Application Note USAGE AND APPLICATION CHARACTERISTICS OF µPC2757, µPC2758, AND µPC8112, 3-V POWER SUPPLY, 1.9-GHz FREQUENCY DOWN-CONVERTER ICS FOR MOBILE COMMUNICATION Document No. P11997EJ2V0AN00 (2nd edition) Date Published August 1999 N CP(K) © Printed in Japan 1997, 1999 [MEMO] 2 Application Note P11997EJ2V0AN00 NESAT is the abbreviation for NEC Silicon Advanced Technology and a trademark of NEC Corporation. The information in this document will be updated without notice. This document introduces general applications of the products in this series. The application circuits and circuit constants in this document are examples and not intended for use in actual mass production design. In addition, please take note that restrictions of the application circuit or standardization of the application circuit characteristics are not intended. Especially, characteristics of high-frequency ICs change depending on the external components and mounting pattern. Therefore, the external circuit constants should be determined based on the required characteristics on your planned system referring to this document and characteristics should be checked before using these ICs. • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8 The mark shows major revised points. Application Note P11997EJ2V0AN00 3 [MEMO] 4 Application Note P11997EJ2V0AN00 CONTENTS 1. INTRODUCTION ............................................................................................................................................ 7 2. OVERVIEW OF PRODUCTS........................................................................................................................ 8 2.1 Lineup by External Size ......................................................................................................................... 8 2.2 Lineup by Characteristics and IF Output Format ................................................................................... 8 3. MEASUREMENT AND CALCULATION OF MAIN CHARACTERISTICS ................................................ 11 4. APPLICATION CIRCUITS AND CHARACTERISTICS ............................................................................... 13 4.1 Input Pin Connections with Front Stage ................................................................................................. 13 4.2 Output Pin Connection with Secondary Stage ....................................................................................... 19 4.3 Description of Application Circuit Characteristics................................................................................... 20 5. SYSTEM APPLICATION EXAMPLES ......................................................................................................... 37 6. SUMMARY ..................................................................................................................................................... 38 7. CONCLUSION................................................................................................................................................ 38 APPENDIX. REFERENCE PARAMETERS ........................................................................................................... 39 Precautions for Design-ins (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together in a wide ground pattern to decrease impedance difference. (3) Keep the track length of the ground pins as short as possible. (4) The bypass capacitor should be attached to the VCC pin. (5) The DC cut capacitor must be each attached to the input and output pins. (6) Refer to the data sheet of each product for the relevant cautions and electrical characteristics. µPC2757T, µPC2758T Data Sheet (P10716E) µPC8112T Data Sheet (P10764E) µPC2757TB, µPC2758TB Data Sheet (P12771E) µPC8112TB Data Sheet (P12808E) Some of data sheets may be preliminary versions. However preliminary versions are not marked as such. Application Note P11997EJ2V0AN00 5 [MEMO] 6 Application Note P11997EJ2V0AN00 1. INTRODUCTION Japan’s Personal Digital Cellular (PDC) service was started in 1995. Shortly after that, the service of Personal Handy Phone Systems (PHS) was also introduced to the market. As of December, 1998, 38,998,000 cellular subscribers and 5,981,000 PHS subscribers had signed up, accounting for 44,979,000 handsets in total and for 35.5 percent of the population. In keeping with the trends of widespread use, the demand for handset downsizing has increased. To meet such downsizing demands, in addition to the frequency down-converter ICs µPC2757T, µPC2758T, and µPC8112T currently marketed as conventional products, NEC has developed and commercialized further miniaturized 6-pin mini mold types µPC2757TB, µPC2758TB, and µPC8112TB. This application note describes the usage method and selected application examples of these ICs. Application Note P11997EJ2V0AN00 7 2. OVERVIEW OF PRODUCTS 2.1 Lineup by External Size The µPC2757, µPC2758, and µPC8112 are high-frequency silicon monolithic ICs, which are developed as 1st frequency down-converter IC receivers for cellular and cordless telephones. In addition to the existing 6-pin mini mold package (size 2915), a 6-pin super mini mold (size 2012) is also available. Suffixes T and TB, which are appended in the part number represent packages and denote mini mold and super mini mold, respectively. In this lineup, one part number includes only one type of circuitry with the package size distinction made by the suffix T (conventional) or TB (shrink), which is the same rule employed for the up-converter series (but is not the case for the amplifier series). Since the chip layout and size are changed when the TB type is employed, impedance values between T and TB types differ slightly. Other electrical characteristics, however, are identical between the two types. 2.2 Lineup by Characteristics and IF Output Format The lineup offers the option of choosing a product and its external circuitry according to the desired characteristics. The features of products taking the µPC2757 as the basis of comparison are shown below. µPC2758: µPC2757 with higher gain and higher output intercept points µPC8112: µPC2757 with higher input intercept points, and an improved input conversion IM3 level * Circuit current comparisons (from least to greatest current): µPC2757 < µPC8112 < µPC2758 Figure 2-1 shows internal block diagrams of these products. The µPC2757 has the same block configuration as the µPC2758, which includes an input mixer, LO amplifier, and IF output amplifier. The input mixer blocks in the µPC2758 have almost the same characteristics as the µPC2757. In the µPC2758, increasing the IF output amplifier’s current raises the output intercept point while obtaining high gain. Concerning the intermodulation distortion characteristic, although the graphed plot for the input level and thirdorder intermodulation distortion (IM3) level is weighted slightly toward the second-order level (2.7) when compared to the ordinary third-order plot, the IM3 level is higher compared to the third-order plot, which is calculated from the crosspoint IP3 using a logical expression. The µPC8112 excludes an emitter-follower-type IF output amplifier; instead the mixer is designed as an open collector output. The mixer without the IF output amplifier has a larger circuit current. The circuit can be optimized in output return loss and input intercept points by externally matching the output impedance with the next connected device, which improves the IM3 level for the relatively high input intercept point and input conversion. The IM3 level is also improved by the intermodulation distortion characteristic of the output circuit, in which the input level and IM3 level’s graphed plot is closer to a third-order plot than the µPC2757 and µPC2758. A double balanced mixer (DBM) and a high-isolation LO amplifier are used to prevent leakage, which effectively minimizes LO leakage to RF/IF ports and RF leakage to LO ports. 8 Application Note P11997EJ2V0AN00 Table 2-1 shows the lineup of NEC frequency down-converter ICs and Figure 2-2 shows the package drawings. The lineup is developed and commercialized using NEC’s own silicon bipolar process “NESAT III”. For details of this process, refer to Pamphlet NESAT Process (Doc. No. P12647E). Figure 2-1. Internal Block Diagrams µPC2757, 2758 µPC8112 RF input IF output RF input IF output LO input LO input Table 2-1. Lineup of Frequency Down-converter IC Item Product µPC2757T No RF ICC (mA) 900 MHz SSB NF (dB) 1.5 GHz SSB NF (dB) 1.9 GHz SSB NF (dB) 900 MHz CG (dB) 1.5 GHz CG (dB) 1.9 GHz CG (dB) 900 MHz IIP3 (dBm) 1.5 GHz IIP3 (dBm) 1.9 GHz IIP3 (dBm) 5.6 10 10 13 15 15 13 −14 −14 −12 11 9 10 13 19 18 17 −13 −12 −11 8.5 9 11 11 15 13 13 −10 −9 −7 900 MHz PO (sat) (dBm) 1.5 GHz PO (sat) (dBm) 1.9 GHz PO (sat) (dBm) 900 MHz RFIo (dB) 1.5 GHz RFIo (dB) 1.9 GHz RFIo (dB) −3 − −8 − − − µPC2757TB µPC2758T µPC2758TB µPC8112T µPC8112TB Item Product µPC2757T IF Output Format Emitter follower µPC2757TB µPC2758T 6-pin mini mold 6-pin super mini mold 1 − −4 − − − 6-pin mini mold µPC2758TB µPC8112T Package 6-pin super mini mold −2.5 −3 −3 −80 −57 −55 µPC8112TB Open collector 6-pin mini mold 6-pin super mini mold TA = +25°C, VCC = 3.0 V Remark The typical value is used for each major characteristic. Application Note P11997EJ2V0AN00 9 Figure 2-2. (a) 6-Pin Mini-Mold Package Drawing (Unit: mm) +0.1 –0.0 0.3 +0.2 –0.3 +0.2 –0.1 2.8 1.5 1 0.13±0.1 2 3 0 to 0.1 6 5 4 0.95 0.95 0.8 +0.2 1.1 –0.1 1.9 2.9±0.2 (b) 6-Pin Super Mini-Mold Package Drawing (Unit: mm) +0.1 0.15 –0 2.1±0.1 1.25±0.1 0.1 to 0.2 +0.1 –0 0 to 0.1 0.65 0.65 1.3 2.0±0.2 10 0.7 0.9±0.1 Application Note P11997EJ2V0AN00 3. MEASUREMENT AND CALCULATION OF MAIN CHARACTERISTICS In this product series, the electrical characteristics are specified by the test circuit shown in the data sheets which RF input port and LO input port coupled to the signal generator with capacitor only. The purpose of these ratings is to set a common point of reference since the impedance at the input port is high in relation to 50 Ω and input conversion characteristics vary according to the external circuitry. The main items to be measured are the input/output levels, conversion gain (CG), and third-order intermodulation distortion (IM3). As a rating for various items, CG is a ratio of the RF input power (PRFin) and the IF output’s fundamental wave power (PIFin), and IM3 refers to the frequency relationship between the IF output’s fundamental waves (fIFout1, fIFout2) and distorted wave (fIM3) when there are two frequencies input to the RF input (for a detailed theoretical description, see the literature on high-frequency electronic circuits). CG (dB) = PIFout − PRFin fIM31 (Hz) = 2 × fIFout1 − fIFout2 fIM32 (Hz) = 2 × fIFout2 − fIFout1 These signal levels are obtained by measurements under certain frequency conditions. On the other hand, the third-order distortion intercept point (IP3) is an extrapolated value from these measured characteristics. Therefore, IP3 is a virtual point that is used to calculate a value when we could not measure item under noise level of a measuring instrument. Thus, there is an input level value (IIP3) and an output level value (OIP3). OIP3 is intrinsically rated according to the IC’s current efficiency due to D/U ratio of signals level appeared in output, while IIP3 is established according to the relation between OIP3 and CG. The relationships among these characteristics are graphed Figure 3-1. You should note that IIP3 and OIP3 are extrapolated values and are not actually measured values. In particular, the gradient (∆IM3) for input to IM3 has almost 3, but accurate value may deviate from 3.0. This is because, mathematically, ∆IM3 is a third-order gradient, which deviate from the theoretical condition based on the internal chip, the mounted parasitic path, etc. Accordingly, you should calculate using actually measured values to describe accurate distortion behavior. OIP3 = IIP3 = ∆IM3 × PIFout − IM3 ∆IM3 − 1 (dBm) ∆IM3 × PRFin + CG − IM3 ∆IM3 − 1 (dBm) (Where OIP3 = IIP3 + CG) Application Note P11997EJ2V0AN00 11 Figure 3-1. Conceptual Diagram of Input/Output Characteristics, Conversion Gain (CG), and 3rd Order Intermodulation Distortion (IM3) 3rd order distortion intercept point 1-dB gain compression point OIP3 Fundamental wave signal IF output level (dB) −1 dB 1 = G C 1 ∆ 1 3rd order distortion IM3 Approx. 10.5 dB ∆IM3 About 3 1 IIP3 RF input level (dB) 12 Application Note P11997EJ2V0AN00 4. APPLICATION CIRCUITS AND CHARACTERISTICS In this series, according to the measuring circuit in the data sheet, the electrical characteristics specified only by coupling the signal generator and capacitor are standardized for the RF input port and LO input port. For actual use, however, the external circuits connected to the input pins differ according to the application and required characteristics. 4.1 Input Pin Connections with Front Stage (1) Internal circuitry of input pins In each product, each input pin is a base input of an NPN transistor, with high impedance in relation to 50 Ω for frequencies up to 1.9 GHz. Figure 4-1 shows Smith charts for the RF port and LO port in each product. Figure 4-1. Smith Charts of RF Port and LO Port (Input Ports) S Parameter µPC2757T 1 1 2 2 5 5 3 4 RF port VCC = VPS = 3.0 V 1: 500 MHz 64.273 Ω –j250.85 Ω 2: 900 MHz 40.93 Ω –j141.55 Ω START 0.050000000 GHz 3: 1500 MHz 31.09 Ω –j82.902 Ω STOP 3.000000000 GHz 4: 1900 MHz 27.545 Ω –j62.115 Ω 5: 2500 MHz 26.459 Ω –j41.922 Ω RF port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz 4 3 VPS = GND 109.98 Ω –j363.47 Ω 79.687 Ω –j214.84 Ω START 0.050000000 GHz 60.195 Ω –j141.38 Ω STOP 3.000000000 GHz 50.621 Ω –j114.52 Ω 42.488 Ω –j87.531 Ω 1 1 2 2 5 4 4 3 3 LO port VCC = VPS = 3.0 V 1: 500 MHz 99.852 Ω –j220.24 Ω 2: 900 MHz 73.133 Ω –j139.53 Ω START 0.050000000 GHz 3: 1500 MHz 52.672 Ω –j91.57 Ω STOP 3.000000000 GHz 4: 1900 MHz 48.867 Ω –j74.281 Ω 5: 2500 MHz 40.842 Ω –j55.199 Ω 5 LO port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz VPS = GND 128.02 Ω –j354.03 Ω 88.133 Ω –j222.33 Ω START 0.050000000 GHz 62.516 Ω –j140.97 Ω STOP 3.000000000 GHz 58.312 Ω –j117.96 Ω 45.59 Ω –j93.238 Ω Application Note P11997EJ2V0AN00 13 S Parameter µPC2758T 1 1 2 5 2 4 5 3 RF port VCC = VPS = 3.0 V 1: 500 MHz 59.633 Ω –j235.09 Ω 2: 900 MHz 37.609 Ω –j131.38 Ω START 0.050000000 GHz 3: 1500 MHz 29.121 Ω –j76.48 Ω STOP 3.000000000 GHz 4: 1900 MHz 26.992 Ω –j56.742 Ω 5: 2500 MHz 26.697 Ω –j37.975 Ω RF port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz 4 3 VPS = GND 105.94 Ω –j355.98 Ω 79.336 Ω –j214.39 Ω START 0.050000000 GHz 61.398 Ω –j139.99 Ω STOP 3.000000000 GHz 51.539 Ω –j113.45 Ω 42.875 Ω –j87.09 Ω 1 1 5 2 4 3 2 5 LO port VCC = VPS = 3.0 V 1: 500 MHz 69.883 Ω –j177.5 Ω 2: 900 MHz 59.047 Ω –j102.83 Ω START 0.050000000 GHz 3: 1500 MHz 49.656 Ω –j67.445 Ω STOP 3.000000000 GHz 4: 1900 MHz 46.871 Ω –53.65 Ω 5: 2500 MHz 42.143 Ω –j40.105 Ω 4 3 LO port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz VPS = GND START 0.050000000 GHz 102.48 Ω –j330.11 Ω STOP 3.000000000 GHz 79.703 Ω –j199.25 Ω 60.961 Ω –j128.63 Ω 59.211 Ω –j107.32 Ω 48.105 Ω –j86.215 Ω S Parameter µPC8112T 1 1 2 5 4 2 3 RF port VCC = VPS = 3.0 V 1: 500 MHz 53.961 Ω –j199.84 Ω 2: 900 MHz 37.164 Ω –j110.75 Ω START 0.050000000 GHz 3: 1500 MHz 30.703 Ω –j62.504 Ω STOP 3.000000000 GHz 4: 1900 MHz 28.742 Ω –j45.379 Ω 5: 2500 MHz 29.257 Ω –j29.199 Ω 14 RF port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz 5 4 3 VPS = GND 70.25 Ω –j334.05 Ω 53.289 Ω –j192.67 Ω START 0.050000000 GHz 41.633 Ω –j117.89 Ω STOP 3.000000000 GHz 36.133 Ω –j92.941 Ω 32.621 Ω –j66.703 Ω Application Note P11997EJ2V0AN00 1 1 2 2 54 3 54 LO port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz LO port VCC = VPS = 3.0 V 1: 500 MHz 147.34 Ω –j369.31 Ω 2: 900 MHz 90.164 Ω –j232.59 Ω START 0.050000000 GHz 3: 1500 MHz 61.602 Ω –j144.84 Ω STOP 3.000000000 GHz 4: 1900 MHz 59.125 Ω –j116.24 Ω 5: 2500 MHz 50.164 Ω –j94.008 Ω 3 VPS = GND 126.91 Ω –j468.75 Ω 84.906 Ω –j278.58 Ω START 0.050000000 GHz 58.266 Ω –j173.01 Ω STOP 3.000000000 GHz 57.07 Ω –j140.45 Ω 47.453 Ω –j114.28 Ω S Parameter µPC2757TB 1 1 2 3 5 4 2 5 4 3 RF port VCC = VPS = 3.0 V 1: 500 MHz 56.422 Ω –j275.59 Ω 2: 900 MHz 38.68 Ω –j152.71 Ω START 0.050000000 GHz 3: 1500 MHz 31.699 Ω –j88.102 Ω STOP 3.000000000 GHz 4: 1900 MHz 29.209 Ω –j65.926 Ω 5: 2500 MHz 29.209 Ω –j44.758 Ω RF port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz VPS = GND 104.03 Ω –j413.42 Ω 74.82 Ω –j243.06 Ω 59.266 Ω –j154.98 Ω 51.227 Ω –j124.55 Ω 43.996 Ω –j95.117 Ω START 0.050000000 GHz STOP 3.000000000 GHz 1 1 5 4 3 2 2 LO port VCC = VPS = 3.0 V 1: 500 MHz 90.969 Ω –j243.41 Ω 2: 900 MHz 67.828 Ω –j150.32 Ω START 0.050000000 GHz 3: 1500 MHz 51.488 Ω –j97.273 Ω STOP 3.000000000 GHz 4: 1900 MHz 44.621 Ω –j77.352 Ω 5: 2500 MHz 39.627 Ω –j56.738 Ω LO port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz 3 5 4 VPS = GND 114.16 Ω –j400.03 Ω 75.133 Ω –j242.73 Ω 53.516 Ω –j154.21 Ω 44.789 Ω –j124.74 Ω 37.004 Ω –j93.828 Ω Application Note P11997EJ2V0AN00 START 0.050000000 GHz STOP 3.000000000 GHz 15 S Parameter µPC2758TB 1 1 5 3 5 4 2 4 3 RF port VCC = VPS = 3.0 V 1: 500 MHz 63.312 Ω –j261.34 Ω 2: 900 MHz 40.227 Ω –j142.36 Ω START 0.050000000 GHz 3: 1500 MHz 32.441 Ω –j79.68 Ω STOP 3.000000000 GHz 4: 1900 MHz 31.107 Ω –j58.273 Ω 5: 2500 MHz 30.871 Ω –j39.08 Ω RF port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz VPS = GND 107.13 Ω –j395.56 Ω 78.711 Ω –j234.41 Ω 61.922 Ω –j148.82 Ω 52.629 Ω –j119.55 Ω 44.766 Ω –j90.578 Ω 2 START 0.050000000 GHz STOP 3.000000000 GHz 1 1 5 4 3 2 2 3 5 4 LO port VCC = VPS = 3.0 V 1: 500 MHz 73.398 Ω –j188.13 Ω 2: 900 MHz 64.551 Ω –j112.66 Ω START 0.050000000 GHz 3: 1500 MHz 53.133 Ω –j72.941 Ω STOP 3.000000000 GHz 4: 1900 MHz 48.111 Ω –j57.307 Ω 5: 2500 MHz 44.541 Ω –j41.564 Ω LO port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz VPS = GND 100.31 Ω –j374.75 Ω 73.148 Ω –j223.07 Ω 57.719 Ω –j144.02 Ω 50.738 Ω –j119.52 Ω 41.836 Ω –j90.25 Ω START 0.050000000 GHz STOP 3.000000000 GHz S Parameter µPC8112TB 1 1 5 2 4 3 RF port VCC = VPS = 3.0 V 1: 500 MHz 62.711 Ω –j224.07 Ω 2: 900 MHz 48.977 Ω –j219.18 Ω START 0.050000000 GHz 3: 1500 MHz 40.641 Ω –j129.94 Ω STOP 3.000000000 GHz 4: 1900 MHz 37.422 Ω –j101.51 Ω 5: 2500 MHz 34.801 Ω –j74.141 Ω 16 3 5 4 2 RF port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz VPS = GND 76.656 Ω –j421.67 Ω 53.102 Ω –j234.55 Ω 44.844 Ω –j140.82 Ω 40.898 Ω –j109.73 Ω 38.063 Ω –j80.547 Ω Application Note P11997EJ2V0AN00 START 0.050000000 GHz STOP 3.000000000 GHz 1 1 2 2 3 5 4 LO port VCC = VPS = 3.0 V 1: 500 MHz 169.11 Ω –j429.98 Ω 2: 900 MHz 91.875 Ω –j263.7 Ω 3: 1500 MHz 60.781 Ω –j162.56 Ω 4: 1900 MHz 56.789 Ω –j125.66 Ω 5: 2500 MHz 49.652 Ω –j97.602 Ω START 0.050000000 GHz STOP 3.000000000 GHz 5 LO port VCC = 3.0 V 1: 500 MHz 2: 900 MHz 3: 1500 MHz 4: 1900 MHz 5: 2500 MHz VPS = GND 135.53 Ω –j575.06 Ω 78.266 Ω –j337.66 Ω 55.883 Ω –j201.43 Ω 52.734 Ω –j159.63 Ω 44.262 Ω –j122.66 Ω 4 3 START 0.050000000 GHz STOP 3.000000000 GHz (2) External circuits Since the RF filter that is used in the front stage of this IC features optimization of an attenuation by means of 50-Ω impedance of input and output, the impedance of the RF port in this IC should be adjusted to 50 Ω in an application. Examples of the RF filter S11 whose ZL is 50 Ω and whose ZL has moved from 50 Ω are shown in Figure 4-2. Based on the result shown in Figure 4-2, it is assumed that applications with ZS = ZL = 50 Ω is optimal. Employ the following two methods to adjust impedance so that the RF input impedance of 50 Ω can be recognized when this IC is observed from the front stage. <1> Match with front stage output’s impedance (parallel C, series L, and series C) <2> 50-Ω termination with DC cut Figure 4-3 shows external circuit configurations for these two methods. Figure 4-2. Example of S11 of RF Filter (a) When ZL = 50 Ω log MAG S11 REF 0.0 dB 10.0 dB/ 1 –20.731 dB hp C CENTER 1.57542 GHz S11 REF 1.0 Units 1 200.0 m Units/ 42.783 Ω 4.3164 Ω hp MARKER 1 1.57542 GHz 1 START 1.075420000 GHz STOP 2.075420000 GHz START 1.075420000 GHz STOP 2.075420000 GHz Application Note P11997EJ2V0AN00 17 (b) When ZL = 100 Ω log MAG S11 REF 0.0 dB 10.0 dB/ 1 –8.5229 dB hp C CENTER 1.57542 GHz S11 REF 1.0 Units 1 200.0 m Units/ 74.668 Ω –42.637 Ω hp MARKER 1 1.57542 GHz 1 START 1.075420000 GHz STOP 2.075420000 GHz START 1.075420000 GHz STOP 2.075420000 GHz Figure 4-3. Input Port External Circuit Example (Example of RF Input of µPC2757/58) (1/2) Measuring circuit <1> (Matches with front stage output impedance) (Top View) Signal generator 50 Ω POWER SAVE 1 000 pF 3 LOin PS 4 2 GND VCC 5 2 900 pF 3V Signal generator 50 Ω L C1 1 RFin IFout 50 Ω 6 2 900 pF C2 Spectrum analyzer Ω termination with DC cut and 50-Ω Ω front stage output) Measuring circuit <2> (50-Ω (Top View) Signal generator 50 Ω POWER SAVE 1 000 pF 3 LOin PS 4 2 GND VCC 5 2 900 pF 3V Signal generator 50 Ω 1 000 pF 1 000 pF 1 RFin IFout 50 Ω 6 51 Ω 2 900 pF Spectrum analyzer 18 Application Note P11997EJ2V0AN00 Figure 4-3. Input Port External Circuit Example (Example of RF Input of µPC2757/58) (2/2) Measuring circuit (Measuring circuit of data sheet) (Top View) Signal generator 50 Ω POWER SAVE 1 000 pF 3 LOin PS 4 2 GND VCC 5 2 900 pF 3V Signal generator 50 Ω 1 000 pF 1 RFin IFout 50 Ω 6 2 900 pF Spectrum analyzer 4.2 Output Pin Connection with Secondary Stage (1) Internal circuitry of output circuit The µPC2757 and µPC2758 have emitter-follower type IF outputs with low impedance in relation to 50 Ω. The µPC8112 has an open collector type output with high impedance in relation to 100 MHz to 300 MHz. When the input impedance of an IF/SAW filter connected to the next stage is high (from 300 to 900 Ω), such as in digital mobile communications devices, the µPC8112 with its open-collector type output is suitable. When connected to a 50-Ω impedance such as a buffer amplifier or LC filter, the µPC2757 and µPC2758 with their emitter-follower type IF outputs are suitable. Although the above should be considered as selection criteria, you can select whichever method better suits your needs. Figure 4-4 shows an internal equivalent circuit of each product and Figure 4-5 shows an external circuit configuration. Figure 4-4. Internal Equivalent Circuits µPC2757, 2758 µPC8112 <5> <5> <6> <6> <4> <4> <3> <3> <1> <2> Application Note P11997EJ2V0AN00 <1> <2> 19 Figure 4-5. External Circuit Configurations for Output Ports µPC2757, 2758 VCC IFout 5 µPC8112 3V C 6 50 Ω C VCC 5 IFout 6 Example shows next-stage impedance of 50 Ω C L 3V C Constant is determined according to next-stage impedance 4.3 Description of Application Circuit Characteristics (1) µPC2757 and µPC2758 Since only the input pins can determine the characteristics for these two product models, this section describes in detail the application characteristics that depend on the input pins’ external connections. Figures 4-6 and 4-7 show measurement results for three measurement conditions affecting the RF input pin: when using the matching method (<1>), when using the 50-Ω termination method (<2>), and when using the data sheet’s test circuit. The output intercept point is almost the same no matter which measurement condition is used. However, the matching method’s conversion gain value is 5 to 6 dB higher than the corresponding value in the data sheet characteristics and about 4 to 6 dB lower than when using the 50-Ω termination method. Also, variation of IM3 in the input conversion is worsened when using the matching method (<1>) which multiplies only the IM3 gradient (∆IM3) in relation to input and is improved when using the 50-Ω termination method (<2>). This behavior occurs when the previous stage’s characteristic impedance is 50 Ω (or a value close to 50 Ω), and the characteristics are thought to approximate the data sheet characteristics when there is high impedance. In the RF input, we recommend using the matching method (<1>) when emphasizing conversion gain pin and we recommend using the 50-Ω termination method (<2>) when emphasizing input conversion distortion. The trade-offs are between improving VSWR and IIP3 characteristics vs. lowering the CG and worsening the noise figure. When using either method in the LO input pin, LO input level range of the CG flat or minimum noise figure shifts, so the method should be determined according to your LO input level. (2) µPC8112 In the µPC8112, connecting an external matching circuit to the IF output pin can optimize the output return loss at the desired IF frequency to about −20 dB to obtain an IP3 value for output conversion. A high-pass type circuit that includes parallel inductance and serial capacitance is used as the matching circuit configuration. Another objective is to apply a collector bias having the same potential as the VCC to the internal transistors through the parallel inductor. In this case, varying high-frequency characteristics depend on the circuit Q of the matching circuit. Even if the inductor’s Q value is high, such as 60, the load Q is reduced and the desired frequency’s output return loss becomes about −20 dB at 3.0 V, which is a gradual S22 in relation to the comparative frequency. Figures 4-8 and 4-9 show Smith charts and log MAGs of 100-MHz matching for the IF port. Even when the inductor’s Q value is low (such as 20), if load Q becomes high, the desired frequency’s output return loss becomes about −27 dB at 3.0 V, which means that the S22 is much sharper in the desired frequency and the CG is slightly (about 2 or 3 dB) higher compared to the data sheet’s test circuit, which raises the IM 3 level proportionately. 20 Application Note P11997EJ2V0AN00 The output intercept point is mainly determined by the supply current from the output pin to the internal components. So, OIP3 is determined by the DC resistance of the inductor, neither Q value nor the load Q value. Consequently, inductor should select lower DC resistance value. The input conversion’s IP3 and IM3 characteristics are determined by the output intercept point (which is itself determined using DC) and by the CG (which is itself determined using AC). Any of the RF input pin’s external circuit types can be determined based on whether the system’s emphasis is on the CG or the input IP3. Variation in characteristics according to the input pin’s external components is similar in the µPC2757 and µPC2758. As an example of the S parameter for an RF input port with 50-Ω termination, refer to the Smith chart and log MAG chart shown in Figures 4-10 and 4-11. Thus, the VSWR can be improved by such an external connection. These application circuits are implemented using RF-type external components and there is no change in the characteristics of DC-related items. In the growing of systems such as digital mobile communications in which input conversion distortion is emphasized, this document shows data for each product model measured on circuits with RF 50-Ω termination as reference data for application circuit characteristics. Figures 4-12 and 4-13 show the corresponding performance curves and Tables 4-1 and 4-2 list the characteristics. Figure 4-6. µPC2757T: Comparison of Characteristics from External Circuit Connection to RF Pin (Using Circuit from Figure 4-3) µ PC2757T IF Output Level and Third Order Intermodulation Distortion vs. RF Input Level +10 IF output level PIFout (dBm) Third order intermodulation distortion IM3 (dBm) 0 −10 −20 −30 −40 When using RF pin matching method (<1>) When using data sheet measuring circuit When using RF pin with 50-Ω termination (<2>) Common conditions: VCC = 3.0 V TA = +25 °C fRFin1 = 866.45 MHz fRFin2 = 866.85 MHz fLOin = 846.2 MHz PLOin = −10 dBm −50 −60 −70 −80 −90 −60 −50 −40 −30 −20 −10 0 10 20 RF input level PRFin (dBm) Application Note P11997EJ2V0AN00 21 Figure 4-7. Comparison of Characteristics from External Circuit Connection to RF Pin (Super mini mold) (1/2) µ PC2757TB IF Output Level and Third Order Intermodulation Distortion vs. RF Input Level 20 IF output level PIFout (dBm) Third order intermodulation distortion IM3 (dBm) 10 0 –10 –20 –30 When using RF pin matching method (<1>) When using data sheet measuring circuit When using RF pin with 50-Ω termination (<2>) Common conditions fRFin1 = 820 MHz fRFin2 = 822 MHz fLOin = 950 MHz PLOin = –10 dBm VCC = VPS = 3.0 V –40 –50 –60 –70 –80 –90 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 22 Application Note P11997EJ2V0AN00 0 10 20 Figure 4-7. Comparison of Characteristics from External Circuit Connection to RF Pin (Super mini mold) (2/2) µ PC2758TB IF Output Level and Third Order Intermodulation Distortion vs. RF Input Level 20 IF output level PIFout (dBm) Third order intermodulation distortion IM3 (dBm) 10 0 –10 –20 –30 When using RF pin matching method (<1>) When using data sheet measuring circuit When using RF pin with 50-Ω termination (<2>) Common conditions fRFin1 = 820 MHz fRFin2 = 822 MHz fLOin = 950 MHz PLOin = –10 dBm VCC = VPS = 3.0 V –40 –50 –60 –70 –80 –90 –70 –60 –50 –40 –30 –20 –10 0 10 20 RF input level PRFin (dBm) µ PC8112TB IF Output Level and Third Order Intermodulation Distortion vs. RF Input Level 20 IF output level PIFout (dBm) Third order intermodulation distortion IM3 (dBm) 10 0 –10 –20 –30 When using RF pin matching method (<1>) When using data sheet measuring circuit When using RF pin with 50-Ω termination (<2>) Common conditions fRFin1 = 820 MHz fRFin2 = 822 MHz fLOin = 950 MHz PLOin = –10 dBm VCC = VPS = 3.0 V –40 –50 –60 –70 –80 –90 –70 –60 –50 –40 –30 –20 –10 0 10 20 RF input level PRFin (dBm) Application Note P11997EJ2V0AN00 23 Figure 4-8. µPC8112T: 100-MHz Matching of IF Port Smith chart log MAG IF port S22 REF 1.0 Units 200.0 m Units/ 1 59.559 Ω −6.1641 Ω hp log MAG S22 REF 0.0 dB 10.0 dB/ 1 −19.624 hp c MARKER 1 98.85 MHz MARKER 1 98.85 MHz 1 1 START 0.090000000 GHz STOP 0.110000000 GHz START 0.090000000 GHz STOP 0.110000000 GHz Figure 4-9. µPC8112TB: 100-MHz Matching of IF Port log MAG S22 REF 0.0 dB 10.0 dB/ 1 –21.582 dB S22 Z REF 1.0 Units 1 200.0 m Units/ 55.291 Ω –7.0254 Ω hp C MARKER 1 100.0 MHz D 1 1 START 0.050000000 GHz STOP 0.150000000 GHz 24 Application Note P11997EJ2V0AN00 Ω Termination of RF Port Figure 4-10. µPC8112T: 50-Ω log MAG Smith chart log MAG S11 REF 0.0 dB 10.0 dB/ 2 −14.257 dB RF port S11 REF 1.0 Units 200.0 m Units/ 2 38.053 Ω −12.217 Ω hp hp c MARKER 2 800.0 MHz MARKER 2 800.0 MHz 5 2 1 4 2 3 5 4 3 1 START 0.100000000 GHz STOP 3.000000000 GHz START 0.100000000 GHz STOP 3.000000000 GHz Ω Termination of RF Port Figure 4-11. µPC8112TB: 50-Ω log MAG S11 REF 0.0 dB 10.0 dB/ 2 –11.02 dB Z S11 REF 1.0 Units 2 200.0 mUnits/ 28.298 Ω 3.8818 Ω hp C MARKER 2 800.0 MHz D 3 2 4 1 2 5 3 4 5 1 START 0.100000000 GHz STOP 3.000000000 GHz Application Note P11997EJ2V0AN00 25 Ω termination of RF Port (mini mold) Table 4-1. Measured Characteristics using Application Circuit with 50-Ω (TA = +25°C, VCC = VPS = 3.0 V, PLOin = −10 dBm unless otherwise specified) Item Symbol Conversion gain CG SSB • NF SSB noise figure Third-order intermodulation distortion level (when PRFin = −40 dBm) IM3 Calculated value for input third-order distortion intercept point IIP3 DUT’s circuit current ICC Condition µPC2757T µPC8112T µPC2758T fRFin = 820 MHz, fIFout = 130 MHz 10.5 11.5 13.8 fRFin = 1489 MHz, fIFout = 130 MHz 11.7 9.6 15.0 fRFin = 1900 MHz, fIFout = 240 MHz 11.7 9.5 15.0 fRFin = 820 MHz, fIFout = 130 MHz 14.1 14.6 13.1 fRFin = 1489 MHz, fIFout = 130 MHz 14.4 15.2 14.1 fRFin = 1900 MHz, fIFout = 240 MHz 13.8 14.7 13.1 fRFin = 820/822 MHz, fIFout = 130 MHz −90.0 −92.5 −88.1 fRFin = 1489/1491 MHz, fIFout = 130 MHz −87.5 −96.5 −87.5 fRFin = 1900/1902 MHz, fIFout = 240 MHz −86.7 −94.2 −85.3 fRFin = 820/822 MHz, fIFout = 130 MHz −6.0 −5.5 −5.6 fRFin = 1489/1491 MHz, fIFout = 130 MHz −7.1 −4.3 −5.7 fRFin = 1900/1902 MHz, fIFout = 240 MHz −7.6 −4.6 −6.9 Without signal 5.3 7.4 8.9 Unit dB dB dBm dBm mA Cautions 1. (Above models) • Measurements of fRFin = 820 MHz and fRFin = 1489 MHz are upper local • Measurement of fRFin = 1900 MHz is lower local • The measured value for IIP3 (shown on the right side of the equation) is calculated based on ∆IM3 is the IM3 gradient when the measurement uses a the logical expression shown below. (∆ PRFin value from −40 dBm to −35 dBm. In this measurement, ∆IM3 = 2.80). IIP3 = • ∆IM3 × PRFin + CG − IM3 (dBm) ∆IM3 − 1 This data should be used only as reference values, since the magnitude of VSWR improvement depends on the parasitic inductance and capacitance of the RF pattern into which external components inserted and the external components itself. 2. (µPC8112T only) • ±10 MHz) case. LO input level PLOin = −7 dBm only for fRFin = 820 MHz (± • While fIFout = 130 MHz in other product models, in this product model f IFout = 100 MHz (due to stricter measurement conditions similar to circuits in which characteristics are guaranteed in the data sheet) 26 Application Note P11997EJ2V0AN00 Ω termination of RF Port Table 4-2. Measured Characteristics using Application Circuit with 50-Ω (super mini mold) (TA = +25°C, VCC = VPS = 3.0 V, PLOin = −10 dBm unless otherwise specified) Item Symbol Conversion gain CG SSB • NF SSB noise figure Third-order intermodulation distortion level (when PRFin = −40 dBm) IM3 Calculated value for input third-order distortion intercept point IIP3 DUT’s circuit current ICC Condition µPC2757TB µPC2758TB µPC8112TB fRFin = 820 MHz, fIFout = 130 MHz 10.3 14.3 15.0 fRFin = 1489 MHz, fIFout = 130 MHz 12.3 16.7 13.2 fRFin = 1900 MHz, fIFout = 240 MHz 12.2 16.2 10.0 fRFin = 820 MHz, fIFout = 130 MHz 14.0 13.9 13.2 fRFin = 1489 MHz, fIFout = 130 MHz 14.0 14.0 14.8 fRFin = 1900 MHz, fIFout = 240 MHz 13.9 13.7 14.5 fRFin = 820/822 MHz, fIFout = 130 MHz −90.9 −89.7 −94.8 fRFin = 1489/1491 MHz, fIFout = 130 MHz −88.8 −86.5 −96.2 fRFin = 1900/1902 MHz, fIFout = 240 MHz −89.1 −86.7 −98.0 fRFin = 820/822 MHz, fIFout = 130 MHz −8.3 −5.5 −3.7 fRFin = 1489/1491 MHz, fIFout = 130 MHz −8.4 −6.0 −4.8 fRFin = 1900/1902 MHz, fIFout = 240 MHz −5.7 −6.2 −6.7 Without signal 5.6 10.7 8.5 Unit dB dB dBm dBm mA Cautions 1. (Above models) • Measurements of fRFin = 820 MHz and fRFin = 1489 MHz are upper local • Measurement of fRFin = 1900 MHz is lower local • The measured value for IIP3 (shown on the right side of the equation) is calculated based on the logical expression shown below. IIP3 = • ∆IM3 × PRFin + CG − IM3 (dBm) ∆IM3 − 1 This data should be used only as reference values, since the magnitude of VSWR improvement depends on the parasitic inductance and capacitance of the RF pattern into which external components inserted and the external components itself. 2. (µPC8112TB only) • While fIFout = 130 MHz in other product models, in this product model f IFout = 100 MHz (due to stricter measurement conditions similar to circuits in which characteristics are guaranteed in the data sheet) Application Note P11997EJ2V0AN00 27 Figure 4-12. Application Circuit Characteristics of Mini-Mold Products Ω Termination) (Using Circuit with RF 50-Ω TA = +25°°C, VCC = VPS = 3.0 V (µPC8112T only: VCC = VPS = VIFout = 3.0 V) 28 µ PC2757T RF Input Level vs. IM3 and IF Output Level µPC2757T LO Input Level vs. SSB NF 30 10 SSB noise figure SSB-NF (dB) 0 −10 −20 IFout −30 −40 −50 IM3 −60 −70 −80 −90 −70 −60 −50 −40 −30 −20 −10 RF input level PRFin (dBm) 0 25 20 15 10 5 0 −30 −25 −20 −15 −10 −5 0 LO input level PLOin (dBm) 10 µ PC8112T RF Input Level vs. IM3 and IF Output Level 0 −10 IFout −30 −40 −50 IM3 −60 −70 −80 −90 −100 −60 −50 −40 −30 −20 −10 RF input level PIFin (dBm) 20 18 16 14 12 10 8 −20 −18 −16 −14 −12 −10 −8 −6 −4 −2 LO input level PLOin (dBm) 0 µ PC2758T RF Input Level vs. IM3 and IF Output Level 30 20 10 0 −10 −20 −30 −40 10 µ PC8112T LO Input Level vs. SSB NF fLOin = 920 MHz PLOin = −7 dBm −20 5 22 SSB noise figure SSB-NF (dB) 10 SSB noise figure SSB-NF (dB) IF output level PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) IF output level PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) IF output level PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) <1> fRFin1 = 820 MHz, fRFin2 = 822 MHz and, unless otherwise specified, fIFout = 130 MHz, PLOin = −10 dBm IFout IM3 −50 −60 −70 −80 −90 −70 −60 −50 −40 −30 −20 −10 RF input level PRFin (dBm) 0 10 0 µ PC2758T LO Input Level vs. SSB NF 25 20 15 10 5 0 −30 −25 −20 −15 −10 −5 0 LO input level PLOin (dBm) Application Note P11997EJ2V0AN00 5 10 µPC2757T RF Input Level vs. IM3 and IF Output Level µPC2757T LO Input Level vs. SSB NF 30 10 SSB noise figure SSB-NF (dB) 0 −10 −20 IFout −30 −40 −50 IM3 −60 −70 −80 −90 −70 −60 −50 −40 −30 −20 −10 RF input level PRFin (dBm) 0 25 20 15 10 5 0 −30 −25 −20 −15 −10 −5 0 LO input level PLOin (dBm) 10 µPC8112T RF Input Level vs. IM3 and IF Output Level 10 22 0 −10 SSB noise figure SSB-NF (dB) fLOin = 1589 MHz IFout −20 −30 −40 −50 IM3 −60 −70 −80 −90 −100 −60 −50 −40 −30 −20 −10 RF input level PIFin (dBm) 0 −10 −20 IFout −30 −40 −50 IM3 −60 −70 −80 −90 −70 −60 −50 −40 −30 −20 −10 RF input level PRFin (dBm) 0 10 µ PC8112T LO Input Level vs. SSB NF 18 16 14 12 10 30 20 10 20 µPC2758T RF Input Level vs. IM3 and IF Output Level 10 5 8 −20 −18 −16 −14 −12 −10 −8 −6 −4 −2 LO input level PLOin (dBm) 0 SSB noise figure SSB-NF (dB) IF output level PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) IF output level PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) IF output level PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) <2> fRFin1 = 1489 MHz, fRFin2 = 1491 MHz and, unless otherwise specified, fIFout = 130 MHz, PLOin = −10 dBm 0 µ PC2758T LO Input Level vs. SSB NF 25 20 15 10 5 0 −30 −25 −20 −15 −10 −5 0 LO input level PLOin (dBm) Application Note P11997EJ2V0AN00 5 10 29 30 µ PC2757T RF Input Level vs. IM3 and IF Output Level µPC2757T LO Input Level vs. SSB NF 30 10 SSB noise figure SSB-NF (dB) 0 −10 −20 −30 IFout −40 −50 IM3 −60 −70 −80 −90 −70 −60 −50 −40 −30 −20 −10 RF input level PRFin (dBm) 0 25 20 15 10 5 0 −30 −25 −20 −15 −10 −5 0 LO input level PLOin (dBm) 10 µ PC8112T RF Input Level vs. IM3 and IF Output Level SSB noise figure SSB-NF (dB) 0 −20 IFout −30 −40 IM3 −50 −60 −70 −80 −90 −70 −60 −50 −40 −30 −20 −10 RF input level PRFin (dBm) 0 25 20 15 10 5 0 −30 −25 −20 −15 −10 −5 0 LO input level PLOin (dBm) 10 µ PC2758T RF Input Level vs. IM3 and IF Output Level 0 IFout −30 −40 −50 −60 10 µ PC2758T LO Input Level vs. SSB NF 10 −20 5 30 20 −10 10 30 10 −10 5 µPC8112T LO Input Level vs. SSB NF 20 SSB noise figure SSB-NF (dB) IF output level PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) IF output level PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) IF output level PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) <3> fRFin1 = 1900 MHz, fRFin2 = 1902 MHz and fIFout = 240 MHz, PLOin = −10 dBm IM3 −70 −80 −90 −70 −60 −50 −40 −30 −20 −10 RF input level PRFin (dBm) 0 10 25 20 15 10 5 0 −30 −25 −20 −15 −10 −5 0 LO input level PLOin (dBm) Application Note P11997EJ2V0AN00 5 10 Figure 4-13. Application Circuit Characteristics of Super Mini-Mold Products Ω Termination) (Using Circuit with RF 50-Ω TA = +25°°C, VCC = VPS = 3.0 V (µPC8112TB only: VCC = VPS = VIFout = 3.0 V) <1> fRFin1 = 820 MHz, fRFin2 = 822 MHz, PLOin = −10 dBm, fIFout = 130 MHz (µPC8112TB only: fIFout = 100 MHz) µPC2757TB LO Input Level vs. SSB NF 20 30 10 SSB noise figure SSB NF (dB) IF output level (at 2-waveform inputs) PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) µPC2757TB RF Input Level vs. IM3 and IF Output Level 0 –10 –20 –30 IFout –40 IM3 –50 –60 –70 –80 –90 –80 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 0 25 20 15 10 5 0 –30 –25 –20 –15 –10 –5 0 LO input level PLOin (dBm) 10 5 10 µPC2758TB LO Input Level vs. SSB NF 20 30 10 SSB noise figure SSB NF (dB) IF output level (at 2-waveform inputs) PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) µPC2758TB RF Input Level vs. IM3 and IF Output Level 0 –10 –20 –30 IFout –40 IM3 –50 –60 –70 –80 –90 –80 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 0 25 20 15 10 5 0 –30 10 –25 –20 –15 –10 –5 0 LO input level PLOin (dBm) 5 10 µPC8112TB LO Input Level vs. SSB NF 20 30 10 SSB noise figure SSB NF (dB) IF output level (at 2-waveform inputs) PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) µPC8112TB RF Input Level vs. IM3 and IF Output Level 0 –10 –20 –30 IFout –40 –50 IM3 –60 –70 –80 –90 –80 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 0 10 25 20 15 10 5 0 –30 –25 –20 –15 –10 –5 0 LO input level PLOin (dBm) Application Note P11997EJ2V0AN00 5 10 31 <2> fRFin1 = 1489 MHz, fRFin2 = 1491 MHz, PLOin = −10 dBm, fIFout = 130 MHz (µPC8112TB only: fIFout = 100 MHz) µ PC2757TB LO Input Level vs. SSB NF 20 30 SSB noise figure SSB NF (dB) 10 0 –10 –20 –30 IFout –40 IM3 –50 –60 –70 25 20 15 10 5 –80 –90 –80 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 0 0 –30 10 –25 –20 –15 –10 –5 0 LO input level PLOin (dBm) 5 10 µPC2758TB µPC2758TB LO Input Level vs. SSB NF RF Input Level vs. IM3 and IF Output Level 20 30 10 SSB noise figure SSB NF (dB) IF output level (at 2-waveform inputs) PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) IF output level (at 2-waveform inputs) PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) µPC2757TB RF Input Level vs. IM3 and IF Output Level 0 –10 –20 –30 IFout –40 IM3 –50 –60 –70 –80 –90 –80 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 0 25 20 15 10 5 0 –30 10 –25 –20 –15 –10 –5 0 LO input level PLOin (dBm) 5 10 32 µPC8112TB LO Input Level vs. SSB NF RF Input Level vs. IM3 and IF Output Level 20 30 10 SSB noise figure SSB NF (dB) IF output level (at 2-waveform inputs) PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) µ PC8112TB 0 –10 –20 –30 –40 –50 IFout IM3 –60 –70 –80 –90 –80 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 0 10 25 20 15 10 5 0 –30 –25 –20 –15 –10 –5 0 LO input level PLOin (dBm) Application Note P11997EJ2V0AN00 5 10 <3> fRFin1 = 1900 MHz, fRFin2 = 1902 MHz, PLOin = −10 dBm, fIFout = 240 MHz µPC2757TB LO Input Level vs. SSB NF 20 30 10 SSB noise figure SSB NF (dB) IF output level (at 2-waveform inputs) PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) µ PC2757TB RF Input Level vs. IM3 and IF Output Level 0 –10 –20 –30 IFout –40 IM3 –50 –60 –70 –80 –90 –80 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 0 25 20 15 10 5 0 –30 –25 –20 –15 –10 –5 0 LO input level PLOin (dBm) 10 5 10 µPC2758TB LO Input Level vs. SSB NF 20 30 10 SSB noise figure SSB NF (dB) IF output level (at 2-waveform inputs) PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) µPC2758TB RF Input Level vs. IM3 and IF Output Level 0 –10 –20 –30 IFout –40 IM3 –50 –60 –70 –80 –90 –80 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 0 25 20 15 10 5 0 –30 10 –25 –20 –15 –10 –5 0 LO input level PLOin (dBm) 5 10 µPC8112TB LO Input Level vs. SSB NF 30 20 10 SSB noise figure SSB NF (dB) IF output level (at 2-waveform inputs) PIFout (dBm) 3rd order intermodulation distortion IM3 (dBm) µ PC8112TB RF Input Level vs. IM3 and IF Output Level 0 –10 –20 –30 –40 –50 IFout IM3 –60 –70 –80 –90 –80 –70 –60 –50 –40 –30 –20 –10 RF input level PRFin (dBm) 0 10 25 20 15 10 5 0 –30 –25 –20 –15 –10 –5 0 LO input level PLOin (dBm) Application Note P11997EJ2V0AN00 5 10 33 Figure 4-14. Test Circuit of Application Circuit Characteristics (a-1) µPC2757, 2758 POWER SAVE 3 50 Ω LOin C2 2 Signal generator GND C 1 X (Top View) Signal generator PS 4 C3 VCC C4 + C 5 5 3V 1000 pF IFout 6 1 RFin 50 Ω C6 C0 51 Ω Marking is an example for µ PC2757TB Spectrum analyzer 50 Ω C3 (a-2) PCB for µPC2757 and 2758 LO input PS bias C2 C4 GND VCC C0 R RF input C1 C5 C6 IF output Caution The patterns of PCBs for mini-mold products (T) and super mini-mold products (TB) are same except for the intervals of the IC-pin setting blocks (The above diagram shows the super minimold PCB). 34 Application Note P11997EJ2V0AN00 (b-1) µPC8112 LOin C2 2 GND 1000 pF 1 C0 51 Ω RFin Signal generator C 2 K 3 50 Ω 50 Ω POWER SAVE (Top View) Signal generator PS 4 C3 VCC 5 IFout 6 C4 + C5 3V C6 50 Ω Spectrum analyzer C3 (b-2) PCB for µPC8112 LO input PS bias C2 C4 GND VCC C0 R C5 L C6 RF input C1 Short chip IF output Caution The patterns of PCBs for mini-mold products (T) and super mini-mold products (TB) are same except for the intervals of the IC-pin setting blocks (The above diagram shows the super minimold PCB). Notes concerning PCB • NEC employs a polyimide double-sided PCB to reduce PCB-related loss and maximize the performance of the IC itself. • The through holes ensure proper grounding. • Specification PCB dimensions: 35 × 42 × 0.4 (mm), with 35-µm thick copper patterning on both sides Other specifications are the same as in the data sheets. Application Note P11997EJ2V0AN00 35 Parts Table Mini-mold products µPC8112T µPC2757T, 2758T Note With IF 100-MHz matching Note With IF 240-MHz matching C0 to C5 MURATA GMR39: 1000 pF MURATA GMR39: 1000 pF MURATA GMR39: 1000 pF L None MURATA LQH1NR33 Coil chip inductor: 330 nH TOKO LL2012-F82N Multilayer chip inductor: 82 nH C6 MURATA GMR39: 3000 pF MURATA GMR39: 5 pF American Technical Ceramics: approximately 2 pF R MURATA: 51 Ω MURATA: 51 Ω MURATA: 51 Ω Super mini-mold products µPC8112TB µPC2757TB, 2758TB Note With IF 100-MHz matching Note With IF 240-MHz matching C0 to C5 MURATA GMR39: 1000 pF MURATA GMR39: 1000 pF MURATA GMR39: 1000 pF L None TDK NL252018-R33K Leadless inductor: 330 nH TOKO LL2010-F100N Multilayer chip inductor: 100 nH C6 MURATA GMR39: 2700 pF, 200 pF MURATA GMR39: 5 pF MURATA GMR39: 2 pF R MURATA: 51 Ω MURATA: 51 Ω MURATA: 51 Ω Note While the external circuitry (including the board pattern’s parasitic parameters) matches (at 50 Ω) the IF port with the desired IF frequency, S 22 is optimized as −20 dB. (In this test, a network analyzer was used to monitor the Smith chart and log MAG while the circuit was being adjusted. Any manufacturer’s component can work when S22 is optimized to −20 dB.) 36 Application Note P11997EJ2V0AN00 5. SYSTEM APPLICATION EXAMPLES The following block diagrams are system examples of these ICs, based on our customer’s actual design-in, the system’s required characteristics, etc. µPC2757 • Analog cellular or cordless telephone (CT1+, etc.): • Digital cellular or cordless telephone (PDC, CT2, DECT, etc.): µPC2758 • Digital cellular or cordless mobile telephone (PHS, PDC, etc.): µPC8112 The above are just examples: selections can be based on your set’s design specifications. Figure 5-1 shows various block diagrams of these application systems. Figure 5-1. System Block Diagrams Example of analog cellular telephone Low-noise transistor IF filter RF filter µ PC2757 FM RX DEMO. ÷N VCO SW PLL PLL TX MOD. PA Example of digital cellular or cordless telephone Low-noise transistor RF filter µ PC2758 IF filter RX I Q DEMO. ÷N VCO SW PLL PLL I 0° TX Phase shifter PA 90° Q PHS Low-noise transistor RF filter µ PC8112 IF filter RX DEMO. VCO SW ÷N I Q PLL PLL 0° TX I Phase shifter PA 90° Application Note P11997EJ2V0AN00 Q 37 6. SUMMARY Table 6-1. Input Pin External Circuits and Characteristics (All Three Product Models) Pin Relation to system RF input pin Analog systems, etc. Digital cellular telephones, etc. LO input pin When using a serial connection with the buffer amplifier output Remark 7. Type of external circuit Differences vs. characteristic in data sheet Emphasized characteristic Matching CG: approximately 5 dB higher IM3: approximately 12 to 15 dB noisier CG 50-Ω termination CG: 4 to 6 dB lower IM3: 6 to 15 dB better Intermodulation distortion at input level Matching Approximately -6 dB from the recommended PLOin range When using a serial connection with the filter 50-Ω termination − When using a parallel connection with the VCO output and buffer amplifier input Capacitor coupling − As for buffer amplifier, µPC2745 and 2746 with 50-Ω input/output matching are hypothesized. CONCLUSION This application note has briefly described application circuit characteristics and selected examples for actual use of the µPC2757, µPC2758, and µPC8112, which are 3-V power supply, 1.9-GHz frequency down-converter ICs for cellular/cordless telephone and portable wireless communication devices. We hope that the application note will help you use this 6-pin mini-mold and super mini-mold type silicon MMICs. 38 Application Note P11997EJ2V0AN00 APPENDIX. REFERENCE PARAMETERS S parameters for each port µPC2757T VCC = VPS = 3.0 V, TA = +25°C RF−IF RF port LO port FREQUENCY S11 S11 MHz MAG. ANG. MAG. ANG. 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 0.959 0.950 0.955 0.948 0.944 0.939 0.932 0.920 0.916 0.910 0.902 0.893 0.886 0.879 0.871 0.862 0.851 0.846 0.833 0.828 0.816 0.816 0.803 0.794 0.780 0.775 0.765 0.752 0.740 0.735 0.726 0.718 0.707 0.698 0.693 0.682 0.672 0.663 0.654 0.646 0.635 0.626 0.615 0.607 0.598 0.587 0.576 0.568 0.553 0.549 0.537 0.527 0.521 0.513 0.499 0.494 0.487 0.480 0.471 0.459 −2.3 −4.5 −6.8 −8.9 −11.1 −13.1 −15.5 −17.3 −19.2 −21.4 −23.4 −25.3 −27.2 −29.1 −30.9 −32.7 −34.5 −36.4 −38.3 −40.0 −42.0 −43.8 −45.7 −47.1 −49.2 −51.0 −52.4 −54.2 −55.9 −57.3 −59.2 −60.5 −62.7 −64.6 −66.1 −67.6 −69.4 −71.4 −72.7 −74.7 −76.4 −78.1 −79.7 −81.7 −83.1 −84.8 −86.4 −88.1 −90.0 −91.4 −92.9 −94.2 −96.0 −97.4 −99.4 −100.8 −102.3 −103.8 −105.8 −107.2 0.968 0.959 0.951 0.938 0.923 0.907 0.894 0.879 0.864 0.848 0.835 0.820 0.811 0.798 0.787 0.777 0.771 0.760 0.749 0.742 0.733 0.730 0.718 0.712 0.705 0.695 0.690 0.682 0.675 0.668 0.655 0.637 0.627 0.618 0.613 0.611 0.607 0.602 0.596 0.592 0.586 0.581 0.575 0.565 0.560 0.556 0.550 0.540 0.536 0.526 0.522 0.512 0.503 0.500 0.490 0.487 0.475 0.468 0.464 0.457 −2.8 −5.3 −8.2 −10.3 −12.6 −14.8 −16.8 −18.5 −19.9 −21.4 −22.9 −24.5 −25.8 −27.0 −28.1 −29.4 −30.5 −32.0 −32.7 −34.2 −35.4 −36.3 −37.8 −38.9 −40.0 −41.5 −42.4 −43.5 −44.9 −46.2 −47.9 −48.9 −49.9 −50.1 −50.5 −51.6 −52.6 −54.0 −54.6 −56.2 −57.1 −58.4 −59.4 −61.1 −62.1 −63.3 −64.4 −65.6 −66.8 −68.2 −69.5 −70.8 −71.8 −72.5 −73.9 −74.9 −75.9 −77.7 −79.0 −79.8 µPC2757T VCC = 3.0 V, VPS = GND, TA = +25°C RF port FREQUENCY S11 MHz MAG. ANG. 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 Application Note P11997EJ2V0AN00 0.983 0.977 0.975 0.969 0.963 0.957 0.947 0.939 0.932 0.927 0.918 0.910 0.901 0.899 0.890 0.879 0.873 0.865 0.856 0.852 0.844 0.848 0.835 0.831 0.818 0.818 0.811 0.803 0.790 0.789 0.789 0.782 0.773 0.768 0.766 0.762 0.755 0.751 0.744 0.740 0.734 0.731 0.722 0.721 0.713 0.708 0.704 0.699 0.690 0.690 0.684 0.676 0.670 0.667 0.657 0.656 0.651 0.645 0.639 0.631 −1.7 −3.3 −4.9 −6.4 −8.0 −9.3 −10.9 −12.2 −13.2 −14.5 −15.9 −16.9 −17.9 −19.2 −20.1 −21.2 −22.2 −23.1 −24.1 −25.2 −26.3 −26.8 −28.0 −28.9 −29.9 −31.0 −31.4 −32.5 −33.1 −33.9 −34.7 −35.5 −36.6 −37.9 −38.3 −39.0 −40.1 −41.0 −41.5 −43.1 −43.6 −44.6 −45.4 −46.7 −47.3 −48.0 −49.2 −49.8 −51.1 −51.7 −52.7 −53.5 −54.4 −55.1 −56.1 −57.2 −57.9 −58.8 −59.9 −60.7 LO port S11 MAG. ANG. 0.981 0.976 0.969 0.963 0.956 0.947 0.936 0.933 0.922 0.915 0.909 0.898 0.891 0.886 0.878 0.872 0.866 0.859 0.852 0.846 0.842 0.835 0.831 0.823 0.819 0.808 0.805 0.798 0.794 0.785 0.775 0.762 0.752 0.748 0.746 0.746 0.743 0.738 0.736 0.729 0.730 0.725 0.723 0.718 0.715 0.715 0.710 0.707 0.704 0.697 0.690 0.690 0.683 0.680 0.671 0.672 0.661 0.657 0.654 0.650 −1.8 −3.6 −5.2 −6.6 −8.2 −9.6 −10.9 −12.1 −13.1 −14.4 −15.4 −16.5 −17.4 −18.5 −19.4 −20.2 −21.4 −22.5 −23.2 −24.1 −25.2 −25.9 −26.8 −27.9 −28.7 −29.7 −30.6 −31.5 −32.5 −33.5 −34.7 −35.3 −35.7 −35.8 −36.0 −36.8 −37.5 −38.6 −38.7 −40.1 −40.9 −41.5 −42.2 −43.2 −43.8 −44.9 −45.5 −46.5 −47.5 −48.4 −49.5 −50.5 −51.1 −52.0 −53.0 −53.5 −54.4 −55.5 −56.5 −57.4 39 µPC2757T VCC = VPS = 3.0, TA = +25°C, IF S22 IF port FREQUENCY S22 MHz MAG. ANG. 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 40 0.371 0.371 0.371 0.369 0.369 0.365 0.365 0.361 0.360 0.357 0.353 0.352 0.348 0.347 0.342 0.341 0.337 0.333 0.333 0.330 0.326 0.322 0.319 0.317 0.315 0.311 173.7 171.6 169.4 167.2 165.0 163.4 161.3 159.5 157.5 155.7 154.0 152.5 150.7 148.8 147.1 145.7 144.1 142.5 141.3 139.9 138.1 137.1 135.2 134.3 132.7 131.1 µPC2757T VCC = 3.0 V, VPS = GND, TA = +25°C, IF S22 IF port FERQUENCY S22 MHz MAG. ANG. 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 Application Note P11997EJ2V0AN00 0.992 0.992 0.993 0.993 0.992 0.992 0.992 0.990 0.989 0.990 0.989 0.987 0.986 0.984 0.983 0.982 0.980 0.977 0.977 0.977 0.972 0.971 0.967 0.965 0.965 0.968 −1.9 −1.9 −2.5 −2.6 −3.1 −3.6 −4.0 −4.2 −4.7 −4.9 −5.4 −5.7 −6.0 −6.4 −6.6 −7.1 −7.3 −7.7 −8.0 −8.3 −8.5 −8.6 −9.1 −9.3 −9.6 −9.8 µPC2758T VCC = VPS = 3.0, TA = +25°C RF port FREQUENCY S11 MHz MAG. ANG. 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 0.955 0.948 0.948 0.942 0.936 0.932 0.925 0.919 0.914 0.906 0.897 0.888 0.881 0.874 0.869 0.859 0.848 0.840 0.828 0.824 0.810 0.809 0.793 0.782 0.768 0.760 0.749 0.741 0.725 0.718 0.711 0.700 0.689 0.679 0.671 0.663 0.651 0.642 0.628 0.623 0.609 0.599 0.587 0.580 0.569 0.558 0.548 0.539 0.525 0.522 0.512 0.503 0.495 0.484 0.476 0.472 0.467 0.459 0.452 0.442 −2.5 −4.9 −7.3 −9.4 −11.8 −13.8 −16.5 −18.2 −20.3 −22.6 −24.8 −26.8 −28.9 −30.9 −33.0 −35.1 −36.8 −38.8 −40.5 −43.0 −44.7 −46.9 −49.0 −50.5 −52.4 −54.7 −56.3 −58.2 −59.7 −61.5 −63.1 −65.0 −66.9 −68.7 −70.4 −71.9 −73.9 −76.0 −77.2 −79.3 −80.7 −82.8 −84.2 −86.1 −87.6 −89.0 −90.8 −92.4 −94.1 −95.2 −96.6 −98.2 −100.0 −101.1 −102.8 −104.1 −105.6 −107.3 −109.0 −110.2 LO port S11 MAG. ANG. 0.957 0.953 0.942 0.932 0.917 0.901 0.885 0.870 0.853 0.833 0.816 0.794 0.776 0.759 0.737 0.723 0.703 0.691 0.675 0.661 0.648 0.640 0.626 0.615 0.602 0.593 0.583 0.578 0.570 0.562 0.549 0.536 0.522 0.512 0.504 0.496 0.492 0.484 0.477 0.471 0.468 0.460 0.452 0.446 0.440 0.434 0.427 0.420 0.416 0.407 0.402 0.395 0.387 0.381 0.374 0.369 0.359 0.354 0.350 0.344 −3.3 −6.5 −9.5 −12.2 −15.1 −18.0 −20.7 −23.0 −25.3 −27.6 −29.9 −31.8 −33.9 −35.6 −37.4 −38.8 −40.3 −41.6 −43.0 −44.5 −45.6 −46.5 −47.8 −48.8 −49.9 −51.2 −52.5 −53.7 −54.7 −56.2 −57.8 −59.2 −60.6 −60.6 −61.3 −62.2 −63.0 −64.5 −65.1 −66.5 −67.5 −68.9 −69.7 −71.0 −71.8 −73.6 −74.2 −75.5 −76.5 −78.1 −79.5 −80.6 −81.9 −82.6 −83.8 −84.7 −85.9 −87.6 −88.6 −89.6 µPC2758T VCC = 3.0 V, VPS = GND, TA = +25°C RF port FREQUENCY S11 MHz MAG. ANG. 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 Application Note P11997EJ2V0AN00 0.984 0.976 0.975 0.970 0.962 0.959 0.946 0.938 0.930 0.926 0.918 0.907 0.901 0.894 0.889 0.880 0.873 0.864 0.856 0.850 0.841 0.848 0.833 0.828 0.816 0.812 0.806 0.796 0.788 0.785 0.783 0.774 0.771 0.765 0.762 0.756 0.752 0.747 0.738 0.737 0.728 0.726 0.720 0.714 0.709 0.704 0.699 0.696 0.687 0.685 0.678 0.673 0.667 0.661 0.653 0.651 0.647 0.642 0.635 0.629 −1.8 −3.3 −4.9 −6.3 −8.1 −9.5 −11.1 −12.2 −13.4 −14.9 −16.1 −17.2 −18.4 −19.5 −20.4 −21.6 −22.5 −23.5 −24.4 −25.5 −26.4 −27.1 −28.4 −29.0 −30.1 −31.2 −31.8 −32.7 −33.1 −34.0 −34.9 −35.6 −36.8 −37.8 −38.5 −39.1 −40.2 −41.1 −41.6 −43.1 −43.7 −44.5 −45.3 −46.4 −47.0 −47.9 −48.9 −49.6 −50.8 −51.5 −52.3 −53.3 −54.2 −54.8 −55.7 −56.6 −57.4 −58.2 −59.4 −60.2 LO port S11 MAG. ANG. 0.981 0.978 0.975 0.969 0.961 0.953 0.941 0.937 0.929 0.920 0.911 0.899 0.891 0.885 0.874 0.865 0.856 0.848 0.838 0.832 0.825 0.824 0.811 0.803 0.798 0.787 0.782 0.778 0.767 0.756 0.749 0.735 0.724 0.715 0.714 0.712 0.709 0.703 0.699 0.692 0.696 0.693 0.690 0.686 0.681 0.680 0.677 0.673 0.669 0.663 0.658 0.654 0.651 0.646 0.637 0.636 0.626 0.623 0.620 0.616 −1.9 −3.6 −5.3 −6.9 −8.6 −10.2 −11.8 −13.0 −14.3 −15.7 −16.9 −18.2 −19.3 −20.3 −21.6 −22.7 −23.6 −24.8 −25.6 −26.7 −27.6 −28.3 −29.5 −30.4 −31.1 −32.3 −33.2 −34.1 −34.9 −36.2 −37.3 −38.0 −38.4 −38.7 −38.3 −39.0 −39.8 −40.4 −40.9 −41.9 −42.4 −43.5 −44.1 −45.1 −45.9 −46.8 −47.3 −48.6 −49.3 −50.1 −51.3 −52.0 −53.0 −53.4 −54.5 −54.8 −55.8 −57.0 −57.7 −58.5 41 µPC2758T VCC = VPS = 3.0, TA = +25°C FREQUENCY MHz 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 42 IF port S22 MAG. ANG. 0.465 0.463 0.462 0.456 0.454 0.450 0.445 0.440 0.437 0.430 0.422 0.418 0.411 0.406 0.399 0.394 0.387 0.382 0.377 0.371 0.364 0.360 0.353 0.347 0.344 0.338 170.7 167.8 165.2 162.4 160.0 157.6 155.1 153.1 150.8 148.3 146.4 144.2 142.1 139.9 138.1 135.9 134.0 132.0 130.4 128.9 127.0 125.5 123.6 122.0 120.6 119.1 µPC2758T VCC = 3.0 V, VPS = GND, TA = +25°C IF port FERQUENCY S22 MHz MAG. ANG. 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 Application Note P11997EJ2V0AN00 0.993 0.995 0.991 0.990 0.994 0.992 0.990 0.991 0.986 0.990 0.990 0.987 0.985 0.984 0.983 0.980 0.980 0.977 0.977 0.975 0.970 0.972 0.969 0.965 0.963 0.963 −1.7 −1.8 −2.6 −2.6 −3.1 −3.6 −4.1 −4.3 −4.8 −5.1 −5.6 −5.8 −6.2 −6.5 −6.8 −7.3 −7.4 −7.9 −8.2 −8.4 −8.7 −9.2 −9.4 −9.6 −9.9 −10.1 µPC8112T VCC = VIFout = VPS = 3.0, V, TA = +25°C RF port FREQUENCY S11 MHz MAG. ANG. 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 0.951 0.946 0.938 0.939 0.932 0.922 0.917 0.906 0.899 0.886 0.876 0.868 0.852 0.837 0.831 0.815 0.803 0.791 0.775 0.767 0.755 0.748 0.734 0.716 0.702 0.696 0.681 0.666 0.655 0.644 0.635 0.620 0.609 0.600 0.591 0.577 0.565 0.552 0.542 0.525 0.512 0.500 0.490 0.481 0.467 0.460 0.452 0.442 0.435 0.424 0.420 0.411 0.408 0.398 0.389 0.386 0.377 0.377 0.365 0.363 −3.0 −5.6 −8.3 −11.0 −13.6 −16.1 −19.2 −21.6 −24.1 −26.4 −28.7 −31.2 −33.6 −35.8 −38.0 −40.5 −42.4 −44.7 −47.1 −49.1 −51.2 −53.4 −55.4 −57.3 −59.5 −61.5 −63.7 −65.9 −67.4 −69.2 −71.3 −73.3 −75.3 −76.9 −79.2 −80.9 −83.1 −85.0 −87.0 −88.9 −90.8 −92.2 −93.6 −95.1 −96.7 −98.5 −99.7 −101.1 −102.9 −104.9 −105.8 −107.3 −109.0 −111.1 −112.6 −114.1 −116.3 −117.5 −118.8 −120.6 LO port S11 MAG. ANG. 0.970 0.964 0.959 0.952 0.944 0.935 0.929 0.921 0.915 0.910 0.905 0.900 0.895 0.890 0.883 0.877 0.873 0.868 0.865 0.855 0.856 0.851 0.837 0.835 0.828 0.820 0.815 0.804 0.803 0.795 0.784 0.775 0.762 0.752 0.748 0.742 0.736 0.732 0.724 0.717 0.716 0.711 0.708 0.704 0.703 0.699 0.693 0.690 0.691 0.686 0.678 0.673 0.673 0.662 0.658 0.655 0.650 0.644 0.638 0.635 −1.9 −3.3 −5.0 −6.3 −7.6 −8.8 −10.2 −11.3 −12.0 −13.3 −14.3 −15.3 −16.3 −17.4 −18.2 −19.3 −20.5 −21.2 −22.5 −22.9 −24.1 −25.1 −26.1 −26.9 −28.0 −28.8 −29.9 −30.9 −32.0 −33.1 −34.2 −34.9 −35.7 −36.1 −36.7 −37.1 −37.9 −38.7 −39.1 −39.9 −40.1 −40.8 −41.4 −42.2 −42.9 −43.7 −44.4 −45.5 −46.0 −46.7 −47.7 −48.4 −49.2 −49.8 −50.8 −51.6 −52.4 −53.5 −54.5 −55.0 µPC8112T VCC = VIFout = 3.0V, VPS = GND, TA = +25°C RF port LO port FREQUENCY S11 S11 MHz MAG. ANG. MAG. ANG. 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 Application Note P11997EJ2V0AN00 0.990 0.986 0.978 0.980 0.972 0.967 0.956 0.950 0.948 0.940 0.934 0.929 0.919 0.910 0.907 0.897 0.889 0.884 0.875 0.867 0.865 0.868 0.850 0.840 0.836 0.829 0.820 0.806 0.799 0.792 0.789 0.782 0.774 0.766 0.760 0.754 0.748 0.740 0.734 0.725 0.719 0.711 0.707 0.696 0.689 0.685 0.678 0.670 0.660 0.651 0.647 0.641 0.638 0.626 0.618 0.612 0.602 0.603 0.591 0.585 −1.5 −3.5 −5.3 −7.1 −8.7 −10.3 −12.3 −13.5 −15.0 −16.4 −17.8 −19.5 −20.6 −22.1 −23.3 −24.8 −25.9 −27.3 −28.5 −30.0 −31.4 −32.5 −33.7 −35.0 −36.0 −37.5 −38.9 −40.1 −41.1 −41.9 −43.2 −44.3 −45.8 −46.7 −47.9 −49.0 −50.2 −51.4 −52.6 −53.8 −55.0 −56.1 −57.1 −58.2 −59.4 −60.7 −61.7 −62.9 −64.3 −65.5 −66.2 −67.5 −68.7 −69.8 −71.1 −72.4 −73.6 −74.6 −75.6 −76.7 0.986 0.981 0.981 0.977 0.971 0.966 0.961 0.955 0.955 0.949 0.943 0.938 0.934 0.927 0.924 0.920 0.917 0.910 0.908 0.898 0.897 0.901 0.884 0.883 0.878 0.871 0.865 0.957 0.859 0.850 0.839 0.829 0.818 0.811 0.809 0.803 0.802 0.800 0.787 0.780 0.779 0.776 0.775 0.772 0.772 0.770 0.768 0.766 0.765 0.760 0.757 0.750 0.753 0.742 0.741 0.736 0.734 0.728 0.726 0.723 −1.5 −2.6 −3.8 −5.1 −6.1 −7.2 −8.6 −9.3 −10.4 −11.3 −12.4 −13.2 −14.2 −15.4 −15.8 −16.9 −17.9 −18.5 −19.5 −20.2 −21.2 −21.9 −22.9 −23.9 −25.0 −25.5 −26.6 −27.2 −28.3 −29.1 −30.4 −30.6 −31.4 −31.8 −32.2 −32.7 −33.5 −34.4 −34.8 −35.3 −35.9 −36.0 −36.8 −37.4 −38.2 −38.8 −39.4 −40.4 −40.9 −41.9 −42.8 −43.1 −43.8 −44.7 −45.5 −46.3 −47.1 −48.1 −48.9 −49.4 43 µPC8112T VCC = VIFout = VPS = 3.0, V, TA = +25°C IF port FREQUENCY S22 MHz MAG ANG 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 44 0.994 0.993 0.994 0.990 0.993 0.993 0.992 0.989 0.988 0.988 0.988 0.984 0.985 0.983 0.982 0.981 0.977 0.978 0.977 0.978 0.974 0.971 0.977 0.968 0.969 0.965 −2.3 −2.7 −3.1 −3.4 −4.1 −4.6 −4.9 −5.4 −5.7 −6.1 −6.6 −7.1 −7.4 −7.8 −8.2 −8.5 −9.1 −9.3 −9.8 −10.2 −10.6 −10.9 −11.4 −11.7 −12.0 −12.4 µPC8112T VCC = VIFout = 3.0V, VPS = GND, TA = +25°C IF port FERQUENCY S22 MHz MAG ANG 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 Application Note P11997EJ2V0AN00 0.997 0.997 0.998 0.991 0.999 0.996 0.994 0.993 0.993 0.988 0.989 0.987 0.987 0.986 0.985 0.982 0.979 0.981 0.979 0.978 0.974 0.974 0.971 0.967 0.972 0.967 −2.3 −2.5 −3.0 −3.3 −3.9 −4.5 −4.8 −5.1 −5.4 −5.7 −6.2 −6.7 −7.1 −7.3 −7.9 −8.2 −8.6 −8.9 −9.3 −9.8 −10.1 −10.4 −10.9 −11.1 −11.4 −11.6 µPC2757TB VCC = VPS = 3.0 V FREQUENCY MHz 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 RF port S11 MAG. ANG. 0.965 0.963 0.963 0.962 0.956 0.953 0.950 0.941 0.938 0.932 0.924 0.916 0.909 0.899 0.897 0.885 0.876 0.869 0.863 0.858 0.841 0.841 0.822 0.813 0.798 0.786 0.774 0.766 0.757 0.749 0.742 0.729 0.718 0.711 0.699 0.686 0.678 0.666 0.654 0.646 0.635 0.625 0.614 0.609 0.594 0.582 0.582 0.571 0.559 0.546 0.537 0.528 0.516 0.519 0.507 0.506 0.493 0.483 0.478 0.471 −2.3 −4.0 −6.1 −8.0 −9.9 −12.1 −14.1 −15.9 −17.8 −19.8 −21.5 −23.6 −25.3 −27.2 −28.9 −30.9 −32.7 −34.5 −36.6 −37.8 −39.2 −41.5 −42.8 −44.7 −46.7 −48.3 −49.6 −51.6 −53.0 −54.5 −56.4 −57.7 −59.4 −60.7 −62.7 −64.3 −65.9 −67.5 −69.0 −70.4 −72.1 −73.5 −74.8 −76.4 −77.7 −79.4 −81.7 −83.2 −83.5 −85.4 −86.3 −87.9 −89.2 −91.4 −93.3 −94.6 −95.9 −97.5 −98.8 −100.8 LO port S11 MAG. ANG. 0.971 0.965 0.960 0.952 0.941 0.929 0.917 0.904 0.892 0.878 0.868 0.854 0.841 0.829 0.818 0.811 0.802 0.790 0.782 0.776 0.761 0.763 0.748 0.740 0.731 0.724 0.718 0.713 0.704 0.696 0.684 0.678 0.672 0.665 0.658 0.651 0.640 0.635 0.627 0.616 0.610 0.599 0.596 0.588 0.579 0.573 0.562 0.554 0.551 0.545 0.535 0.523 0.522 0.511 0.505 0.494 0.485 0.480 0.474 0.464 −2.3 −4.9 −7.1 −9.3 −11.5 −13.4 −15.5 −17.0 −18.9 −20.4 −22.1 −23.5 −24.7 −26.1 −27.7 −28.8 −30.1 −31.2 −32.6 −33.6 −35.0 −35.9 −37.4 −38.3 −39.9 −41.0 −41.7 −43.5 −44.1 −45.5 −46.4 −47.7 −48.8 −50.2 −51.2 −52.2 −53.6 −54.7 −55.8 −56.9 −58.3 −59.1 −60.4 −61.5 −62.7 −63.6 −64.4 −66.1 −66.9 −68.3 −69.3 −70.1 −71.5 −72.0 −73.3 −74.3 −75.0 −76.2 −77.4 −79.0 µPC2757TB VCC = 3.0 V, VPS = GND RF port FREQUENCY S11 MHz MAG. ANG. 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 Application Note P11997EJ2V0AN00 0.982 0.979 0.980 0.974 0.972 0.966 0.959 0.956 0.952 0.946 0.939 0.931 0.925 0.920 0.915 0.906 0.899 0.893 0.889 0.885 0.876 0.881 0.863 0.857 0.848 0.845 0.832 0.826 0.824 0.818 0.815 0.809 0.804 0.799 0.796 0.789 0.782 0.775 0.773 0.765 0.761 0.756 0.749 0.745 0.739 0.735 0.739 0.734 0.725 0.716 0.709 0.704 0.700 0.699 0.695 0.695 0.687 0.680 0.672 0.668 −1.7 −2.7 −4.2 −5.5 −6.8 −8.2 −9.5 −10.6 −11.8 −12.9 −14.0 −15.2 −16.3 −17.3 −18.4 −19.2 −20.6 −21.3 −22.5 −23.0 −24.1 −24.9 −25.7 −26.8 −28.0 −28.7 −29.5 −30.4 −30.8 −31.8 −32.4 −33.4 −34.4 −35.0 −36.1 −36.8 −37.7 −38.3 −39.1 −40.0 −40.8 −41.6 −42.4 −43.3 −44.1 −45.0 −46.3 −47.1 −47.5 −48.5 −49.3 −50.2 −50.8 −51.9 −53.2 −54.0 −54.6 −55.8 −56.7 −57.5 LO port S11 MAG. ANG. 0.981 0.978 0.978 0.972 0.966 0.958 0.950 0.949 0.943 0.936 0.933 0.922 0.920 0.913 0.903 0.901 0.899 0.892 0.887 0.881 0.872 0.883 0.865 0.859 0.856 0.850 0.848 0.842 0.835 0.834 0.823 0.819 0.816 0.811 0.804 0.805 0.800 0.798 0.793 0.783 0.785 0.777 0.773 0.763 0.762 0.759 0.755 0.748 0.744 0.740 0.733 0.726 0.725 0.719 0.712 0.704 0.698 0.696 0.686 0.681 −1.5 −3.1 −4.6 −5.9 −7.2 −8.5 −9.9 −11.0 −12.2 −13.2 −14.3 −15.4 −16.3 −17.4 −18.5 −19.4 −20.2 −21.4 −22.4 −23.3 −24.3 −24.8 −26.1 −27.0 −28.3 −29.2 −29.8 −30.9 −31.3 −32.4 −33.3 −34.4 −34.9 −36.3 −36.7 −37.7 −38.6 −39.7 −40.4 −41.3 −42.3 −43.0 −43.9 −45.2 −45.9 −46.8 −47.5 −48.7 −49.5 −50.6 −51.5 −52.3 −53.5 −53.9 −54.8 −55.8 −56.7 −57.8 −58.6 −59.7 45 µPC2757TB µPC2757TB VCC = 3.0 V, VPS = GND VCC = VPS = 3.0 FREQUENCY MHz 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 46 IF port S22 MAG. ANG. 0.477 0.472 0.471 0.470 0.466 0.463 0.462 0.459 0.456 0.452 0.448 0.445 0.442 0.438 0.435 0.431 0.426 0.422 0.417 0.415 0.410 0.406 0.401 0.395 0.391 0.388 174.6 172.8 170.9 169.2 167.5 165.9 164.3 162.2 161.0 159.5 158.0 156.3 155.1 153.7 152.5 150.7 149.5 148.3 146.9 145.9 144.7 143.2 142.2 140.5 139.9 138.7 FERQUENCY MHz 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 Application Note P11997EJ2V0AN00 IF port S22 MAG. ANG. 0.955 0.998 0.997 0.998 0.997 0.996 0.998 0.996 0.997 0.996 0.993 0.993 0.994 0.990 0.990 0.989 0.989 0.983 0.987 0.983 0.983 0.984 0.980 0.982 0.980 0.979 −1.5 −1.9 −2.3 −2.8 −2.9 −3.2 −3.6 −4.1 −4.4 −4.7 −5.0 −5.3 −5.6 −5.8 −6.1 −6.3 −6.7 −7.1 −7.3 −7.5 −7.8 −7.9 −8.5 −8.7 −8.9 −9.3 µPC2758TB VCC = VPS = 3.0 FREQUENCY MHz 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 RF port S11 MAG. ANG. 0.959 0.958 0.957 0.953 0.950 0.943 0.939 0.930 0.926 0.919 0.910 0.901 0.894 0.884 0.877 0.868 0.858 0.848 0.840 0.831 0.818 0.814 0.794 0.782 0.774 0.761 0.748 0.737 0.722 0.711 0.700 0.688 0.674 0.663 0.652 0.638 0.626 0.614 0.602 0.592 0.578 0.568 0.554 0.544 0.532 0.523 0.514 0.504 0.492 0.485 0.479 0.469 0.460 0.453 0.445 0.437 0.429 0.422 0.415 0.406 −2.0 −4.2 −6.4 −8.5 −10.6 −12.6 −14.7 −16.8 −18.7 −20.6 −22.6 −24.7 −26.5 −28.5 −30.4 −32.4 −34.3 −36.2 −38.2 −40.1 −42.0 −43.8 −45.9 −47.8 −49.4 −51.3 −53.4 −55.1 −56.7 −58.3 −60.1 −62.0 −63.8 −65.5 −67.3 −68.8 −70.4 −72.3 −73.7 −75.4 −77.1 −78.6 −80.0 −81.7 −82.9 −84.3 −85.8 −87.2 −88.7 −90.2 −91.5 −93.1 −94.9 −96.5 −98.1 −99.6 −101.9 −103.1 −104.9 −106.3 LO port S11 MAG. ANG. 0.959 0.955 0.948 0.943 0.930 0.913 0.899 0.880 0.862 0.841 0.823 0.803 0.786 0.765 0.751 0.733 0.722 0.707 0.689 0.680 0.672 0.667 0.651 0.637 0.625 0.617 0.605 0.599 0.588 0.578 0.572 0.560 0.551 0.541 0.533 0.522 0.517 0.505 0.497 0.486 0.475 0.467 0.460 0.456 0.443 0.436 0.427 0.420 0.414 0.406 0.398 0.395 0.382 0.380 0.371 0.362 0.356 0.347 0.341 0.336 −2.9 −6.4 −8.8 −11.3 −14.2 −16.8 −19.4 −21.8 −24.0 −26.1 −28.0 −29.8 −31.4 −32.8 −34.4 −35.3 −36.9 −38.1 −39.3 −40.4 −41.6 −42.9 −44.2 −45.0 −46.4 −47.8 −48.7 −50.0 −51.1 −52.4 −53.5 −54.7 −56.0 −57.0 −58.3 −59.4 −60.8 −61.6 −62.7 −64.1 −64.6 −66.2 −67.1 −67.9 −68.9 −70.0 −71.0 −71.9 −73.0 −73.6 −74.6 −76.2 −76.8 −78.0 −79.7 −80.5 −81.8 −83.4 −84.2 −85.0 µPC2758TB VCC = 3.0 V, VPS = GND RF port FREQUENCY S11 MHz MAG. ANG. 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 Application Note P11997EJ2V0AN00 0.981 0.980 0.976 0.973 0.969 0.963 0.954 0.952 0.946 0.939 0.932 0.923 0.917 0.911 0.902 0.897 0.887 0.881 0.875 0.870 0.863 0.863 0.849 0.843 0.837 0.828 0.824 0.813 0.806 0.802 0.797 0.791 0.785 0.782 0.773 0.771 0.763 0.758 0.753 0.748 0.742 0.738 0.730 0.725 0.720 0.716 0.709 0.705 0.697 0.692 0.688 0.682 0.677 0.670 0.664 0.659 0.654 0.648 0.642 0.637 −1.5 −3.1 −4.6 −5.9 −7.3 −8.6 −10.0 −11.1 −12.2 −13.4 −14.6 −15.8 −16.7 −17.9 −18.8 −19.9 −21.0 −21.8 −22.7 −23.7 −24.8 −25.4 −26.7 −27.5 −28.3 −29.0 −30.1 −31.0 −31.4 −32.4 −33.2 −33.9 −35.0 −35.7 −36.7 −37.5 −38.3 −39.2 −39.8 −41.0 −41.9 −42.7 −43.7 −44.5 −45.3 −46.0 −47.0 −47.8 −48.7 −49.5 −50.3 −51.2 −52.2 −53.0 −53.8 −54.7 −55.5 −56.5 −57.4 −58.2 LO port S11 MAG. ANG. 0.983 0.979 0.974 0.973 0.970 0.957 0.953 0.948 0.944 0.937 0.931 0.923 0.917 0.908 0.903 0.895 0.891 0.882 0.872 0.865 0.861 0.868 0.851 0.840 0.834 0.829 0.824 0.818 0.808 0.804 0.800 0.790 0.788 0.782 0.774 0.769 0.769 0.763 0.759 0.753 0.749 0.742 0.737 0.738 0.731 0.724 0.719 0.713 0.710 0.703 0.693 0.695 0.684 0.680 0.671 0.664 0.662 0.654 0.653 0.645 −1.7 −3.0 −4.7 −6.1 −7.5 −8.9 −10.4 −11.3 −12.8 −14.0 −15.2 −16.3 −17.4 −18.7 −19.6 −20.5 −21.7 −22.9 −23.6 −24.4 −25.4 −26.4 −27.4 −28.0 −29.1 −30.1 −30.8 −31.9 −32.3 −33.4 −34.1 −34.9 −35.7 −36.6 −37.5 −38.3 −39.2 −39.7 −40.7 −41.9 −42.6 −43.5 −44.5 −45.4 −46.4 −47.2 −48.0 −48.7 −49.9 −50.2 −51.3 −52.6 −53.1 −54.1 −55.7 −55.9 −56.8 −57.7 −58.6 −59.6 47 µPC2758TB µPC2758TB VCC = 3.0 V, VPS = GND VCC = VPS = 3.0 FREQUENCY MHz 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 48 IF port S22 MAG. ANG. 0.575 0.572 0.568 0.565 0.560 0.554 0.547 0.542 0.536 0.530 0.523 0.517 0.510 0.502 0.495 0.487 0.480 0.473 0.465 0.457 0.450 0.443 0.435 0.428 0.422 0.413 172.8 170.2 168.0 165.8 163.9 161.8 159.8 157.9 156.0 154.3 152.6 150.8 149.1 147.6 146.0 144.5 143.1 141.5 140.1 138.7 137.4 136.2 134.9 133.7 132.5 131.3 FERQUENCY MHz 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 Application Note P11997EJ2V0AN00 IF port S22 MAG. ANG. 0.996 0.999 0.997 0.996 0.997 0.995 0.995 0.994 0.993 0.993 0.992 0.991 0.989 0.988 0.989 0.990 0.987 0.985 0.985 0.985 0.983 0.981 0.979 0.980 0.976 0.976 −1.7 −2.1 −2.3 −2.6 −3.0 −3.5 −3.6 −4.0 −4.3 −4.7 −5.0 −5.3 −5.6 −5.9 −6.2 −6.5 −6.7 −7.2 −7.5 −7.7 −8.0 −8.3 −8.5 −9.0 −9.1 −9.4 µPC8112TB VCC = VPS = 3.0 V FREQUENCY MHz 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 RF port S11 MAG. ANG. 0.944 0.935 0.936 0.936 0.929 0.919 0.921 0.910 0.903 0.896 0.885 0.874 0.867 0.855 0.844 0.833 0.825 0.809 0.801 0.789 0.774 0.772 0.752 0.736 0.727 0.715 0.706 0.690 0.681 0.669 0.658 0.643 0.630 0.617 0.602 0.584 0.565 0.547 0.526 0.512 0.501 0.490 0.479 0.474 0.466 0.457 0.450 0.443 0.738 0.728 0.424 0.420 0.411 0.410 0.405 0.402 0.399 0.389 0.389 0.382 −2.8 −5.0 −7.4 −9.5 −12.0 −14.3 −16.7 −18.9 −21.1 −23.3 −25.7 −28.1 −30.3 −32.4 −34.7 −36.7 −38.9 −40.9 −43.0 −44.9 −47.0 −48.9 −50.8 −52.9 −54.6 −56.8 −58.6 −60.8 −62.7 −64.7 −66.4 −68.4 −71.1 −73.2 −75.3 −77.3 −78.7 −80.2 −81.6 −82.5 −83.5 −84.8 −85.4 −86.7 −87.7 −88.8 −89.9 −91.1 −92.3 −93.1 −94.6 −96.0 −97.5 −98.9 −99.9 −101.8 −103.3 −105.5 −106.1 −108.6 LO port S11 MAG. ANG. 0.965 0.963 0.959 0.955 0.946 0.943 0.933 0.934 0.930 0.926 0.922 0.918 0.912 0.911 0.904 0.901 0.898 0.892 0.883 0.883 0.875 0.881 0.867 0.860 0.855 0.847 0.840 0.841 0.834 0.827 0.820 0.816 0.803 0.798 0.790 0.782 0.771 0.763 0.757 0.749 0.745 0.739 0.733 0.727 0.724 0.720 0.715 0.710 0.703 0.698 0.690 0.682 0.677 0.671 0.666 0.664 0.650 0.651 0.641 0.636 −1.5 −2.7 −4.2 −5.3 −6.6 −7.5 −8.6 −9.5 −10.7 −11.6 −12.4 −13.5 −14.4 −15.4 −16.3 −17.4 −18.5 −19.5 −20.3 −21.0 −21.8 −23.0 −24.1 −24.8 −25.8 −26.8 −27.6 −28.7 −29.5 −30.6 −31.3 −32.7 −33.4 −34.4 −35.2 −36.2 −36.6 −37.4 −38.1 −38.8 −39.0 −40.1 −40.9 −41.8 −42.3 −43.0 −43.8 −44.7 −45.4 −46.0 −47.0 −47.9 −48.5 −49.4 −49.6 −50.6 −51.6 −52.1 −53.0 −53.8 µPC8112TB VCC = 3.0 V, VPS = GND RF port FREQUENCY S11 MHz MAG. ANG. 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000 350.0000 400.0000 450.0000 500.0000 550.0000 600.0000 650.0000 700.0000 750.0000 800.0000 850.0000 900.0000 950.0000 1000.0000 1050.0000 1100.0000 1150.0000 1200.0000 1250.0000 1300.0000 1350.0000 1400.0000 1450.0000 1500.0000 1550.0000 1600.0000 1650.0000 1700.0000 1750.0000 1800.0000 1850.0000 1900.0000 1950.0000 2000.0000 2050.0000 2100.0000 2150.0000 2200.0000 2250.0000 2300.0000 2350.0000 2400.0000 2450.0000 2500.0000 2550.0000 2600.0000 2650.0000 2700.0000 2750.0000 2800.0000 2850.0000 2900.0000 2950.0000 3000.0000 Application Note P11997EJ2V0AN00 0.985 0.985 0.984 0.984 0.979 0.971 0.969 0.969 0.965 0.961 0.954 0.950 0.944 0.941 0.935 0.927 0.923 0.913 0.911 0.907 0.897 0.901 0.884 0.875 0.867 0.863 0.858 0.842 0.838 0.830 0.822 0.814 0.807 0.802 0.791 0.786 0.780 0.775 0.763 0.755 0.751 0.739 0.735 0.725 0.722 0.715 0.707 0.700 0.695 0.682 0.675 0.668 0.661 0.656 0.647 0.639 0.636 0.628 0.620 0.615 −1.5 −2.7 −4.1 −5.5 −6.8 −8.0 −9.4 −10.7 −11.9 −13.1 −14.5 −15.8 −17.0 −18.1 −19.5 −20.6 −21.7 −22.9 −24.4 −25.2 −26.3 −27.3 −28.7 −29.9 −30.8 −32.2 −33.4 −34.5 −35.1 −36.2 −37.1 −38.1 −39.6 −40.1 −41.6 −42.6 −43.4 −44.5 −45.5 −46.4 −47.3 −48.7 −49.2 −50.5 −51.2 −52.4 −53.0 −54.3 −55.2 −56.0 −56.9 −58.1 −59.1 −60.3 −61.0 −61.8 −63.0 −63.8 −64.9 −65.9 LO port S11 MAG. ANG. 0.976 0.982 0.979 0.977 0.974 0.972 0.965 0.968 0.965 0.961 0.960 0.957 0.949 0.948 0.943 0.943 0.936 0.938 0.928 0.928 0.923 0.930 0.914 0.906 0.904 0.903 0.896 0.896 0.891 0.885 0.879 0.878 0.865 0.865 0.855 0.854 0.845 0.838 0.834 0.831 0.829 0.827 0.718 0.817 0.812 0.809 0.804 0.803 0.795 0.793 0.785 0.778 0.773 0.771 0.766 0.764 0.752 0.752 0.746 0.741 −1.1 −2.0 −3.1 −3.9 −4.9 −5.8 −6.7 −7.5 −8.5 −9.5 −10.3 −11.1 −12.0 −12.8 −13.6 −14.6 −15.4 −16.2 −16.9 −17.9 −18.6 −19.3 −20.4 −20.9 −21.8 −23.0 −23.5 −24.2 −25.1 −25.9 −26.7 −27.7 −28.2 −29.0 −29.8 −30.6 −31.2 −31.8 −32.6 −33.2 −33.6 −34.4 −35.4 −36.2 −36.6 −37.2 −38.1 −39.0 −39.5 −40.7 −41.4 −42.3 −42.5 −43.5 −44.0 −44.8 −45.6 −46.3 −47.3 −47.9 49 µPC8112TB VCC = VPS = 3.0, V FREQUENCY MHz 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 50 µPC8112TB VCC = 3.0 V, VPS = GND IF port S22 MAG. ANG. 0.995 0.993 0.995 0.992 0.993 0.994 0.990 0.989 0.990 0.991 0.990 0.991 0.988 0.988 0.984 0.988 0.984 0.984 0.981 0.983 0.982 0.981 0.979 0.978 0.977 0.978 −1.5 −1.9 −2.4 −2.7 −2.9 −3.3 −3.6 −4.0 −4.4 −4.7 −4.9 −5.3 −5.6 −6.0 −6.4 −6.5 −7.2 −7.2 −7.4 −7.8 −8.1 −8.8 −8.6 −9.1 −9.2 −9.6 FERQUENCY MHz 50.0000 60.0000 70.0000 80.0000 90.0000 100.0000 110.0000 120.0000 130.0000 140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000 230.0000 240.0000 250.0000 260.0000 270.0000 280.0000 290.0000 300.0000 Application Note P11997EJ2V0AN00 IF port S22 MAG. ANG. 0.999 0.998 1.000 0.995 1.000 0.998 0.995 0.995 0.996 0.993 0.993 0.992 0.991 0.991 0.987 0.991 0.985 0.987 0.984 0.983 0.984 0.983 0.982 0.982 0.980 0.977 −1.5 −1.9 −2.3 −2.6 −2.8 −3.2 −3.5 −4.0 −4.3 −4.6 −4.7 −5.0 −5.4 −5.8 −5.9 −6.3 −6.8 −6.8 −7.0 −7.5 −7.7 −8.2 −8.3 −8.6 −8.7 −8.9 Facsimile Message From: Name Company Tel. Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us. FAX Address Thank you for your kind support. North America Hong Kong, Philippines, Oceania NEC Electronics Inc. NEC Electronics Hong Kong Ltd. Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: 1-800-729-9288 1-408-588-6130 Korea Europe NEC Electronics Hong Kong Ltd. NEC Electronics (Europe) GmbH Seoul Branch Technical Documentation Dept. Fax: 02-528-4411 Fax: +49-211-6503-274 South America NEC do Brasil S.A. Fax: +55-11-6465-6829 Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583 Japan NEC Semiconductor Technical Hotline Fax: 044-548-7900 Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951 I would like to report the following error/make the following suggestion: Document title: Document number: Page number: If possible, please fax the referenced page or drawing. Document Rating Excellent Good Acceptable Poor Clarity Technical Accuracy Organization CS 99.1