 Ω
1
1
2
2
5
4
4 3
3
LO port
VCC = VPS = 3.0 V
1: 500 MHz 99.852 Ω –j220.24 Ω
2: 900 MHz 73.133 Ω –j139.53 Ω START 0.050000000 GHz
3: 1500 MHz 52.672 Ω –j91.57 Ω STOP 3.000000000 GHz
4: 1900 MHz 48.867 Ω –j74.281 Ω
5: 2500 MHz 40.842 Ω –j55.199 Ω
5
LO port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
VPS = GND
128.02 Ω –j354.03 Ω
88.133 Ω –j222.33 Ω START 0.050000000 GHz
62.516 Ω –j140.97 Ω STOP 3.000000000 GHz
58.312 Ω –j117.96 Ω
45.59 Ω –j93.238 Ω
Application Note P11997EJ2V0AN00
13
S Parameter µPC2758T
1
1
2
5
2
4
5
3
RF port
VCC = VPS = 3.0 V
1: 500 MHz 59.633 Ω –j235.09 Ω
2: 900 MHz 37.609 Ω –j131.38 Ω START 0.050000000 GHz
3: 1500 MHz 29.121 Ω –j76.48 Ω STOP 3.000000000 GHz
4: 1900 MHz 26.992 Ω –j56.742 Ω
5: 2500 MHz 26.697 Ω –j37.975 Ω
RF port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
4
3
VPS = GND
105.94 Ω –j355.98 Ω
79.336 Ω –j214.39 Ω START 0.050000000 GHz
61.398 Ω –j139.99 Ω STOP 3.000000000 GHz
51.539 Ω –j113.45 Ω
42.875 Ω –j87.09 Ω
1
1
5
2
4
3
2
5
LO port
VCC = VPS = 3.0 V
1: 500 MHz 69.883 Ω –j177.5 Ω
2: 900 MHz 59.047 Ω –j102.83 Ω START 0.050000000 GHz
3: 1500 MHz 49.656 Ω –j67.445 Ω STOP 3.000000000 GHz
4: 1900 MHz 46.871 Ω –53.65 Ω
5: 2500 MHz 42.143 Ω –j40.105 Ω
4 3
LO port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
VPS = GND
START 0.050000000 GHz
102.48 Ω –j330.11 Ω
STOP 3.000000000 GHz
79.703 Ω –j199.25 Ω
60.961 Ω –j128.63 Ω
59.211 Ω –j107.32 Ω
48.105 Ω –j86.215 Ω
S Parameter µPC8112T
1
1
2
5
4
2
3
RF port
VCC = VPS = 3.0 V
1: 500 MHz 53.961 Ω –j199.84 Ω
2: 900 MHz 37.164 Ω –j110.75 Ω START 0.050000000 GHz
3: 1500 MHz 30.703 Ω –j62.504 Ω STOP 3.000000000 GHz
4: 1900 MHz 28.742 Ω –j45.379 Ω
5: 2500 MHz 29.257 Ω –j29.199 Ω
14
RF port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
5
4 3
VPS = GND
70.25 Ω –j334.05 Ω
53.289 Ω –j192.67 Ω START 0.050000000 GHz
41.633 Ω –j117.89 Ω STOP 3.000000000 GHz
36.133 Ω –j92.941 Ω
32.621 Ω –j66.703 Ω
Application Note P11997EJ2V0AN00
1
1
2
2
54
3
54
LO port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
LO port
VCC = VPS = 3.0 V
1: 500 MHz
147.34 Ω –j369.31 Ω
2: 900 MHz
90.164 Ω –j232.59 Ω START 0.050000000 GHz
3: 1500 MHz 61.602 Ω –j144.84 Ω STOP 3.000000000 GHz
4: 1900 MHz 59.125 Ω –j116.24 Ω
5: 2500 MHz 50.164 Ω –j94.008 Ω
3
VPS = GND
126.91 Ω –j468.75 Ω
84.906 Ω –j278.58 Ω START 0.050000000 GHz
58.266 Ω –j173.01 Ω STOP 3.000000000 GHz
57.07 Ω –j140.45 Ω
47.453 Ω –j114.28 Ω
S Parameter µPC2757TB
1
1
2
3
5 4
2
5
4 3
RF port
VCC = VPS = 3.0 V
1: 500 MHz
56.422 Ω –j275.59 Ω
2: 900 MHz
38.68 Ω –j152.71 Ω START 0.050000000 GHz
3: 1500 MHz 31.699 Ω –j88.102 Ω STOP 3.000000000 GHz
4: 1900 MHz 29.209 Ω –j65.926 Ω
5: 2500 MHz 29.209 Ω –j44.758 Ω
RF port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
VPS = GND
104.03 Ω –j413.42 Ω
74.82 Ω –j243.06 Ω
59.266 Ω –j154.98 Ω
51.227 Ω –j124.55 Ω
43.996 Ω –j95.117 Ω
START 0.050000000 GHz
STOP 3.000000000 GHz
1
1
5 4 3
2
2
LO port
VCC = VPS = 3.0 V
1: 500 MHz
90.969 Ω –j243.41 Ω
2: 900 MHz
67.828 Ω –j150.32 Ω START 0.050000000 GHz
3: 1500 MHz 51.488 Ω –j97.273 Ω STOP 3.000000000 GHz
4: 1900 MHz 44.621 Ω –j77.352 Ω
5: 2500 MHz 39.627 Ω –j56.738 Ω
LO port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
3
5 4
VPS = GND
114.16 Ω –j400.03 Ω
75.133 Ω –j242.73 Ω
53.516 Ω –j154.21 Ω
44.789 Ω –j124.74 Ω
37.004 Ω –j93.828 Ω
Application Note P11997EJ2V0AN00
START 0.050000000 GHz
STOP 3.000000000 GHz
15
S Parameter µPC2758TB
1
1
5
3
5 4
2
4 3
RF port
VCC = VPS = 3.0 V
1: 500 MHz
63.312 Ω –j261.34 Ω
2: 900 MHz
40.227 Ω –j142.36 Ω START 0.050000000 GHz
3: 1500 MHz 32.441 Ω –j79.68 Ω STOP 3.000000000 GHz
4: 1900 MHz 31.107 Ω –j58.273 Ω
5: 2500 MHz 30.871 Ω –j39.08 Ω
RF port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
VPS = GND
107.13 Ω –j395.56 Ω
78.711 Ω –j234.41 Ω
61.922 Ω –j148.82 Ω
52.629 Ω –j119.55 Ω
44.766 Ω –j90.578 Ω
2
START 0.050000000 GHz
STOP 3.000000000 GHz
1
1
5 4 3
2
2
3
5 4
LO port
VCC = VPS = 3.0 V
1: 500 MHz
73.398 Ω –j188.13 Ω
2: 900 MHz
64.551 Ω –j112.66 Ω START 0.050000000 GHz
3: 1500 MHz 53.133 Ω –j72.941 Ω STOP 3.000000000 GHz
4: 1900 MHz 48.111 Ω –j57.307 Ω
5: 2500 MHz 44.541 Ω –j41.564 Ω
LO port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
VPS = GND
100.31 Ω –j374.75 Ω
73.148 Ω –j223.07 Ω
57.719 Ω –j144.02 Ω
50.738 Ω –j119.52 Ω
41.836 Ω –j90.25 Ω
START 0.050000000 GHz
STOP 3.000000000 GHz
S Parameter µPC8112TB
1
1
5
2
4
3
RF port
VCC = VPS = 3.0 V
1: 500 MHz
62.711 Ω –j224.07 Ω
2: 900 MHz
48.977 Ω –j219.18 Ω START 0.050000000 GHz
3: 1500 MHz 40.641 Ω –j129.94 Ω STOP 3.000000000 GHz
4: 1900 MHz 37.422 Ω –j101.51 Ω
5: 2500 MHz 34.801 Ω –j74.141 Ω
16
3
5 4
2
RF port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
VPS = GND
76.656 Ω –j421.67 Ω
53.102 Ω –j234.55 Ω
44.844 Ω –j140.82 Ω
40.898 Ω –j109.73 Ω
38.063 Ω –j80.547 Ω
Application Note P11997EJ2V0AN00
START 0.050000000 GHz
STOP 3.000000000 GHz
1
1
2
2
3
5 4
LO port
VCC = VPS = 3.0 V
1: 500 MHz
169.11 Ω –j429.98 Ω
2: 900 MHz
91.875 Ω –j263.7 Ω
3: 1500 MHz 60.781 Ω –j162.56 Ω
4: 1900 MHz 56.789 Ω –j125.66 Ω
5: 2500 MHz 49.652 Ω –j97.602 Ω
START 0.050000000 GHz
STOP 3.000000000 GHz
5
LO port
VCC = 3.0 V
1: 500 MHz
2: 900 MHz
3: 1500 MHz
4: 1900 MHz
5: 2500 MHz
VPS = GND
135.53 Ω –j575.06 Ω
78.266 Ω –j337.66 Ω
55.883 Ω –j201.43 Ω
52.734 Ω –j159.63 Ω
44.262 Ω –j122.66 Ω
4
3
START 0.050000000 GHz
STOP 3.000000000 GHz
(2) External circuits
Since the RF filter that is used in the front stage of this IC features optimization of an attenuation by means of
50-Ω impedance of input and output, the impedance of the RF port in this IC should be adjusted to 50 Ω in an
application. Examples of the RF filter S11 whose ZL is 50 Ω and whose ZL has moved from 50 Ω are shown in
Figure 4-2. Based on the result shown in Figure 4-2, it is assumed that applications with ZS = ZL = 50 Ω is
optimal.
Employ the following two methods to adjust impedance so that the RF input impedance of 50 Ω can be
recognized when this IC is observed from the front stage.
<1> Match with front stage output’s impedance (parallel C, series L, and series C)
<2> 50-Ω termination with DC cut
Figure 4-3 shows external circuit configurations for these two methods.
Figure 4-2. Example of S11 of RF Filter
(a) When ZL = 50 Ω
log MAG
S11
REF 0.0 dB
10.0 dB/
1
–20.731 dB
hp
C
CENTER
1.57542 GHz
S11
REF 1.0 Units
1 200.0 m Units/
42.783 Ω 4.3164 Ω
hp
MARKER 1
1.57542 GHz
1
START 1.075420000 GHz
STOP 2.075420000 GHz
START 1.075420000 GHz
STOP 2.075420000 GHz
Application Note P11997EJ2V0AN00
17
(b) When ZL = 100 Ω
log MAG
S11
REF 0.0 dB
10.0 dB/
1
–8.5229 dB
hp
C
CENTER
1.57542 GHz
S11
REF 1.0 Units
1 200.0 m Units/
74.668 Ω –42.637 Ω
hp
MARKER 1
1.57542 GHz
1
START 1.075420000 GHz
STOP 2.075420000 GHz
START 1.075420000 GHz
STOP 2.075420000 GHz
Figure 4-3. Input Port External Circuit Example (Example of RF Input of µPC2757/58) (1/2)
Measuring circuit <1> (Matches with front stage output impedance)
(Top View)
Signal generator
50 Ω
POWER
SAVE
1 000 pF
3
LOin
PS
4
2
GND
VCC
5
2 900 pF
3V
Signal generator
50 Ω
L
C1
1
RFin
IFout
50 Ω
6
2 900 pF
C2
Spectrum analyzer
Ω termination with DC cut and 50-Ω
Ω front stage output)
Measuring circuit <2> (50-Ω
(Top View)
Signal generator
50 Ω
POWER
SAVE
1 000 pF
3
LOin
PS
4
2
GND
VCC
5
2 900 pF
3V
Signal generator
50 Ω
1 000 pF 1 000 pF
1
RFin
IFout
50 Ω
6
51 Ω
2 900 pF
Spectrum analyzer
18
Application Note P11997EJ2V0AN00
Figure 4-3. Input Port External Circuit Example (Example of RF Input of µPC2757/58) (2/2)
Measuring circuit (Measuring circuit of data sheet)
(Top View)
Signal generator
50 Ω
POWER
SAVE
1 000 pF
3
LOin
PS
4
2
GND
VCC
5
2 900 pF
3V
Signal generator
50 Ω
1 000 pF
1
RFin
IFout
50 Ω
6
2 900 pF
Spectrum analyzer
4.2 Output Pin Connection with Secondary Stage
(1) Internal circuitry of output circuit
The µPC2757 and µPC2758 have emitter-follower type IF outputs with low impedance in relation to 50 Ω. The
µPC8112 has an open collector type output with high impedance in relation to 100 MHz to 300 MHz.
When the input impedance of an IF/SAW filter connected to the next stage is high (from 300 to 900 Ω), such as
in digital mobile communications devices, the µPC8112 with its open-collector type output is suitable.
When connected to a 50-Ω impedance such as a buffer amplifier or LC filter, the µPC2757 and µPC2758 with
their emitter-follower type IF outputs are suitable.
Although the above should be considered as selection criteria, you can select whichever method better suits
your needs. Figure 4-4 shows an internal equivalent circuit of each product and Figure 4-5 shows an external
circuit configuration.
Figure 4-4. Internal Equivalent Circuits
µPC2757, 2758
µPC8112
<5>
<5>
<6>
<6>
<4>
<4>
<3>
<3>
<1>
<2>
Application Note P11997EJ2V0AN00
<1>
<2>
19
Figure 4-5. External Circuit Configurations for Output Ports
µPC2757, 2758
VCC
IFout
5
µPC8112
3V
C
6
50 Ω
C
VCC
5
IFout
6
Example shows next-stage
impedance of 50 Ω
C
L
3V
C
Constant is determined according
to next-stage impedance
4.3 Description of Application Circuit Characteristics
(1) µPC2757 and µPC2758
Since only the input pins can determine the characteristics for these two product models, this section describes
in detail the application characteristics that depend on the input pins’ external connections.
Figures 4-6 and 4-7 show measurement results for three measurement conditions affecting the RF input pin:
when using the matching method (<1>), when using the 50-Ω termination method (<2>), and when using the
data sheet’s test circuit. The output intercept point is almost the same no matter which measurement condition
is used. However, the matching method’s conversion gain value is 5 to 6 dB higher than the corresponding
value in the data sheet characteristics and about 4 to 6 dB lower than when using the 50-Ω termination method.
Also, variation of IM3 in the input conversion is worsened when using the matching method (<1>) which
multiplies only the IM3 gradient (∆IM3) in relation to input and is improved when using the 50-Ω termination
method (<2>).
This behavior occurs when the previous stage’s characteristic impedance is 50 Ω (or a value close to 50 Ω),
and the characteristics are thought to approximate the data sheet characteristics when there is high impedance.
In the RF input, we recommend using the matching method (<1>) when emphasizing conversion gain pin and
we recommend using the 50-Ω termination method (<2>) when emphasizing input conversion distortion. The
trade-offs are between improving VSWR and IIP3 characteristics vs. lowering the CG and worsening the noise
figure.
When using either method in the LO input pin, LO input level range of the CG flat or minimum noise figure
shifts, so the method should be determined according to your LO input level.
(2) µPC8112
In the µPC8112, connecting an external matching circuit to the IF output pin can optimize the output return loss
at the desired IF frequency to about −20 dB to obtain an IP3 value for output conversion. A high-pass type
circuit that includes parallel inductance and serial capacitance is used as the matching circuit configuration.
Another objective is to apply a collector bias having the same potential as the VCC to the internal transistors
through the parallel inductor.
In this case, varying high-frequency characteristics depend on the circuit Q of the matching circuit. Even if the
inductor’s Q value is high, such as 60, the load Q is reduced and the desired frequency’s output return loss
becomes about −20 dB at 3.0 V, which is a gradual S22 in relation to the comparative frequency. Figures 4-8
and 4-9 show Smith charts and log MAGs of 100-MHz matching for the IF port. Even when the inductor’s Q
value is low (such as 20), if load Q becomes high, the desired frequency’s output return loss becomes about
−27 dB at 3.0 V, which means that the S22 is much sharper in the desired frequency and the CG is slightly
(about 2 or 3 dB) higher compared to the data sheet’s test circuit, which raises the IM 3 level proportionately.
20
Application Note P11997EJ2V0AN00
The output intercept point is mainly determined by the supply current from the output pin to the internal
components. So, OIP3 is determined by the DC resistance of the inductor, neither Q value nor the load Q value.
Consequently, inductor should select lower DC resistance value.
The input conversion’s IP3 and IM3
characteristics are determined by the output intercept point (which is itself determined using DC) and by the CG
(which is itself determined using AC).
Any of the RF input pin’s external circuit types can be determined based on whether the system’s emphasis is
on the CG or the input IP3. Variation in characteristics according to the input pin’s external components is
similar in the µPC2757 and µPC2758. As an example of the S parameter for an RF input port with 50-Ω
termination, refer to the Smith chart and log MAG chart shown in Figures 4-10 and 4-11. Thus, the VSWR can
be improved by such an external connection.
These application circuits are implemented using RF-type external components and there is no change in the
characteristics of DC-related items.
In the growing of systems such as digital mobile communications in which input conversion distortion is
emphasized, this document shows data for each product model measured on circuits with RF 50-Ω termination as
reference data for application circuit characteristics. Figures 4-12 and 4-13 show the corresponding performance
curves and Tables 4-1 and 4-2 list the characteristics.
Figure 4-6. µPC2757T: Comparison of Characteristics from External Circuit Connection to RF Pin
(Using Circuit from Figure 4-3)
µ PC2757T IF Output Level and Third Order Intermodulation
Distortion vs. RF Input Level
+10
IF output level PIFout (dBm)
Third order intermodulation distortion IM3 (dBm)
0
−10
−20
−30
−40
When using RF pin
matching method (<1>)
When using data
sheet measuring circuit
When using RF pin with 50-Ω
termination (<2>)
Common conditions:
VCC = 3.0 V TA = +25 °C
fRFin1 = 866.45 MHz
fRFin2 = 866.85 MHz
fLOin = 846.2 MHz
PLOin = −10 dBm
−50
−60
−70
−80
−90
−60
−50
−40
−30
−20
−10
0
10
20
RF input level PRFin (dBm)
Application Note P11997EJ2V0AN00
21
Figure 4-7. Comparison of Characteristics from External Circuit Connection to
RF Pin (Super mini mold) (1/2)
µ PC2757TB IF Output Level and Third Order Intermodulation
Distortion vs. RF Input Level
20
IF output level PIFout (dBm)
Third order intermodulation distortion IM3 (dBm)
10
0
–10
–20
–30
When using RF pin
matching method (<1>)
When using data sheet
measuring circuit
When using RF pin with
50-Ω termination (<2>)
Common conditions
fRFin1 = 820 MHz
fRFin2 = 822 MHz
fLOin = 950 MHz
PLOin = –10 dBm
VCC = VPS = 3.0 V
–40
–50
–60
–70
–80
–90
–70
–60
–50
–40
–30
–20
–10
RF input level PRFin (dBm)
22
Application Note P11997EJ2V0AN00
0
10
20
Figure 4-7. Comparison of Characteristics from External Circuit Connection to
RF Pin (Super mini mold) (2/2)
µ PC2758TB IF Output Level and Third Order Intermodulation
Distortion vs. RF Input Level
20
IF output level PIFout (dBm)
Third order intermodulation distortion IM3 (dBm)
10
0
–10
–20
–30
When using RF pin
matching method (<1>)
When using data sheet
measuring circuit
When using RF pin with
50-Ω termination (<2>)
Common conditions
fRFin1 = 820 MHz
fRFin2 = 822 MHz
fLOin = 950 MHz
PLOin = –10 dBm
VCC = VPS = 3.0 V
–40
–50
–60
–70
–80
–90
–70
–60
–50
–40
–30
–20
–10
0
10
20
RF input level PRFin (dBm)
µ PC8112TB IF Output Level and Third Order Intermodulation
Distortion vs. RF Input Level
20
IF output level PIFout (dBm)
Third order intermodulation distortion IM3 (dBm)
10
0
–10
–20
–30
When using RF pin
matching method (<1>)
When using data sheet
measuring circuit
When using RF pin with
50-Ω termination (<2>)
Common conditions
fRFin1 = 820 MHz
fRFin2 = 822 MHz
fLOin = 950 MHz
PLOin = –10 dBm
VCC = VPS = 3.0 V
–40
–50
–60
–70
–80
–90
–70
–60
–50
–40
–30
–20
–10
0
10
20
RF input level PRFin (dBm)
Application Note P11997EJ2V0AN00
23
Figure 4-8. µPC8112T: 100-MHz Matching of IF Port
Smith chart
log MAG
IF port
S22
REF 1.0 Units
200.0 m Units/
1
59.559 Ω −6.1641 Ω
hp
log MAG
S22
REF 0.0 dB
10.0 dB/
1
−19.624
hp
c MARKER 1
98.85 MHz
MARKER 1
98.85 MHz
1
1
START 0.090000000 GHz
STOP 0.110000000 GHz
START 0.090000000 GHz
STOP 0.110000000 GHz
Figure 4-9. µPC8112TB: 100-MHz Matching of IF Port
log MAG
S22
REF 0.0 dB
10.0 dB/
1 –21.582 dB
S22
Z
REF 1.0 Units
1 200.0 m Units/
55.291 Ω –7.0254 Ω
hp
C
MARKER 1
100.0 MHz
D
1
1
START 0.050000000 GHz
STOP 0.150000000 GHz
24
Application Note P11997EJ2V0AN00
Ω Termination of RF Port
Figure 4-10. µPC8112T: 50-Ω
log MAG
Smith chart
log MAG
S11
REF 0.0 dB
10.0 dB/
2
−14.257 dB
RF port
S11
REF 1.0 Units
200.0 m Units/
2
38.053 Ω −12.217 Ω
hp
hp
c MARKER 2
800.0 MHz
MARKER 2
800.0 MHz
5
2
1
4
2
3
5
4
3
1
START 0.100000000 GHz
STOP 3.000000000 GHz
START 0.100000000 GHz
STOP 3.000000000 GHz
Ω Termination of RF Port
Figure 4-11. µPC8112TB: 50-Ω
log MAG
S11
REF 0.0 dB
10.0 dB/
2 –11.02 dB
Z
S11
REF 1.0 Units
2 200.0 mUnits/
28.298 Ω 3.8818 Ω
hp
C
MARKER 2
800.0 MHz
D
3
2
4
1
2
5
3
4
5
1
START 0.100000000 GHz
STOP 3.000000000 GHz
Application Note P11997EJ2V0AN00
25
Ω termination of RF Port (mini mold)
Table 4-1. Measured Characteristics using Application Circuit with 50-Ω
(TA = +25°C, VCC = VPS = 3.0 V, PLOin = −10 dBm unless otherwise specified)
Item
Symbol
Conversion gain
CG
SSB • NF
SSB noise figure
Third-order intermodulation
distortion level
(when PRFin = −40 dBm)
IM3
Calculated value for input
third-order distortion
intercept point
IIP3
DUT’s circuit current
ICC
Condition
µPC2757T µPC8112T µPC2758T
fRFin = 820 MHz, fIFout = 130 MHz
10.5
11.5
13.8
fRFin = 1489 MHz, fIFout = 130 MHz
11.7
9.6
15.0
fRFin = 1900 MHz, fIFout = 240 MHz
11.7
9.5
15.0
fRFin = 820 MHz, fIFout = 130 MHz
14.1
14.6
13.1
fRFin = 1489 MHz, fIFout = 130 MHz
14.4
15.2
14.1
fRFin = 1900 MHz, fIFout = 240 MHz
13.8
14.7
13.1
fRFin = 820/822 MHz, fIFout = 130 MHz
−90.0
−92.5
−88.1
fRFin = 1489/1491 MHz, fIFout = 130 MHz
−87.5
−96.5
−87.5
fRFin = 1900/1902 MHz, fIFout = 240 MHz
−86.7
−94.2
−85.3
fRFin = 820/822 MHz, fIFout = 130 MHz
−6.0
−5.5
−5.6
fRFin = 1489/1491 MHz, fIFout = 130 MHz
−7.1
−4.3
−5.7
fRFin = 1900/1902 MHz, fIFout = 240 MHz
−7.6
−4.6
−6.9
Without signal
5.3
7.4
8.9
Unit
dB
dB
dBm
dBm
mA
Cautions 1. (Above models)
•
Measurements of fRFin = 820 MHz and fRFin = 1489 MHz are upper local
•
Measurement of fRFin = 1900 MHz is lower local
•
The measured value for IIP3 (shown on the right side of the equation) is calculated based on
∆IM3 is the IM3 gradient when the measurement uses a
the logical expression shown below. (∆
PRFin value from −40 dBm to −35 dBm. In this measurement, ∆IM3 = 2.80).
IIP3 =
•
∆IM3 × PRFin + CG − IM3
(dBm)
∆IM3 − 1
This data should be used only as reference values, since the magnitude of VSWR improvement
depends on the parasitic inductance and capacitance of the RF pattern into which external
components inserted and the external components itself.
2. (µPC8112T only)
•
±10 MHz) case.
LO input level PLOin = −7 dBm only for fRFin = 820 MHz (±
•
While fIFout = 130 MHz in other product models, in this product model f IFout = 100 MHz (due to
stricter measurement conditions similar to circuits in which characteristics are guaranteed in
the data sheet)
26
Application Note P11997EJ2V0AN00
Ω termination of RF Port
Table 4-2. Measured Characteristics using Application Circuit with 50-Ω
(super mini mold)
(TA = +25°C, VCC = VPS = 3.0 V, PLOin = −10 dBm unless otherwise specified)
Item
Symbol
Conversion gain
CG
SSB • NF
SSB noise figure
Third-order intermodulation
distortion level
(when PRFin = −40 dBm)
IM3
Calculated value for input
third-order distortion
intercept point
IIP3
DUT’s circuit current
ICC
Condition
µPC2757TB µPC2758TB µPC8112TB
fRFin = 820 MHz, fIFout = 130 MHz
10.3
14.3
15.0
fRFin = 1489 MHz, fIFout = 130 MHz
12.3
16.7
13.2
fRFin = 1900 MHz, fIFout = 240 MHz
12.2
16.2
10.0
fRFin = 820 MHz, fIFout = 130 MHz
14.0
13.9
13.2
fRFin = 1489 MHz, fIFout = 130 MHz
14.0
14.0
14.8
fRFin = 1900 MHz, fIFout = 240 MHz
13.9
13.7
14.5
fRFin = 820/822 MHz, fIFout = 130 MHz
−90.9
−89.7
−94.8
fRFin = 1489/1491 MHz, fIFout = 130 MHz
−88.8
−86.5
−96.2
fRFin = 1900/1902 MHz, fIFout = 240 MHz
−89.1
−86.7
−98.0
fRFin = 820/822 MHz, fIFout = 130 MHz
−8.3
−5.5
−3.7
fRFin = 1489/1491 MHz, fIFout = 130 MHz
−8.4
−6.0
−4.8
fRFin = 1900/1902 MHz, fIFout = 240 MHz
−5.7
−6.2
−6.7
Without signal
5.6
10.7
8.5
Unit
dB
dB
dBm
dBm
mA
Cautions 1. (Above models)
•
Measurements of fRFin = 820 MHz and fRFin = 1489 MHz are upper local
•
Measurement of fRFin = 1900 MHz is lower local
•
The measured value for IIP3 (shown on the right side of the equation) is calculated based on
the logical expression shown below.
IIP3 =
•
∆IM3 × PRFin + CG − IM3
(dBm)
∆IM3 − 1
This data should be used only as reference values, since the magnitude of VSWR improvement
depends on the parasitic inductance and capacitance of the RF pattern into which external
components inserted and the external components itself.
2. (µPC8112TB only)
•
While fIFout = 130 MHz in other product models, in this product model f IFout = 100 MHz (due to
stricter measurement conditions similar to circuits in which characteristics are guaranteed in
the data sheet)
Application Note P11997EJ2V0AN00
27
Figure 4-12. Application Circuit Characteristics of Mini-Mold Products
Ω Termination)
(Using Circuit with RF 50-Ω
TA = +25°°C, VCC = VPS = 3.0 V (µPC8112T only: VCC = VPS = VIFout = 3.0 V)
28
µ PC2757T
RF Input Level vs. IM3 and IF Output Level
µPC2757T LO Input Level vs. SSB NF
30
10
SSB noise figure SSB-NF (dB)
0
−10
−20
IFout
−30
−40
−50
IM3
−60
−70
−80
−90
−70 −60 −50 −40 −30 −20 −10
RF input level PRFin (dBm)
0
25
20
15
10
5
0
−30 −25 −20 −15 −10 −5
0
LO input level PLOin (dBm)
10
µ PC8112T
RF Input Level vs. IM3 and IF Output Level
0
−10
IFout
−30
−40
−50
IM3
−60
−70
−80
−90
−100
−60
−50
−40
−30
−20
−10
RF input level PIFin (dBm)
20
18
16
14
12
10
8
−20 −18 −16 −14 −12 −10 −8 −6 −4 −2
LO input level PLOin (dBm)
0
µ PC2758T
RF Input Level vs. IM3 and IF Output Level
30
20
10
0
−10
−20
−30
−40
10
µ PC8112T LO Input Level vs. SSB NF
fLOin = 920 MHz
PLOin = −7 dBm
−20
5
22
SSB noise figure SSB-NF (dB)
10
SSB noise figure SSB-NF (dB)
IF output level PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
IF output level PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
IF output level PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
<1> fRFin1 = 820 MHz, fRFin2 = 822 MHz and, unless otherwise specified, fIFout = 130 MHz, PLOin = −10 dBm
IFout
IM3
−50
−60
−70
−80
−90
−70 −60 −50 −40 −30 −20 −10
RF input level PRFin (dBm)
0
10
0
µ PC2758T LO Input Level vs. SSB NF
25
20
15
10
5
0
−30 −25 −20 −15 −10 −5
0
LO input level PLOin (dBm)
Application Note P11997EJ2V0AN00
5
10
µPC2757T
RF Input Level vs. IM3 and IF Output Level
µPC2757T LO Input Level vs. SSB NF
30
10
SSB noise figure SSB-NF (dB)
0
−10
−20
IFout
−30
−40
−50
IM3
−60
−70
−80
−90
−70 −60 −50 −40 −30 −20 −10
RF input level PRFin (dBm)
0
25
20
15
10
5
0
−30 −25 −20 −15 −10 −5
0
LO input level PLOin (dBm)
10
µPC8112T
RF Input Level vs. IM3 and IF Output Level
10
22
0
−10
SSB noise figure SSB-NF (dB)
fLOin = 1589 MHz
IFout
−20
−30
−40
−50
IM3
−60
−70
−80
−90
−100
−60
−50
−40
−30
−20
−10
RF input level PIFin (dBm)
0
−10
−20
IFout
−30
−40
−50
IM3
−60
−70
−80
−90
−70 −60 −50 −40 −30 −20 −10
RF input level PRFin (dBm)
0
10
µ PC8112T LO Input Level vs. SSB NF
18
16
14
12
10
30
20
10
20
µPC2758T
RF Input Level vs. IM3 and IF Output Level
10
5
8
−20 −18 −16 −14 −12 −10 −8 −6 −4 −2
LO input level PLOin (dBm)
0
SSB noise figure SSB-NF (dB)
IF output level PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
IF output level PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
IF output level PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
<2> fRFin1 = 1489 MHz, fRFin2 = 1491 MHz and, unless otherwise specified, fIFout = 130 MHz, PLOin = −10 dBm
0
µ PC2758T LO Input Level vs. SSB NF
25
20
15
10
5
0
−30 −25 −20 −15 −10 −5
0
LO input level PLOin (dBm)
Application Note P11997EJ2V0AN00
5
10
29
30
µ PC2757T
RF Input Level vs. IM3 and IF Output Level
µPC2757T LO Input Level vs. SSB NF
30
10
SSB noise figure SSB-NF (dB)
0
−10
−20
−30
IFout
−40
−50
IM3
−60
−70
−80
−90
−70 −60 −50 −40 −30 −20 −10
RF input level PRFin (dBm)
0
25
20
15
10
5
0
−30 −25 −20 −15 −10 −5
0
LO input level PLOin (dBm)
10
µ PC8112T
RF Input Level vs. IM3 and IF Output Level
SSB noise figure SSB-NF (dB)
0
−20
IFout
−30
−40
IM3
−50
−60
−70
−80
−90
−70 −60 −50 −40 −30 −20 −10
RF input level PRFin (dBm)
0
25
20
15
10
5
0
−30 −25 −20 −15 −10 −5
0
LO input level PLOin (dBm)
10
µ PC2758T
RF Input Level vs. IM3 and IF Output Level
0
IFout
−30
−40
−50
−60
10
µ PC2758T LO Input Level vs. SSB NF
10
−20
5
30
20
−10
10
30
10
−10
5
µPC8112T LO Input Level vs. SSB NF
20
SSB noise figure SSB-NF (dB)
IF output level PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
IF output level PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
IF output level PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
<3> fRFin1 = 1900 MHz, fRFin2 = 1902 MHz and fIFout = 240 MHz, PLOin = −10 dBm
IM3
−70
−80
−90
−70 −60 −50 −40 −30 −20 −10
RF input level PRFin (dBm)
0
10
25
20
15
10
5
0
−30 −25 −20 −15 −10 −5
0
LO input level PLOin (dBm)
Application Note P11997EJ2V0AN00
5
10
Figure 4-13. Application Circuit Characteristics of Super Mini-Mold Products
Ω Termination)
(Using Circuit with RF 50-Ω
TA = +25°°C, VCC = VPS = 3.0 V (µPC8112TB only: VCC = VPS = VIFout = 3.0 V)
<1> fRFin1 = 820 MHz, fRFin2 = 822 MHz, PLOin = −10 dBm, fIFout = 130 MHz (µPC8112TB only: fIFout = 100 MHz)
µPC2757TB LO Input Level vs. SSB NF
20
30
10
SSB noise figure SSB NF (dB)
IF output level (at 2-waveform inputs) PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
µPC2757TB
RF Input Level vs. IM3 and IF Output Level
0
–10
–20
–30
IFout
–40
IM3
–50
–60
–70
–80
–90
–80 –70 –60 –50 –40 –30 –20 –10
RF input level PRFin (dBm)
0
25
20
15
10
5
0
–30 –25 –20 –15 –10 –5
0
LO input level PLOin (dBm)
10
5
10
µPC2758TB LO Input Level vs. SSB NF
20
30
10
SSB noise figure SSB NF (dB)
IF output level (at 2-waveform inputs) PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
µPC2758TB
RF Input Level vs. IM3 and IF Output Level
0
–10
–20
–30
IFout
–40
IM3
–50
–60
–70
–80
–90
–80 –70 –60 –50 –40 –30 –20 –10
RF input level PRFin (dBm)
0
25
20
15
10
5
0
–30
10
–25 –20 –15 –10 –5
0
LO input level PLOin (dBm)
5
10
µPC8112TB LO Input Level vs. SSB NF
20
30
10
SSB noise figure SSB NF (dB)
IF output level (at 2-waveform inputs) PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
µPC8112TB
RF Input Level vs. IM3 and IF Output Level
0
–10
–20
–30
IFout
–40
–50
IM3
–60
–70
–80
–90
–80 –70 –60 –50 –40 –30 –20 –10
RF input level PRFin (dBm)
0
10
25
20
15
10
5
0
–30 –25 –20 –15 –10 –5
0
LO input level PLOin (dBm)
Application Note P11997EJ2V0AN00
5
10
31
<2> fRFin1 = 1489 MHz, fRFin2 = 1491 MHz, PLOin = −10 dBm, fIFout = 130 MHz (µPC8112TB only: fIFout = 100 MHz)
µ PC2757TB LO Input Level vs. SSB NF
20
30
SSB noise figure SSB NF (dB)
10
0
–10
–20
–30
IFout
–40
IM3
–50
–60
–70
25
20
15
10
5
–80
–90
–80 –70 –60 –50 –40 –30 –20 –10
RF input level PRFin (dBm)
0
0
–30
10
–25 –20 –15 –10 –5
0
LO input level PLOin (dBm)
5
10
µPC2758TB
µPC2758TB LO Input Level vs. SSB NF
RF Input Level vs. IM3 and IF Output Level
20
30
10
SSB noise figure SSB NF (dB)
IF output level (at 2-waveform inputs) PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
IF output level (at 2-waveform inputs) PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
µPC2757TB
RF Input Level vs. IM3 and IF Output Level
0
–10
–20
–30
IFout
–40
IM3
–50
–60
–70
–80
–90
–80 –70 –60 –50 –40 –30 –20 –10
RF input level PRFin (dBm)
0
25
20
15
10
5
0
–30
10
–25 –20 –15 –10 –5
0
LO input level PLOin (dBm)
5
10
32
µPC8112TB LO Input Level vs. SSB NF
RF Input Level vs. IM3 and IF Output Level
20
30
10
SSB noise figure SSB NF (dB)
IF output level (at 2-waveform inputs) PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
µ PC8112TB
0
–10
–20
–30
–40
–50
IFout
IM3
–60
–70
–80
–90
–80 –70 –60 –50 –40 –30 –20 –10
RF input level PRFin (dBm)
0
10
25
20
15
10
5
0
–30 –25 –20 –15 –10 –5
0
LO input level PLOin (dBm)
Application Note P11997EJ2V0AN00
5
10
<3> fRFin1 = 1900 MHz, fRFin2 = 1902 MHz, PLOin = −10 dBm, fIFout = 240 MHz
µPC2757TB LO Input Level vs. SSB NF
20
30
10
SSB noise figure SSB NF (dB)
IF output level (at 2-waveform inputs) PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
µ PC2757TB
RF Input Level vs. IM3 and IF Output Level
0
–10
–20
–30
IFout
–40
IM3
–50
–60
–70
–80
–90
–80 –70 –60 –50 –40 –30 –20 –10
RF input level PRFin (dBm)
0
25
20
15
10
5
0
–30 –25 –20 –15 –10 –5
0
LO input level PLOin (dBm)
10
5
10
µPC2758TB LO Input Level vs. SSB NF
20
30
10
SSB noise figure SSB NF (dB)
IF output level (at 2-waveform inputs) PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
µPC2758TB
RF Input Level vs. IM3 and IF Output Level
0
–10
–20
–30
IFout
–40
IM3
–50
–60
–70
–80
–90
–80 –70 –60 –50 –40 –30 –20 –10
RF input level PRFin (dBm)
0
25
20
15
10
5
0
–30
10
–25 –20 –15 –10 –5
0
LO input level PLOin (dBm)
5
10
µPC8112TB LO Input Level vs. SSB NF
30
20
10
SSB noise figure SSB NF (dB)
IF output level (at 2-waveform inputs) PIFout (dBm)
3rd order intermodulation distortion IM3 (dBm)
µ PC8112TB
RF Input Level vs. IM3 and IF Output Level
0
–10
–20
–30
–40
–50
IFout
IM3
–60
–70
–80
–90
–80 –70 –60 –50 –40 –30 –20 –10
RF input level PRFin (dBm)
0
10
25
20
15
10
5
0
–30 –25 –20 –15 –10 –5
0
LO input level PLOin (dBm)
Application Note P11997EJ2V0AN00
5
10
33
Figure 4-14. Test Circuit of Application Circuit Characteristics
(a-1) µPC2757, 2758
POWER
SAVE
3
50 Ω
LOin
C2
2
Signal generator
GND
C 1 X
(Top View)
Signal generator
PS
4
C3
VCC
C4 + C 5
5
3V
1000 pF
IFout 6
1 RFin
50 Ω
C6
C0
51 Ω
Marking is an example for µ PC2757TB Spectrum analyzer
50 Ω
C3
(a-2) PCB for µPC2757 and 2758
LO
input
PS bias
C2
C4
GND
VCC
C0
R
RF
input
C1
C5
C6
IF
output
Caution The patterns of PCBs for mini-mold products (T) and super mini-mold products (TB) are same
except for the intervals of the IC-pin setting blocks (The above diagram shows the super minimold PCB).
34
Application Note P11997EJ2V0AN00
(b-1) µPC8112
LOin
C2
2
GND
1000 pF
1
C0
51 Ω
RFin
Signal generator
C 2 K
3
50 Ω
50 Ω
POWER
SAVE
(Top View)
Signal generator
PS
4
C3
VCC
5
IFout
6
C4 + C5
3V
C6
50 Ω
Spectrum analyzer
C3
(b-2) PCB for µPC8112
LO
input
PS bias
C2
C4
GND
VCC
C0
R
C5
L
C6
RF
input
C1
Short chip
IF
output
Caution The patterns of PCBs for mini-mold products (T) and super mini-mold products (TB) are same
except for the intervals of the IC-pin setting blocks (The above diagram shows the super minimold PCB).
Notes concerning PCB
•
NEC employs a polyimide double-sided PCB to reduce PCB-related loss and maximize the performance of the
IC itself.
•
The through holes ensure proper grounding.
•
Specification
PCB dimensions: 35 × 42 × 0.4 (mm), with 35-µm thick copper patterning on both sides
Other specifications are the same as in the data sheets.
Application Note P11997EJ2V0AN00
35
Parts Table
Mini-mold products
µPC8112T
µPC2757T, 2758T
Note
With IF 100-MHz matching
Note
With IF 240-MHz matching
C0 to C5
MURATA GMR39: 1000 pF
MURATA GMR39: 1000 pF
MURATA GMR39: 1000 pF
L
None
MURATA LQH1NR33
Coil chip inductor: 330 nH
TOKO LL2012-F82N
Multilayer chip inductor: 82 nH
C6
MURATA GMR39: 3000 pF
MURATA GMR39: 5 pF
American Technical Ceramics:
approximately 2 pF
R
MURATA: 51 Ω
MURATA: 51 Ω
MURATA: 51 Ω
Super mini-mold products
µPC8112TB
µPC2757TB, 2758TB
Note
With IF 100-MHz matching
Note
With IF 240-MHz matching
C0 to C5
MURATA GMR39: 1000 pF
MURATA GMR39: 1000 pF
MURATA GMR39: 1000 pF
L
None
TDK NL252018-R33K
Leadless inductor: 330 nH
TOKO LL2010-F100N
Multilayer chip inductor: 100 nH
C6
MURATA GMR39: 2700 pF, 200 pF
MURATA GMR39: 5 pF
MURATA GMR39: 2 pF
R
MURATA: 51 Ω
MURATA: 51 Ω
MURATA: 51 Ω
Note While the external circuitry (including the board pattern’s parasitic parameters) matches (at 50 Ω) the IF port
with the desired IF frequency, S 22 is optimized as −20 dB. (In this test, a network analyzer was used to monitor
the Smith chart and log MAG while the circuit was being adjusted. Any manufacturer’s component can work
when S22 is optimized to −20 dB.)
36
Application Note P11997EJ2V0AN00
5.
SYSTEM APPLICATION EXAMPLES
The following block diagrams are system examples of these ICs, based on our customer’s actual design-in, the
system’s required characteristics, etc.
µPC2757
•
Analog cellular or cordless telephone (CT1+, etc.):
•
Digital cellular or cordless telephone (PDC, CT2, DECT, etc.): µPC2758
•
Digital cellular or cordless mobile telephone (PHS, PDC, etc.): µPC8112
The above are just examples: selections can be based on your set’s design specifications.
Figure 5-1 shows various block diagrams of these application systems.
Figure 5-1. System Block Diagrams
Example of analog cellular telephone
Low-noise
transistor
IF filter
RF
filter µ PC2757
FM
RX
DEMO.
÷N
VCO
SW
PLL
PLL
TX
MOD.
PA
Example of digital cellular or cordless telephone
Low-noise
transistor
RF
filter µ PC2758
IF filter
RX
I
Q
DEMO.
÷N
VCO
SW
PLL
PLL
I
0°
TX
Phase
shifter
PA
90°
Q
PHS
Low-noise
transistor
RF
filter µ PC8112
IF filter
RX
DEMO.
VCO
SW
÷N
I
Q
PLL
PLL
0°
TX
I
Phase
shifter
PA
90°
Application Note P11997EJ2V0AN00
Q
37
6.
SUMMARY
Table 6-1. Input Pin External Circuits and Characteristics (All Three Product Models)
Pin
Relation to system
RF input pin Analog systems, etc.
Digital cellular telephones,
etc.
LO input pin When using a serial
connection with the buffer
amplifier output
Remark
7.
Type of external
circuit
Differences vs. characteristic in
data sheet
Emphasized characteristic
Matching
CG: approximately 5 dB higher
IM3: approximately 12 to 15 dB
noisier
CG
50-Ω termination
CG: 4 to 6 dB lower
IM3: 6 to 15 dB better
Intermodulation distortion at
input level
Matching
Approximately -6 dB from the
recommended PLOin range
When using a serial
connection with the filter
50-Ω termination
−
When using a parallel
connection with the VCO
output and buffer amplifier
input
Capacitor coupling
−
As for buffer amplifier, µPC2745 and 2746 with 50-Ω input/output matching are hypothesized.
CONCLUSION
This application note has briefly described application circuit characteristics and selected examples for actual use
of the µPC2757, µPC2758, and µPC8112, which are 3-V power supply, 1.9-GHz frequency down-converter ICs for
cellular/cordless telephone and portable wireless communication devices. We hope that the application note will help
you use this 6-pin mini-mold and super mini-mold type silicon MMICs.
38
Application Note P11997EJ2V0AN00
APPENDIX. REFERENCE PARAMETERS
S parameters for each port
µPC2757T
VCC = VPS = 3.0 V, TA = +25°C RF−IF
RF port
LO port
FREQUENCY
S11
S11
MHz
MAG.
ANG.
MAG.
ANG.
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
0.959
0.950
0.955
0.948
0.944
0.939
0.932
0.920
0.916
0.910
0.902
0.893
0.886
0.879
0.871
0.862
0.851
0.846
0.833
0.828
0.816
0.816
0.803
0.794
0.780
0.775
0.765
0.752
0.740
0.735
0.726
0.718
0.707
0.698
0.693
0.682
0.672
0.663
0.654
0.646
0.635
0.626
0.615
0.607
0.598
0.587
0.576
0.568
0.553
0.549
0.537
0.527
0.521
0.513
0.499
0.494
0.487
0.480
0.471
0.459
−2.3
−4.5
−6.8
−8.9
−11.1
−13.1
−15.5
−17.3
−19.2
−21.4
−23.4
−25.3
−27.2
−29.1
−30.9
−32.7
−34.5
−36.4
−38.3
−40.0
−42.0
−43.8
−45.7
−47.1
−49.2
−51.0
−52.4
−54.2
−55.9
−57.3
−59.2
−60.5
−62.7
−64.6
−66.1
−67.6
−69.4
−71.4
−72.7
−74.7
−76.4
−78.1
−79.7
−81.7
−83.1
−84.8
−86.4
−88.1
−90.0
−91.4
−92.9
−94.2
−96.0
−97.4
−99.4
−100.8
−102.3
−103.8
−105.8
−107.2
0.968
0.959
0.951
0.938
0.923
0.907
0.894
0.879
0.864
0.848
0.835
0.820
0.811
0.798
0.787
0.777
0.771
0.760
0.749
0.742
0.733
0.730
0.718
0.712
0.705
0.695
0.690
0.682
0.675
0.668
0.655
0.637
0.627
0.618
0.613
0.611
0.607
0.602
0.596
0.592
0.586
0.581
0.575
0.565
0.560
0.556
0.550
0.540
0.536
0.526
0.522
0.512
0.503
0.500
0.490
0.487
0.475
0.468
0.464
0.457
−2.8
−5.3
−8.2
−10.3
−12.6
−14.8
−16.8
−18.5
−19.9
−21.4
−22.9
−24.5
−25.8
−27.0
−28.1
−29.4
−30.5
−32.0
−32.7
−34.2
−35.4
−36.3
−37.8
−38.9
−40.0
−41.5
−42.4
−43.5
−44.9
−46.2
−47.9
−48.9
−49.9
−50.1
−50.5
−51.6
−52.6
−54.0
−54.6
−56.2
−57.1
−58.4
−59.4
−61.1
−62.1
−63.3
−64.4
−65.6
−66.8
−68.2
−69.5
−70.8
−71.8
−72.5
−73.9
−74.9
−75.9
−77.7
−79.0
−79.8
µPC2757T
VCC = 3.0 V, VPS = GND, TA = +25°C
RF port
FREQUENCY
S11
MHz
MAG.
ANG.
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
Application Note P11997EJ2V0AN00
0.983
0.977
0.975
0.969
0.963
0.957
0.947
0.939
0.932
0.927
0.918
0.910
0.901
0.899
0.890
0.879
0.873
0.865
0.856
0.852
0.844
0.848
0.835
0.831
0.818
0.818
0.811
0.803
0.790
0.789
0.789
0.782
0.773
0.768
0.766
0.762
0.755
0.751
0.744
0.740
0.734
0.731
0.722
0.721
0.713
0.708
0.704
0.699
0.690
0.690
0.684
0.676
0.670
0.667
0.657
0.656
0.651
0.645
0.639
0.631
−1.7
−3.3
−4.9
−6.4
−8.0
−9.3
−10.9
−12.2
−13.2
−14.5
−15.9
−16.9
−17.9
−19.2
−20.1
−21.2
−22.2
−23.1
−24.1
−25.2
−26.3
−26.8
−28.0
−28.9
−29.9
−31.0
−31.4
−32.5
−33.1
−33.9
−34.7
−35.5
−36.6
−37.9
−38.3
−39.0
−40.1
−41.0
−41.5
−43.1
−43.6
−44.6
−45.4
−46.7
−47.3
−48.0
−49.2
−49.8
−51.1
−51.7
−52.7
−53.5
−54.4
−55.1
−56.1
−57.2
−57.9
−58.8
−59.9
−60.7
LO port
S11
MAG.
ANG.
0.981
0.976
0.969
0.963
0.956
0.947
0.936
0.933
0.922
0.915
0.909
0.898
0.891
0.886
0.878
0.872
0.866
0.859
0.852
0.846
0.842
0.835
0.831
0.823
0.819
0.808
0.805
0.798
0.794
0.785
0.775
0.762
0.752
0.748
0.746
0.746
0.743
0.738
0.736
0.729
0.730
0.725
0.723
0.718
0.715
0.715
0.710
0.707
0.704
0.697
0.690
0.690
0.683
0.680
0.671
0.672
0.661
0.657
0.654
0.650
−1.8
−3.6
−5.2
−6.6
−8.2
−9.6
−10.9
−12.1
−13.1
−14.4
−15.4
−16.5
−17.4
−18.5
−19.4
−20.2
−21.4
−22.5
−23.2
−24.1
−25.2
−25.9
−26.8
−27.9
−28.7
−29.7
−30.6
−31.5
−32.5
−33.5
−34.7
−35.3
−35.7
−35.8
−36.0
−36.8
−37.5
−38.6
−38.7
−40.1
−40.9
−41.5
−42.2
−43.2
−43.8
−44.9
−45.5
−46.5
−47.5
−48.4
−49.5
−50.5
−51.1
−52.0
−53.0
−53.5
−54.4
−55.5
−56.5
−57.4
39
µPC2757T
VCC = VPS = 3.0, TA = +25°C, IF S22
IF port
FREQUENCY
S22
MHz
MAG.
ANG.
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
40
0.371
0.371
0.371
0.369
0.369
0.365
0.365
0.361
0.360
0.357
0.353
0.352
0.348
0.347
0.342
0.341
0.337
0.333
0.333
0.330
0.326
0.322
0.319
0.317
0.315
0.311
173.7
171.6
169.4
167.2
165.0
163.4
161.3
159.5
157.5
155.7
154.0
152.5
150.7
148.8
147.1
145.7
144.1
142.5
141.3
139.9
138.1
137.1
135.2
134.3
132.7
131.1
µPC2757T
VCC = 3.0 V, VPS = GND, TA = +25°C, IF S22
IF port
FERQUENCY
S22
MHz
MAG.
ANG.
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
Application Note P11997EJ2V0AN00
0.992
0.992
0.993
0.993
0.992
0.992
0.992
0.990
0.989
0.990
0.989
0.987
0.986
0.984
0.983
0.982
0.980
0.977
0.977
0.977
0.972
0.971
0.967
0.965
0.965
0.968
−1.9
−1.9
−2.5
−2.6
−3.1
−3.6
−4.0
−4.2
−4.7
−4.9
−5.4
−5.7
−6.0
−6.4
−6.6
−7.1
−7.3
−7.7
−8.0
−8.3
−8.5
−8.6
−9.1
−9.3
−9.6
−9.8
µPC2758T
VCC = VPS = 3.0, TA = +25°C
RF port
FREQUENCY
S11
MHz
MAG.
ANG.
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
0.955
0.948
0.948
0.942
0.936
0.932
0.925
0.919
0.914
0.906
0.897
0.888
0.881
0.874
0.869
0.859
0.848
0.840
0.828
0.824
0.810
0.809
0.793
0.782
0.768
0.760
0.749
0.741
0.725
0.718
0.711
0.700
0.689
0.679
0.671
0.663
0.651
0.642
0.628
0.623
0.609
0.599
0.587
0.580
0.569
0.558
0.548
0.539
0.525
0.522
0.512
0.503
0.495
0.484
0.476
0.472
0.467
0.459
0.452
0.442
−2.5
−4.9
−7.3
−9.4
−11.8
−13.8
−16.5
−18.2
−20.3
−22.6
−24.8
−26.8
−28.9
−30.9
−33.0
−35.1
−36.8
−38.8
−40.5
−43.0
−44.7
−46.9
−49.0
−50.5
−52.4
−54.7
−56.3
−58.2
−59.7
−61.5
−63.1
−65.0
−66.9
−68.7
−70.4
−71.9
−73.9
−76.0
−77.2
−79.3
−80.7
−82.8
−84.2
−86.1
−87.6
−89.0
−90.8
−92.4
−94.1
−95.2
−96.6
−98.2
−100.0
−101.1
−102.8
−104.1
−105.6
−107.3
−109.0
−110.2
LO port
S11
MAG.
ANG.
0.957
0.953
0.942
0.932
0.917
0.901
0.885
0.870
0.853
0.833
0.816
0.794
0.776
0.759
0.737
0.723
0.703
0.691
0.675
0.661
0.648
0.640
0.626
0.615
0.602
0.593
0.583
0.578
0.570
0.562
0.549
0.536
0.522
0.512
0.504
0.496
0.492
0.484
0.477
0.471
0.468
0.460
0.452
0.446
0.440
0.434
0.427
0.420
0.416
0.407
0.402
0.395
0.387
0.381
0.374
0.369
0.359
0.354
0.350
0.344
−3.3
−6.5
−9.5
−12.2
−15.1
−18.0
−20.7
−23.0
−25.3
−27.6
−29.9
−31.8
−33.9
−35.6
−37.4
−38.8
−40.3
−41.6
−43.0
−44.5
−45.6
−46.5
−47.8
−48.8
−49.9
−51.2
−52.5
−53.7
−54.7
−56.2
−57.8
−59.2
−60.6
−60.6
−61.3
−62.2
−63.0
−64.5
−65.1
−66.5
−67.5
−68.9
−69.7
−71.0
−71.8
−73.6
−74.2
−75.5
−76.5
−78.1
−79.5
−80.6
−81.9
−82.6
−83.8
−84.7
−85.9
−87.6
−88.6
−89.6
µPC2758T
VCC = 3.0 V, VPS = GND, TA = +25°C
RF port
FREQUENCY
S11
MHz
MAG.
ANG.
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
Application Note P11997EJ2V0AN00
0.984
0.976
0.975
0.970
0.962
0.959
0.946
0.938
0.930
0.926
0.918
0.907
0.901
0.894
0.889
0.880
0.873
0.864
0.856
0.850
0.841
0.848
0.833
0.828
0.816
0.812
0.806
0.796
0.788
0.785
0.783
0.774
0.771
0.765
0.762
0.756
0.752
0.747
0.738
0.737
0.728
0.726
0.720
0.714
0.709
0.704
0.699
0.696
0.687
0.685
0.678
0.673
0.667
0.661
0.653
0.651
0.647
0.642
0.635
0.629
−1.8
−3.3
−4.9
−6.3
−8.1
−9.5
−11.1
−12.2
−13.4
−14.9
−16.1
−17.2
−18.4
−19.5
−20.4
−21.6
−22.5
−23.5
−24.4
−25.5
−26.4
−27.1
−28.4
−29.0
−30.1
−31.2
−31.8
−32.7
−33.1
−34.0
−34.9
−35.6
−36.8
−37.8
−38.5
−39.1
−40.2
−41.1
−41.6
−43.1
−43.7
−44.5
−45.3
−46.4
−47.0
−47.9
−48.9
−49.6
−50.8
−51.5
−52.3
−53.3
−54.2
−54.8
−55.7
−56.6
−57.4
−58.2
−59.4
−60.2
LO port
S11
MAG.
ANG.
0.981
0.978
0.975
0.969
0.961
0.953
0.941
0.937
0.929
0.920
0.911
0.899
0.891
0.885
0.874
0.865
0.856
0.848
0.838
0.832
0.825
0.824
0.811
0.803
0.798
0.787
0.782
0.778
0.767
0.756
0.749
0.735
0.724
0.715
0.714
0.712
0.709
0.703
0.699
0.692
0.696
0.693
0.690
0.686
0.681
0.680
0.677
0.673
0.669
0.663
0.658
0.654
0.651
0.646
0.637
0.636
0.626
0.623
0.620
0.616
−1.9
−3.6
−5.3
−6.9
−8.6
−10.2
−11.8
−13.0
−14.3
−15.7
−16.9
−18.2
−19.3
−20.3
−21.6
−22.7
−23.6
−24.8
−25.6
−26.7
−27.6
−28.3
−29.5
−30.4
−31.1
−32.3
−33.2
−34.1
−34.9
−36.2
−37.3
−38.0
−38.4
−38.7
−38.3
−39.0
−39.8
−40.4
−40.9
−41.9
−42.4
−43.5
−44.1
−45.1
−45.9
−46.8
−47.3
−48.6
−49.3
−50.1
−51.3
−52.0
−53.0
−53.4
−54.5
−54.8
−55.8
−57.0
−57.7
−58.5
41
µPC2758T
VCC = VPS = 3.0, TA = +25°C
FREQUENCY
MHz
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
42
IF port
S22
MAG.
ANG.
0.465
0.463
0.462
0.456
0.454
0.450
0.445
0.440
0.437
0.430
0.422
0.418
0.411
0.406
0.399
0.394
0.387
0.382
0.377
0.371
0.364
0.360
0.353
0.347
0.344
0.338
170.7
167.8
165.2
162.4
160.0
157.6
155.1
153.1
150.8
148.3
146.4
144.2
142.1
139.9
138.1
135.9
134.0
132.0
130.4
128.9
127.0
125.5
123.6
122.0
120.6
119.1
µPC2758T
VCC = 3.0 V, VPS = GND, TA = +25°C
IF port
FERQUENCY
S22
MHz
MAG.
ANG.
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
Application Note P11997EJ2V0AN00
0.993
0.995
0.991
0.990
0.994
0.992
0.990
0.991
0.986
0.990
0.990
0.987
0.985
0.984
0.983
0.980
0.980
0.977
0.977
0.975
0.970
0.972
0.969
0.965
0.963
0.963
−1.7
−1.8
−2.6
−2.6
−3.1
−3.6
−4.1
−4.3
−4.8
−5.1
−5.6
−5.8
−6.2
−6.5
−6.8
−7.3
−7.4
−7.9
−8.2
−8.4
−8.7
−9.2
−9.4
−9.6
−9.9
−10.1
µPC8112T
VCC = VIFout = VPS = 3.0, V, TA = +25°C
RF port
FREQUENCY
S11
MHz
MAG.
ANG.
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
0.951
0.946
0.938
0.939
0.932
0.922
0.917
0.906
0.899
0.886
0.876
0.868
0.852
0.837
0.831
0.815
0.803
0.791
0.775
0.767
0.755
0.748
0.734
0.716
0.702
0.696
0.681
0.666
0.655
0.644
0.635
0.620
0.609
0.600
0.591
0.577
0.565
0.552
0.542
0.525
0.512
0.500
0.490
0.481
0.467
0.460
0.452
0.442
0.435
0.424
0.420
0.411
0.408
0.398
0.389
0.386
0.377
0.377
0.365
0.363
−3.0
−5.6
−8.3
−11.0
−13.6
−16.1
−19.2
−21.6
−24.1
−26.4
−28.7
−31.2
−33.6
−35.8
−38.0
−40.5
−42.4
−44.7
−47.1
−49.1
−51.2
−53.4
−55.4
−57.3
−59.5
−61.5
−63.7
−65.9
−67.4
−69.2
−71.3
−73.3
−75.3
−76.9
−79.2
−80.9
−83.1
−85.0
−87.0
−88.9
−90.8
−92.2
−93.6
−95.1
−96.7
−98.5
−99.7
−101.1
−102.9
−104.9
−105.8
−107.3
−109.0
−111.1
−112.6
−114.1
−116.3
−117.5
−118.8
−120.6
LO port
S11
MAG.
ANG.
0.970
0.964
0.959
0.952
0.944
0.935
0.929
0.921
0.915
0.910
0.905
0.900
0.895
0.890
0.883
0.877
0.873
0.868
0.865
0.855
0.856
0.851
0.837
0.835
0.828
0.820
0.815
0.804
0.803
0.795
0.784
0.775
0.762
0.752
0.748
0.742
0.736
0.732
0.724
0.717
0.716
0.711
0.708
0.704
0.703
0.699
0.693
0.690
0.691
0.686
0.678
0.673
0.673
0.662
0.658
0.655
0.650
0.644
0.638
0.635
−1.9
−3.3
−5.0
−6.3
−7.6
−8.8
−10.2
−11.3
−12.0
−13.3
−14.3
−15.3
−16.3
−17.4
−18.2
−19.3
−20.5
−21.2
−22.5
−22.9
−24.1
−25.1
−26.1
−26.9
−28.0
−28.8
−29.9
−30.9
−32.0
−33.1
−34.2
−34.9
−35.7
−36.1
−36.7
−37.1
−37.9
−38.7
−39.1
−39.9
−40.1
−40.8
−41.4
−42.2
−42.9
−43.7
−44.4
−45.5
−46.0
−46.7
−47.7
−48.4
−49.2
−49.8
−50.8
−51.6
−52.4
−53.5
−54.5
−55.0
µPC8112T
VCC = VIFout = 3.0V, VPS = GND, TA = +25°C
RF port
LO port
FREQUENCY
S11
S11
MHz
MAG.
ANG.
MAG.
ANG.
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
Application Note P11997EJ2V0AN00
0.990
0.986
0.978
0.980
0.972
0.967
0.956
0.950
0.948
0.940
0.934
0.929
0.919
0.910
0.907
0.897
0.889
0.884
0.875
0.867
0.865
0.868
0.850
0.840
0.836
0.829
0.820
0.806
0.799
0.792
0.789
0.782
0.774
0.766
0.760
0.754
0.748
0.740
0.734
0.725
0.719
0.711
0.707
0.696
0.689
0.685
0.678
0.670
0.660
0.651
0.647
0.641
0.638
0.626
0.618
0.612
0.602
0.603
0.591
0.585
−1.5
−3.5
−5.3
−7.1
−8.7
−10.3
−12.3
−13.5
−15.0
−16.4
−17.8
−19.5
−20.6
−22.1
−23.3
−24.8
−25.9
−27.3
−28.5
−30.0
−31.4
−32.5
−33.7
−35.0
−36.0
−37.5
−38.9
−40.1
−41.1
−41.9
−43.2
−44.3
−45.8
−46.7
−47.9
−49.0
−50.2
−51.4
−52.6
−53.8
−55.0
−56.1
−57.1
−58.2
−59.4
−60.7
−61.7
−62.9
−64.3
−65.5
−66.2
−67.5
−68.7
−69.8
−71.1
−72.4
−73.6
−74.6
−75.6
−76.7
0.986
0.981
0.981
0.977
0.971
0.966
0.961
0.955
0.955
0.949
0.943
0.938
0.934
0.927
0.924
0.920
0.917
0.910
0.908
0.898
0.897
0.901
0.884
0.883
0.878
0.871
0.865
0.957
0.859
0.850
0.839
0.829
0.818
0.811
0.809
0.803
0.802
0.800
0.787
0.780
0.779
0.776
0.775
0.772
0.772
0.770
0.768
0.766
0.765
0.760
0.757
0.750
0.753
0.742
0.741
0.736
0.734
0.728
0.726
0.723
−1.5
−2.6
−3.8
−5.1
−6.1
−7.2
−8.6
−9.3
−10.4
−11.3
−12.4
−13.2
−14.2
−15.4
−15.8
−16.9
−17.9
−18.5
−19.5
−20.2
−21.2
−21.9
−22.9
−23.9
−25.0
−25.5
−26.6
−27.2
−28.3
−29.1
−30.4
−30.6
−31.4
−31.8
−32.2
−32.7
−33.5
−34.4
−34.8
−35.3
−35.9
−36.0
−36.8
−37.4
−38.2
−38.8
−39.4
−40.4
−40.9
−41.9
−42.8
−43.1
−43.8
−44.7
−45.5
−46.3
−47.1
−48.1
−48.9
−49.4
43
µPC8112T
VCC = VIFout = VPS = 3.0, V, TA = +25°C
IF port
FREQUENCY
S22
MHz
MAG
ANG
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
44
0.994
0.993
0.994
0.990
0.993
0.993
0.992
0.989
0.988
0.988
0.988
0.984
0.985
0.983
0.982
0.981
0.977
0.978
0.977
0.978
0.974
0.971
0.977
0.968
0.969
0.965
−2.3
−2.7
−3.1
−3.4
−4.1
−4.6
−4.9
−5.4
−5.7
−6.1
−6.6
−7.1
−7.4
−7.8
−8.2
−8.5
−9.1
−9.3
−9.8
−10.2
−10.6
−10.9
−11.4
−11.7
−12.0
−12.4
µPC8112T
VCC = VIFout = 3.0V, VPS = GND, TA = +25°C
IF port
FERQUENCY
S22
MHz
MAG
ANG
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
Application Note P11997EJ2V0AN00
0.997
0.997
0.998
0.991
0.999
0.996
0.994
0.993
0.993
0.988
0.989
0.987
0.987
0.986
0.985
0.982
0.979
0.981
0.979
0.978
0.974
0.974
0.971
0.967
0.972
0.967
−2.3
−2.5
−3.0
−3.3
−3.9
−4.5
−4.8
−5.1
−5.4
−5.7
−6.2
−6.7
−7.1
−7.3
−7.9
−8.2
−8.6
−8.9
−9.3
−9.8
−10.1
−10.4
−10.9
−11.1
−11.4
−11.6
µPC2757TB
VCC = VPS = 3.0 V
FREQUENCY
MHz
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
RF port
S11
MAG.
ANG.
0.965
0.963
0.963
0.962
0.956
0.953
0.950
0.941
0.938
0.932
0.924
0.916
0.909
0.899
0.897
0.885
0.876
0.869
0.863
0.858
0.841
0.841
0.822
0.813
0.798
0.786
0.774
0.766
0.757
0.749
0.742
0.729
0.718
0.711
0.699
0.686
0.678
0.666
0.654
0.646
0.635
0.625
0.614
0.609
0.594
0.582
0.582
0.571
0.559
0.546
0.537
0.528
0.516
0.519
0.507
0.506
0.493
0.483
0.478
0.471
−2.3
−4.0
−6.1
−8.0
−9.9
−12.1
−14.1
−15.9
−17.8
−19.8
−21.5
−23.6
−25.3
−27.2
−28.9
−30.9
−32.7
−34.5
−36.6
−37.8
−39.2
−41.5
−42.8
−44.7
−46.7
−48.3
−49.6
−51.6
−53.0
−54.5
−56.4
−57.7
−59.4
−60.7
−62.7
−64.3
−65.9
−67.5
−69.0
−70.4
−72.1
−73.5
−74.8
−76.4
−77.7
−79.4
−81.7
−83.2
−83.5
−85.4
−86.3
−87.9
−89.2
−91.4
−93.3
−94.6
−95.9
−97.5
−98.8
−100.8
LO port
S11
MAG.
ANG.
0.971
0.965
0.960
0.952
0.941
0.929
0.917
0.904
0.892
0.878
0.868
0.854
0.841
0.829
0.818
0.811
0.802
0.790
0.782
0.776
0.761
0.763
0.748
0.740
0.731
0.724
0.718
0.713
0.704
0.696
0.684
0.678
0.672
0.665
0.658
0.651
0.640
0.635
0.627
0.616
0.610
0.599
0.596
0.588
0.579
0.573
0.562
0.554
0.551
0.545
0.535
0.523
0.522
0.511
0.505
0.494
0.485
0.480
0.474
0.464
−2.3
−4.9
−7.1
−9.3
−11.5
−13.4
−15.5
−17.0
−18.9
−20.4
−22.1
−23.5
−24.7
−26.1
−27.7
−28.8
−30.1
−31.2
−32.6
−33.6
−35.0
−35.9
−37.4
−38.3
−39.9
−41.0
−41.7
−43.5
−44.1
−45.5
−46.4
−47.7
−48.8
−50.2
−51.2
−52.2
−53.6
−54.7
−55.8
−56.9
−58.3
−59.1
−60.4
−61.5
−62.7
−63.6
−64.4
−66.1
−66.9
−68.3
−69.3
−70.1
−71.5
−72.0
−73.3
−74.3
−75.0
−76.2
−77.4
−79.0
µPC2757TB
VCC = 3.0 V, VPS = GND
RF port
FREQUENCY
S11
MHz
MAG.
ANG.
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
Application Note P11997EJ2V0AN00
0.982
0.979
0.980
0.974
0.972
0.966
0.959
0.956
0.952
0.946
0.939
0.931
0.925
0.920
0.915
0.906
0.899
0.893
0.889
0.885
0.876
0.881
0.863
0.857
0.848
0.845
0.832
0.826
0.824
0.818
0.815
0.809
0.804
0.799
0.796
0.789
0.782
0.775
0.773
0.765
0.761
0.756
0.749
0.745
0.739
0.735
0.739
0.734
0.725
0.716
0.709
0.704
0.700
0.699
0.695
0.695
0.687
0.680
0.672
0.668
−1.7
−2.7
−4.2
−5.5
−6.8
−8.2
−9.5
−10.6
−11.8
−12.9
−14.0
−15.2
−16.3
−17.3
−18.4
−19.2
−20.6
−21.3
−22.5
−23.0
−24.1
−24.9
−25.7
−26.8
−28.0
−28.7
−29.5
−30.4
−30.8
−31.8
−32.4
−33.4
−34.4
−35.0
−36.1
−36.8
−37.7
−38.3
−39.1
−40.0
−40.8
−41.6
−42.4
−43.3
−44.1
−45.0
−46.3
−47.1
−47.5
−48.5
−49.3
−50.2
−50.8
−51.9
−53.2
−54.0
−54.6
−55.8
−56.7
−57.5
LO port
S11
MAG.
ANG.
0.981
0.978
0.978
0.972
0.966
0.958
0.950
0.949
0.943
0.936
0.933
0.922
0.920
0.913
0.903
0.901
0.899
0.892
0.887
0.881
0.872
0.883
0.865
0.859
0.856
0.850
0.848
0.842
0.835
0.834
0.823
0.819
0.816
0.811
0.804
0.805
0.800
0.798
0.793
0.783
0.785
0.777
0.773
0.763
0.762
0.759
0.755
0.748
0.744
0.740
0.733
0.726
0.725
0.719
0.712
0.704
0.698
0.696
0.686
0.681
−1.5
−3.1
−4.6
−5.9
−7.2
−8.5
−9.9
−11.0
−12.2
−13.2
−14.3
−15.4
−16.3
−17.4
−18.5
−19.4
−20.2
−21.4
−22.4
−23.3
−24.3
−24.8
−26.1
−27.0
−28.3
−29.2
−29.8
−30.9
−31.3
−32.4
−33.3
−34.4
−34.9
−36.3
−36.7
−37.7
−38.6
−39.7
−40.4
−41.3
−42.3
−43.0
−43.9
−45.2
−45.9
−46.8
−47.5
−48.7
−49.5
−50.6
−51.5
−52.3
−53.5
−53.9
−54.8
−55.8
−56.7
−57.8
−58.6
−59.7
45
µPC2757TB
µPC2757TB
VCC = 3.0 V, VPS = GND
VCC = VPS = 3.0
FREQUENCY
MHz
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
46
IF port
S22
MAG.
ANG.
0.477
0.472
0.471
0.470
0.466
0.463
0.462
0.459
0.456
0.452
0.448
0.445
0.442
0.438
0.435
0.431
0.426
0.422
0.417
0.415
0.410
0.406
0.401
0.395
0.391
0.388
174.6
172.8
170.9
169.2
167.5
165.9
164.3
162.2
161.0
159.5
158.0
156.3
155.1
153.7
152.5
150.7
149.5
148.3
146.9
145.9
144.7
143.2
142.2
140.5
139.9
138.7
FERQUENCY
MHz
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
Application Note P11997EJ2V0AN00
IF port
S22
MAG.
ANG.
0.955
0.998
0.997
0.998
0.997
0.996
0.998
0.996
0.997
0.996
0.993
0.993
0.994
0.990
0.990
0.989
0.989
0.983
0.987
0.983
0.983
0.984
0.980
0.982
0.980
0.979
−1.5
−1.9
−2.3
−2.8
−2.9
−3.2
−3.6
−4.1
−4.4
−4.7
−5.0
−5.3
−5.6
−5.8
−6.1
−6.3
−6.7
−7.1
−7.3
−7.5
−7.8
−7.9
−8.5
−8.7
−8.9
−9.3
µPC2758TB
VCC = VPS = 3.0
FREQUENCY
MHz
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
RF port
S11
MAG.
ANG.
0.959
0.958
0.957
0.953
0.950
0.943
0.939
0.930
0.926
0.919
0.910
0.901
0.894
0.884
0.877
0.868
0.858
0.848
0.840
0.831
0.818
0.814
0.794
0.782
0.774
0.761
0.748
0.737
0.722
0.711
0.700
0.688
0.674
0.663
0.652
0.638
0.626
0.614
0.602
0.592
0.578
0.568
0.554
0.544
0.532
0.523
0.514
0.504
0.492
0.485
0.479
0.469
0.460
0.453
0.445
0.437
0.429
0.422
0.415
0.406
−2.0
−4.2
−6.4
−8.5
−10.6
−12.6
−14.7
−16.8
−18.7
−20.6
−22.6
−24.7
−26.5
−28.5
−30.4
−32.4
−34.3
−36.2
−38.2
−40.1
−42.0
−43.8
−45.9
−47.8
−49.4
−51.3
−53.4
−55.1
−56.7
−58.3
−60.1
−62.0
−63.8
−65.5
−67.3
−68.8
−70.4
−72.3
−73.7
−75.4
−77.1
−78.6
−80.0
−81.7
−82.9
−84.3
−85.8
−87.2
−88.7
−90.2
−91.5
−93.1
−94.9
−96.5
−98.1
−99.6
−101.9
−103.1
−104.9
−106.3
LO port
S11
MAG.
ANG.
0.959
0.955
0.948
0.943
0.930
0.913
0.899
0.880
0.862
0.841
0.823
0.803
0.786
0.765
0.751
0.733
0.722
0.707
0.689
0.680
0.672
0.667
0.651
0.637
0.625
0.617
0.605
0.599
0.588
0.578
0.572
0.560
0.551
0.541
0.533
0.522
0.517
0.505
0.497
0.486
0.475
0.467
0.460
0.456
0.443
0.436
0.427
0.420
0.414
0.406
0.398
0.395
0.382
0.380
0.371
0.362
0.356
0.347
0.341
0.336
−2.9
−6.4
−8.8
−11.3
−14.2
−16.8
−19.4
−21.8
−24.0
−26.1
−28.0
−29.8
−31.4
−32.8
−34.4
−35.3
−36.9
−38.1
−39.3
−40.4
−41.6
−42.9
−44.2
−45.0
−46.4
−47.8
−48.7
−50.0
−51.1
−52.4
−53.5
−54.7
−56.0
−57.0
−58.3
−59.4
−60.8
−61.6
−62.7
−64.1
−64.6
−66.2
−67.1
−67.9
−68.9
−70.0
−71.0
−71.9
−73.0
−73.6
−74.6
−76.2
−76.8
−78.0
−79.7
−80.5
−81.8
−83.4
−84.2
−85.0
µPC2758TB
VCC = 3.0 V, VPS = GND
RF port
FREQUENCY
S11
MHz
MAG.
ANG.
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
Application Note P11997EJ2V0AN00
0.981
0.980
0.976
0.973
0.969
0.963
0.954
0.952
0.946
0.939
0.932
0.923
0.917
0.911
0.902
0.897
0.887
0.881
0.875
0.870
0.863
0.863
0.849
0.843
0.837
0.828
0.824
0.813
0.806
0.802
0.797
0.791
0.785
0.782
0.773
0.771
0.763
0.758
0.753
0.748
0.742
0.738
0.730
0.725
0.720
0.716
0.709
0.705
0.697
0.692
0.688
0.682
0.677
0.670
0.664
0.659
0.654
0.648
0.642
0.637
−1.5
−3.1
−4.6
−5.9
−7.3
−8.6
−10.0
−11.1
−12.2
−13.4
−14.6
−15.8
−16.7
−17.9
−18.8
−19.9
−21.0
−21.8
−22.7
−23.7
−24.8
−25.4
−26.7
−27.5
−28.3
−29.0
−30.1
−31.0
−31.4
−32.4
−33.2
−33.9
−35.0
−35.7
−36.7
−37.5
−38.3
−39.2
−39.8
−41.0
−41.9
−42.7
−43.7
−44.5
−45.3
−46.0
−47.0
−47.8
−48.7
−49.5
−50.3
−51.2
−52.2
−53.0
−53.8
−54.7
−55.5
−56.5
−57.4
−58.2
LO port
S11
MAG.
ANG.
0.983
0.979
0.974
0.973
0.970
0.957
0.953
0.948
0.944
0.937
0.931
0.923
0.917
0.908
0.903
0.895
0.891
0.882
0.872
0.865
0.861
0.868
0.851
0.840
0.834
0.829
0.824
0.818
0.808
0.804
0.800
0.790
0.788
0.782
0.774
0.769
0.769
0.763
0.759
0.753
0.749
0.742
0.737
0.738
0.731
0.724
0.719
0.713
0.710
0.703
0.693
0.695
0.684
0.680
0.671
0.664
0.662
0.654
0.653
0.645
−1.7
−3.0
−4.7
−6.1
−7.5
−8.9
−10.4
−11.3
−12.8
−14.0
−15.2
−16.3
−17.4
−18.7
−19.6
−20.5
−21.7
−22.9
−23.6
−24.4
−25.4
−26.4
−27.4
−28.0
−29.1
−30.1
−30.8
−31.9
−32.3
−33.4
−34.1
−34.9
−35.7
−36.6
−37.5
−38.3
−39.2
−39.7
−40.7
−41.9
−42.6
−43.5
−44.5
−45.4
−46.4
−47.2
−48.0
−48.7
−49.9
−50.2
−51.3
−52.6
−53.1
−54.1
−55.7
−55.9
−56.8
−57.7
−58.6
−59.6
47
µPC2758TB
µPC2758TB
VCC = 3.0 V, VPS = GND
VCC = VPS = 3.0
FREQUENCY
MHz
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
48
IF port
S22
MAG.
ANG.
0.575
0.572
0.568
0.565
0.560
0.554
0.547
0.542
0.536
0.530
0.523
0.517
0.510
0.502
0.495
0.487
0.480
0.473
0.465
0.457
0.450
0.443
0.435
0.428
0.422
0.413
172.8
170.2
168.0
165.8
163.9
161.8
159.8
157.9
156.0
154.3
152.6
150.8
149.1
147.6
146.0
144.5
143.1
141.5
140.1
138.7
137.4
136.2
134.9
133.7
132.5
131.3
FERQUENCY
MHz
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
Application Note P11997EJ2V0AN00
IF port
S22
MAG.
ANG.
0.996
0.999
0.997
0.996
0.997
0.995
0.995
0.994
0.993
0.993
0.992
0.991
0.989
0.988
0.989
0.990
0.987
0.985
0.985
0.985
0.983
0.981
0.979
0.980
0.976
0.976
−1.7
−2.1
−2.3
−2.6
−3.0
−3.5
−3.6
−4.0
−4.3
−4.7
−5.0
−5.3
−5.6
−5.9
−6.2
−6.5
−6.7
−7.2
−7.5
−7.7
−8.0
−8.3
−8.5
−9.0
−9.1
−9.4
µPC8112TB
VCC = VPS = 3.0 V
FREQUENCY
MHz
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
RF port
S11
MAG.
ANG.
0.944
0.935
0.936
0.936
0.929
0.919
0.921
0.910
0.903
0.896
0.885
0.874
0.867
0.855
0.844
0.833
0.825
0.809
0.801
0.789
0.774
0.772
0.752
0.736
0.727
0.715
0.706
0.690
0.681
0.669
0.658
0.643
0.630
0.617
0.602
0.584
0.565
0.547
0.526
0.512
0.501
0.490
0.479
0.474
0.466
0.457
0.450
0.443
0.738
0.728
0.424
0.420
0.411
0.410
0.405
0.402
0.399
0.389
0.389
0.382
−2.8
−5.0
−7.4
−9.5
−12.0
−14.3
−16.7
−18.9
−21.1
−23.3
−25.7
−28.1
−30.3
−32.4
−34.7
−36.7
−38.9
−40.9
−43.0
−44.9
−47.0
−48.9
−50.8
−52.9
−54.6
−56.8
−58.6
−60.8
−62.7
−64.7
−66.4
−68.4
−71.1
−73.2
−75.3
−77.3
−78.7
−80.2
−81.6
−82.5
−83.5
−84.8
−85.4
−86.7
−87.7
−88.8
−89.9
−91.1
−92.3
−93.1
−94.6
−96.0
−97.5
−98.9
−99.9
−101.8
−103.3
−105.5
−106.1
−108.6
LO port
S11
MAG.
ANG.
0.965
0.963
0.959
0.955
0.946
0.943
0.933
0.934
0.930
0.926
0.922
0.918
0.912
0.911
0.904
0.901
0.898
0.892
0.883
0.883
0.875
0.881
0.867
0.860
0.855
0.847
0.840
0.841
0.834
0.827
0.820
0.816
0.803
0.798
0.790
0.782
0.771
0.763
0.757
0.749
0.745
0.739
0.733
0.727
0.724
0.720
0.715
0.710
0.703
0.698
0.690
0.682
0.677
0.671
0.666
0.664
0.650
0.651
0.641
0.636
−1.5
−2.7
−4.2
−5.3
−6.6
−7.5
−8.6
−9.5
−10.7
−11.6
−12.4
−13.5
−14.4
−15.4
−16.3
−17.4
−18.5
−19.5
−20.3
−21.0
−21.8
−23.0
−24.1
−24.8
−25.8
−26.8
−27.6
−28.7
−29.5
−30.6
−31.3
−32.7
−33.4
−34.4
−35.2
−36.2
−36.6
−37.4
−38.1
−38.8
−39.0
−40.1
−40.9
−41.8
−42.3
−43.0
−43.8
−44.7
−45.4
−46.0
−47.0
−47.9
−48.5
−49.4
−49.6
−50.6
−51.6
−52.1
−53.0
−53.8
µPC8112TB
VCC = 3.0 V, VPS = GND
RF port
FREQUENCY
S11
MHz
MAG.
ANG.
50.0000
100.0000
150.0000
200.0000
250.0000
300.0000
350.0000
400.0000
450.0000
500.0000
550.0000
600.0000
650.0000
700.0000
750.0000
800.0000
850.0000
900.0000
950.0000
1000.0000
1050.0000
1100.0000
1150.0000
1200.0000
1250.0000
1300.0000
1350.0000
1400.0000
1450.0000
1500.0000
1550.0000
1600.0000
1650.0000
1700.0000
1750.0000
1800.0000
1850.0000
1900.0000
1950.0000
2000.0000
2050.0000
2100.0000
2150.0000
2200.0000
2250.0000
2300.0000
2350.0000
2400.0000
2450.0000
2500.0000
2550.0000
2600.0000
2650.0000
2700.0000
2750.0000
2800.0000
2850.0000
2900.0000
2950.0000
3000.0000
Application Note P11997EJ2V0AN00
0.985
0.985
0.984
0.984
0.979
0.971
0.969
0.969
0.965
0.961
0.954
0.950
0.944
0.941
0.935
0.927
0.923
0.913
0.911
0.907
0.897
0.901
0.884
0.875
0.867
0.863
0.858
0.842
0.838
0.830
0.822
0.814
0.807
0.802
0.791
0.786
0.780
0.775
0.763
0.755
0.751
0.739
0.735
0.725
0.722
0.715
0.707
0.700
0.695
0.682
0.675
0.668
0.661
0.656
0.647
0.639
0.636
0.628
0.620
0.615
−1.5
−2.7
−4.1
−5.5
−6.8
−8.0
−9.4
−10.7
−11.9
−13.1
−14.5
−15.8
−17.0
−18.1
−19.5
−20.6
−21.7
−22.9
−24.4
−25.2
−26.3
−27.3
−28.7
−29.9
−30.8
−32.2
−33.4
−34.5
−35.1
−36.2
−37.1
−38.1
−39.6
−40.1
−41.6
−42.6
−43.4
−44.5
−45.5
−46.4
−47.3
−48.7
−49.2
−50.5
−51.2
−52.4
−53.0
−54.3
−55.2
−56.0
−56.9
−58.1
−59.1
−60.3
−61.0
−61.8
−63.0
−63.8
−64.9
−65.9
LO port
S11
MAG.
ANG.
0.976
0.982
0.979
0.977
0.974
0.972
0.965
0.968
0.965
0.961
0.960
0.957
0.949
0.948
0.943
0.943
0.936
0.938
0.928
0.928
0.923
0.930
0.914
0.906
0.904
0.903
0.896
0.896
0.891
0.885
0.879
0.878
0.865
0.865
0.855
0.854
0.845
0.838
0.834
0.831
0.829
0.827
0.718
0.817
0.812
0.809
0.804
0.803
0.795
0.793
0.785
0.778
0.773
0.771
0.766
0.764
0.752
0.752
0.746
0.741
−1.1
−2.0
−3.1
−3.9
−4.9
−5.8
−6.7
−7.5
−8.5
−9.5
−10.3
−11.1
−12.0
−12.8
−13.6
−14.6
−15.4
−16.2
−16.9
−17.9
−18.6
−19.3
−20.4
−20.9
−21.8
−23.0
−23.5
−24.2
−25.1
−25.9
−26.7
−27.7
−28.2
−29.0
−29.8
−30.6
−31.2
−31.8
−32.6
−33.2
−33.6
−34.4
−35.4
−36.2
−36.6
−37.2
−38.1
−39.0
−39.5
−40.7
−41.4
−42.3
−42.5
−43.5
−44.0
−44.8
−45.6
−46.3
−47.3
−47.9
49
µPC8112TB
VCC = VPS = 3.0, V
FREQUENCY
MHz
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
50
µPC8112TB
VCC = 3.0 V, VPS = GND
IF port
S22
MAG.
ANG.
0.995
0.993
0.995
0.992
0.993
0.994
0.990
0.989
0.990
0.991
0.990
0.991
0.988
0.988
0.984
0.988
0.984
0.984
0.981
0.983
0.982
0.981
0.979
0.978
0.977
0.978
−1.5
−1.9
−2.4
−2.7
−2.9
−3.3
−3.6
−4.0
−4.4
−4.7
−4.9
−5.3
−5.6
−6.0
−6.4
−6.5
−7.2
−7.2
−7.4
−7.8
−8.1
−8.8
−8.6
−9.1
−9.2
−9.6
FERQUENCY
MHz
50.0000
60.0000
70.0000
80.0000
90.0000
100.0000
110.0000
120.0000
130.0000
140.0000
150.0000
160.0000
170.0000
180.0000
190.0000
200.0000
210.0000
220.0000
230.0000
240.0000
250.0000
260.0000
270.0000
280.0000
290.0000
300.0000
Application Note P11997EJ2V0AN00
IF port
S22
MAG.
ANG.
0.999
0.998
1.000
0.995
1.000
0.998
0.995
0.995
0.996
0.993
0.993
0.992
0.991
0.991
0.987
0.991
0.985
0.987
0.984
0.983
0.984
0.983
0.982
0.982
0.980
0.977
−1.5
−1.9
−2.3
−2.6
−2.8
−3.2
−3.5
−4.0
−4.3
−4.6
−4.7
−5.0
−5.4
−5.8
−5.9
−6.3
−6.8
−6.8
−7.0
−7.5
−7.7
−8.2
−8.3
−8.6
−8.7
−8.9
Facsimile Message
From:
Name
Company
Tel.
Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.
FAX
Address
Thank you for your kind support.
North America
Hong Kong, Philippines, Oceania
NEC Electronics Inc.
NEC Electronics Hong Kong Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044
Fax: 1-800-729-9288
1-408-588-6130
Korea
Europe
NEC Electronics Hong Kong Ltd.
NEC Electronics (Europe) GmbH
Seoul Branch
Technical Documentation Dept.
Fax: 02-528-4411
Fax: +49-211-6503-274
South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829
Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583
Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900
Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951
I would like to report the following error/make the following suggestion:
Document title:
Document number:
Page number:
If possible, please fax the referenced page or drawing.
Document Rating
Excellent
Good
Acceptable
Poor
Clarity
Technical Accuracy
Organization
CS 99.1