ETC AN2526FH

ICs for TV
AN2526FH
Automotive LCD color TV signal processor IC
■ Overview
Unit: mm
The AN2526FH is an IC optimized for the automotive
TV, incorporating a synchronous stabilizing circuit into
the LCD signal processor IC. In response to the demand
for a compact and low cost set product, it is available not
only for the three-wire serial control but also for the I2C bus
control.
12.00±0.20
10.00±0.20
48
33
32
(1.25)
10.00±0.20
12.00±0.20
49
64
■ Applications
16
0.50
+0.1
0.18–0.05
+0.10
(1.25)
17
1
0.15–0.05
1.95±0.20
• Volume-less thanks to built-in I2C
• High performance synchronous stabilizing circuit built-in
• Analog OSD
• PWM circuit built in (Duty variable)
• Difference from AN2526NFH
Unlike the AN2526NFH, it controls a synchronous system gain at no signal input, thus causing no screen abnormalities like shaking sideways. (It is suited for the set
featuring in no signal input mode.)
0.10±0.10
■ Features
Seating plane
(1.00)
0° to 10°
0.50±0.20
QFP064-P-1010
Note) The package of this product will be changed
to lead-free type (QFP064-P-1010A). See the
new package dimensions section later of this
datasheet.
• Automotive TV
Publication date: December 2002
SDB00050BEB
1
2
Composite
signal
SDB00050BEB
B−Y in
R−Y in
2
1
1 µF
GCA
1 µF
3
15 µF
VREF
GCA ctl.
Delay
Delay
1 µF
Matrix
GCA
Int./Ext. SW
LPF
Demod.
CLMP
Color-ctl.
Int./Ext. SW
CLP
BGP
Contrast
Contrast
ctl.
Det.
Gamma
ctl.
White
peak ctl.
POL
Logic
Logic
Logic
PWM
COMON
voltage
YS
15
14
13
12
11
10
9
8
7
6
5
4
VD
HD
17
18
19
20
21
22
23
24
25
26
27
28
29
2.2 µF
15 µF
82 kΩ
330 pF
200 kΩ
B-out
G-out
VCC2
47 µH (7.5
V)
50 kB
GND1
R-out
VCOM
TMODE
Test CLK
0.01 µF
VCC1
2.2 µF
2.2 µF
Field
30 C-sync.
31
32
82 kΩ
330 pF
100 kΩ
VCC1
• C coupling input in an analog OSD mode.
• Connect to GND in case of no use
in a digital OSD mode.
Bright-ctl. WB-ctl.
Bright
Gamma
Amp.
AVE det.
VCOM
adj.
Logic
16
15 µF
47 µH
GCA
YAP ctl.
Tint-ctl.
to φ4 Gene.
41
VCC1
(5.0 V)
64
63
62
61
60
Trap
φ1
Tint
PAL 1/2
CW/SW
Line I-det.
1/n
PH-CMP
37
B−Y out
R−Y out
4.7 µF
GND 3
59
58
CLMP
(BGP)
VXO
APC det.
Kill det.
f-det.
Sync.DRP
Logic
36
NTSC 39 pF
PAL 27 pF
47 µH
57
56
55
54
53
HH-KIL
VCO
DAC
35
1 µF 5.1 kΩ
NTSC
3.58 MHz
PAL
4.43 MHz
0.1 µF
0.1 µF
ACC det.
43
1 MΩ
0.02 µF
Logic
ACC amp.
47
52
HPF
48
V-C/D
44
51
46
DAC
45
LATCH
42
BUSCH
NRGB
0.02 µF
S-data
40
0.1 µF
SCLCK
39
50
GND2
0.1 µF
DAC mon.
38
Reg.
Clamp
Logic
VSS
34
Sync.
sepa.
2.2 µF
33
LD
BUSCH
DEC
15 µF
1 000 pF
100 kΩ
PWM
Shift res.
510 kΩ
POL
49
180 kΩ
10 kΩ
510 kΩ
VCC1
PONR
1 000 pF
470 Ω 1.0 µF
3.3 kΩ
0.47 µF
0.022 µF
AN2526FH
■ Application Circuit Examples
1. Composite signal input
BLAK
B-in 2
G-in 2
R-in 2
B-in 1
G-in 1
R-in 1
Dec. B-out
Dec. G-out
Dec. R-out
SDB00050BEB
B−Y in
R−Y in
2
1
1 µF
1 µF
3
15 µF
GCA
1 µF
Matrix
GCA
Int./Ext. SW
LPF
Demod.
CLMP
Color-ctl.
Int./Ext. SW
CLP
BGP
PH-CMP
Contrast
Contrast
ctl.
Det.
Gamma
ctl.
White
peak ctl.
POL
Logic
Logic
Logic
COMON
voltage
VD
HD
17
18
19
20
21
22
23
24
25
26
27
28
29
2.2 µF
15 µF
82 kΩ
330 pF
200 kΩ
B-out
G-out
VCC2
47 µH (7.5
V)
50 kB
GND1
R-out
VCOM
TMODE
Test CLK
0.01 µF
VCC1
2.2 µF
2.2 µF
Field
30 C-sync.
31
32
82 kΩ
330 pF
100 kΩ
VCC1
2. Component signal input
YS
15
14
13
12
11
10
9
8
7
6
• C coupling input in an analog OSD mode.
• Connect to GND in case of no use
in a digital OSD mode.
Bright-ctl. WB-ctl.
Bright
Gamma
Amp.
AVE det.
VCOM
adj.
Logic
PWM
2.2 µF
16
15 µF
47 µH
VREF
GCA ctl.
Delay
Delay
CW/SW
1/n
41
VCC1
(5.0 V)
64
63
62
61
60
YAP ctl.
Tint-ctl.
to φ4 Gene.
GCA
φ1
Tint
PAL 1/2
f-det.
Sync.DRP
37
B−Y out
R−Y out
4.7 µF
59
Trap
CLMP
(BGP)
VXO
APC det.
Line I-det.
HH-KIL
Logic
36
GND 3
58
57
56
55
Kill det.
ACC det.
VCO
DAC
35
1 µF 5.1 kΩ
NTSC
3.58 MHz
PAL
4.43 MHz
0.1 µF
54
53
Logic
ACC amp.
43
1 MΩ
0.02 µF
52
HPF
47
0.1 µF
51
48
V-C/D
44
0.02 µF
46
DAC
45
LATCH
42
BUSCH
NRGB
0.1 µF
S-data
40
Chroma
signal
SCLCK
39
50
GND2
0.1 µF
DAC mon.
38
Reg.
Clamp
Logic
VSS
34
Sync.
sepa.
15 µF
33
LD
BUSCH
DEC
510 kΩ
1 000 pF
100 kΩ
PWM
Shift res.
3.3 kΩ
POL
49
180 kΩ
10 kΩ
VCC1
510 kΩ
PONR
1 000 pF
Lumi. + Sync. 470 Ω 1.0 µF
signal
0.47 µF
0.022 µF
AN2526FH
■ Application Circuit Examples (continued)
BLAK
B-in 2
G-in 2
R-in 2
B-in 1
G-in 1
R-in 1
Dec. B-out
Dec. G-out
Dec. R-out
5
4
3
4
SDB00050BEB
GND 3
64
63
Matrix
CLMP
Color-ctl.
41
1
15 µF
GCA
GCA
Int./Ext. SW
LPF
Demod.
1/n
8
4.7 µF
Int./Ext. SW
9
4.7 µF
10
4.7 µF
CLP
BGP
PH-CMP
Contrast
Contrast
ctl.
Det.
Gamma
ctl.
White
peak ctl.
POL
Logic
Logic
Logic
COMON
voltage
YS
15
14
13
12
11
VD
HD
17
18
19
20
21
22
23
24
25
26
27
28
29
2.2 µF
15 µF
82 kΩ
330 pF
200 kΩ
82 kΩ
330 pF
B-out
G-out
VCC2
47 µH (7.5
V)
50 kB
GND1
R-out
VCOM
TMODE
Test CLK
0.01 µF
VCC1
2.2 µF
2.2 µF
Field
30 C-sync.
31
32
100 kΩ
VCC1
• C coupling input in an analog OSD mode.
• Connect to GND in case of no use
in a digital OSD mode.
Bright-ctl. WB-ctl.
Bright
Gamma
Amp.
AVE det.
VCOM
adj.
Logic
PWM
2.2 µF
16
15 µF
47 µH
VREF
GCA ctl.
Delay
Delay
CW/SW
PAL 1/2
f-det.
Sync.DRP
37
62
61
60
Tint-ctl.
to φ4 Gene.
GCA
YAP ctl.
Trap
CLMP
(BGP)
φ1
Tint
Line I-det.
HH-KIL
Logic
36
59
58
57
VXO
APC det.
Kill det.
ACC det.
VCO
DAC
35
56
55
54
48
Logic
47
ACC amp.
46
HPF
43
53
S-data
V-C/D
44
52
45
DAC
42
LATCH
NRGB
51
SCLCK
40
BUSCH
GND2
39
50
DAC mon.
38
Reg.
Clamp
Logic
VSS
34
Sync.
sepa.
15 µF
33
LD
BUSCH
DEC
510 kΩ
1 000 pF
100 kΩ
PWM
Shift res.
3.3 kΩ
POL
49
180 kΩ
10 kΩ
VCC1
510 kΩ
PONR
1 000 pF
Composite 470 Ω 1.0 µF
signal
0.47 µF
0.022 µF
AN2526FH
■ Application Circuit Examples (continued)
3. Analog RGB signal input
BLAK
B-in 2
G-in 2
R-in 2
B-in 1
G-in 1
R-in 1
7
6
5
4
3
2
VCC1
(5.0 V)
AN2526FH
■ Pin Descriptions
Pin No.
Description
Pin No.
Description
1
VCC1 (5.0 V)
33
PWM output pin
2
Reference voltage pin
34
Power-on reset detection pin
3
R-ch. clamp detection pin
35
Vertical synchronous signal input pin
4
G-ch. clamp detection pin
36
1H reverse signal input pin
5
B-ch. clamp detection pin
37
Clock-system GND (VSS)
6
R-ch. decoder output pin
38
Clamp pulse input pin
7
G-ch. decoder output pin
39
DAC monitor pin
8
B-ch. decoder output pin
40
Clock-system power supply (3.0 V)
9
R-ch. analog signal input pin
41
GND 2
10
G-ch. analog signal input pin
42
Analog imposing control signal input pin
11
B-ch. analog signal input pin
43
AFC loop filter connecting pin
12
R-ch. analog/character signal input pin
44
VCO frequency adjustment pin
13
G-ch. analog/character signal input pin
45
Synchronous signal input pin
14
B-ch. analog/character signal input pin
46
Serial/I2C bus switching pin
15
Black level indication control signal input pin
47
Serial data shift clock input pin
16
Character picking up pulse input pin
48
Serial data input pin
17
B-ch. output pin
49
Serial data write pulse input pin
18
B-ch. output DC feedback detection pin
50
ACC detection pin
19
G-ch. output pin
51
ACC input pin
20
VCC2 (7.5 V)
52
Horizontal clock detection pin
21
Drive output reference potential input pin
53
Chrominance killer detection pin
22
GND 1
54
APC detection pin
23
G-ch. output DC feedback detection pin
55
VXO input pin
24
R-ch. output pin
56
VXO output pin
25
R-ch. output DC feedback detection pin
57
Y-system clamp detection pin
26
Common reverse signal output pin
58
Chrominance signal trap filter connection pin
27
Testing pulse input pin
59
GND 3
28
Testing clock input pin
60
Luminance signal input pin
29
Field identification signal output pin
61
R-Y output pin
30
Composite synchronous signal output pin
62
B-Y output pin
31
Vertical synchronous signal output pin
63
R-Y input pin
32
Horizontal synchronous signal output pin
64
B-Y input pin
SDB00050BEB
5
AN2526FH
■ Absolute Maximum Ratings
Parameter
Supply voltage
Symbol
Rating
Unit
VCC1
5.5
V
VCC2
8.5
ICC

mA
PD
423
mW
Topr
−30 to +85
°C
Tstg
−55 to +150
°C
Supply current
Power dissipation
*2
Operating ambient temperature
Storage temperature
*1
*1
Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for Ta = 25°C.
*2: The power dissipation shown is the value in free air for Topr = 85°C.
■ Recommended Operating Range
Parameter
Supply voltage
Symbol
Range
Unit
VCC1
4.7 to 5.3
V
VCC2
7.0 to 8.0
■ Electrical Characteristics at Ta = 25°C
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
VCC1-system current consumption
ITOTAL1

29

43
mA
VCC2-system current consumption
ITOTAL2

6.0

14.0
mA
Pin 2 voltage
V2

1.8

2.2
V
Pin 40 voltage
V40

2.7

3.3
V
GRY
SG3 (Yy = −17 dB, Ys = 0 V[p-p],
NTSC), ch.1 = "C0"
9.5

14.5
dB
GRYGY
SG3 (Yy = −17 dB, Ys = 0 V[p-p],
NTSC), ch.1 = "C0"
−8.0

−4.0
dB
GBY
SG3 (Yy = −17 dB, Ys = 0 V[p-p],
NTSC), ch.1 = "C0"
9.5

14.5
dB
B-Y/G-Y relative gain
GBYGY
SG3 (Yy = −17 dB, Ys = 0 V[p-p],
NTSC), ch.1 = "C0"
−20.5

−12.5
dB
High-level APC pull-in
APH
SG5 (4.43 MHz + 520 Hz, PAL)
500

540
Hz
Low-level APC pull-in
APL
SG5 (4.43 MHz − 520 Hz, PAL)
−540

−500
Hz
DC
Chrominance system
R-Y standard gain
R-Y/G-Y relative gain
B-Y standard gain
6
ACC output characteristic 1
GACC1
SG5 (0 dB, 6 dB, NTSC), ch.1 = "80"
−1.0

1.0
dB
ACC output characteristic 2
GACC2
SG5 (0 dB, 6 dB, NTSC), ch.1 = "80"
−1.0

1.0
dB
Chrominance killer characteristic 1
VKILL1
SG5 (−30 dB, NTSC)
ch.1 = "80", ch.2 = "80", ch.5 = "FF"
400


mV[p-p]
Chrominance killer characteristic 2
VKILL2
SG5 (−50 dB, NTSC)
ch.1 = "80", ch.2 = "80", ch.5 = "FF"


600 mV[p-p]
SDB00050BEB
AN2526FH
■ Electrical Characteristics at Ta = 25°C (continued)
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
Y-system
Sharpness control characteristic
GSH
SG1 (2 MHz, NTSC)
ch.1 = "80", ch.9 = "80"/"FF"
1.0


dB
Sharpness frequency characteristic 1
fSH1
SG1 (100 kHz/2 MHz, NTSC)
ch.1 = "80"
3.5


dB
R-ch. contrast adjustment range 1
CTRR1
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment
ch.15 = "C0"/"FF"
1.5


dB
G-ch. contrast adjustment range 1
CTRG1
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment
ch.15 = "C0"/"FF"
1.5


dB
B-ch. contrast adjustment range 1
CTRB1
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment
ch.15 = "C0"/"FF"
1.5


dB
R-ch. contrast adjustment range 2
CTRR2
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment
ch.15 = "C0"/"80"


−5.2
dB
G-ch. contrast adjustment range 2
CTRG2
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment
ch.15 = "C0"/"80"


−5.2
dB
B-ch. contrast adjustment range 2
CTRB2
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment
ch.15 = "C0"/"80"


−5.2
dB
VPEDRmin SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment, ch.8 = "FF"
ch.15 = "C0"


2.0
V[p-p]
G-ch. pedestal amplitude minimum VPEDGmin SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment, ch.8 = "FF"
ch.15 = "C0"


2.0
V[p-p]
VPEDBmin SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment, ch.8 = "FF"
ch.15 = "C0"


2.0
V[p-p]
R-ch. pedestal amplitude minimum
B-ch. pedestal amplitude minimum
SDB00050BEB
7
AN2526FH
■ Electrical Characteristics at Ta = 25°C (continued)
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
R-ch. pedestal amplitude maximum VPEDRmax SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment, ch.8 = "00"
ch.15 = "C0"
3.0


V[p-p]
G-ch. pedestal amplitude maximum VPEDGmax SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment, ch.8 = "00"
ch.15 = "C0"
3.0


V[p-p]
B-ch. pedestal amplitude maximum VPEDBmax SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12/13/14 = "FF"
ch.8/10/11 adjustment, ch.8 = "00"
ch.15 = "C0"
3.0


V[p-p]
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11 adjustment, ch.15 = "C0"
2.2

2.5
V[p-p]
Y-system (continued)
G-ch. output DC voltage
8
VGDC
R-ch. gamma characteristic 1
GGAMR1
SG3 (NTSC), ch.1 = "E0", ch.2 = "40" −8.5
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment

−3.5
dB
G-ch. gamma characteristic 1
GGAMG1
SG3 (NTSC), ch.1 = "E0", ch.2 = "40" −8.5
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment

−3.5
dB
B-ch. gamma characteristic 1
GGAMB1
SG3 (NTSC), ch.1 = "E0", ch.2 = "40" −8.5
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment

−3.5
dB
R-ch. gamma characteristic 2
GGAMR2
SG3 (NTSC), ch.1 = "E0", ch.4 = "40" −8.2
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.13 = "80"/"FF"


dB
G-ch. gamma characteristic 2
GGAMG2
SG3 (NTSC), ch.1 = "E0", ch.4 = "40" −8.2
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.13 = "80"/"FF"


dB
B-ch. gamma characteristic 2
GGAMB2
SG3 (NTSC), ch.1 = "E0", ch.4 = "40" −8.2
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.13 = "80"/"FF"


dB
R-ch. gamma characteristic 3
GGAMR3
SG3 (NTSC), ch.1 = "E0", ch.2 = "40" −3.5
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.13 = "80"/"60"

0.5
dB
SDB00050BEB
AN2526FH
■ Electrical Characteristics at Ta = 25°C (continued)
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
Y-system (continued)
G-ch. gamma characteristic 3
GGAMG3
SG3 (NTSC), ch.1 = "E0", ch.2 = "40" −3.5
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.13 = "80"/"60"

0.5
dB
B-ch. gamma characteristic 3
GGAMB3
SG3 (NTSC), ch.1 = "E0", ch.2 = "40" −3.5
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.13 = "80"/"60"

0.5
dB
R-ch. white limiter low-level
VWRRL
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "00", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.15 = "FF"


3.0
V[p-p]
G-ch. white limiter low-level
VWRGL
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "00", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.15 = "FF"


3.0
V[p-p]
B-ch. white limiter low-level
VWRBL
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "00", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.15 = "FF"


3.0
V[p-p]
R-ch. white limiter high-level
VWRRH
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.15 = "FF"
3.2


V[p-p]
G-ch. white limiter high-level
VWRGH
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.15 = "FF"
3.2


V[p-p]
B-ch. white limiter high-level
VWRBH
SG3 (NTSC), ch.1 = "E0", ch.2 = "40" 3.2
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment
ch.15 = "FF"


V[p-p]
R-ch. black limiter low-level
VBRRL
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.7 = "80", ch.12 = "FF"
ch.14 = "40", ch.8/10/11/15 adjustment
ch.8 = "00"
3.0


V
G-ch. black limiter low-level
VBRGL
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.7 = "80", ch.12 = "FF"
ch.14 = "40", ch.8/10/11/15 adjustment
ch.8 = "00"
3.0


V
SDB00050BEB
9
AN2526FH
■ Electrical Characteristics at Ta = 25°C (continued)
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
B-ch. black limiter low-level
VBRBL
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.7 = "80", ch.12 = "FF"
ch.14 = "40", ch.8/10/11/15 adjustment
ch.8 = "00"
3.0


V
R-ch. black limiter high-level
VBRRH
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF"
ch.8/10/11/15 adjustment, ch.7 = "FF"
ch.8 = "00", ch.14 = "40"


1.2
V
G-ch. black limiter high-level
VBRGH
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF"
ch.8/10/11/15 adjustment, ch.7 = "FF"
ch.8 = "00", ch.14 = "40"


1.2
V
B-ch. black limiter high-level
VBRBH
SG3 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF"
ch.8/10/11/15 adjustment, ch.7 = "FF"
ch.8 = "00", ch.14 = "40"


1.2
V
R-ch. YS threshold 1
VtYSR1
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = 1 V
0.8


V[p-p]
G-ch. YS threshold 1
VtYSG1
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = 1 V
0.8


V[p-p]
B-ch. YS threshold 1
VtYSB1
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = 1 V
0.8


V[p-p]
R-ch. YS threshold 2
VtYSR2
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = 4 V


0.5
V[p-p]
G-ch. YS threshold 2
VtYSG2
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = 4 V


0.5
V[p-p]
B-ch. YS threshold 2
VtYSB2
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = 4 V


0.5
V[p-p]
R-ch. black level
CHRRB
SG2 (NTSC), ch.1 = "E0", ch.2 = "40" − 0.6
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = SG7

0.6
V
G-ch. black level
CHRGB
SG2 (NTSC), ch.1 = "E0", ch.2 = "40" − 0.6
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = SG7

0.6
V
B-ch. black level
CHRBB
SG2 (NTSC), ch.1 = "E0", ch.2 = "40" − 0.6
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = SG7

0.6
V
Y-system (continued)
10
SDB00050BEB
AN2526FH
■ Electrical Characteristics at Ta = 25°C (continued)
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
R-ch. black level width
WCHRRB SG2 (NTSC), ch.1 = "E0", ch.2 = "40" 2.25
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = SG7

3.75
µs
G-ch. black level width
WCHRGB SG2 (NTSC), ch.1 = "E0", ch.2 = "40" 2.25
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = SG7

3.75
µs
B-ch. black level width
WCHRBB SG2 (NTSC), ch.1 = "E0", ch.2 = "40" 2.25
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 16 = SG7

3.75
µs
Y-system (continued)
R-ch. CHR threshold 1
VtCHR1
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 12 = 1 V
1.5


V[p-p]
G-ch. CHR threshold 1
VtCHG1
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 13 = 1 V
1.5


V[p-p]
B-ch. CHR threshold 1
VtCHB1
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 14 = 1 V
1.5


V[p-p]
R-ch. CHR threshold 2
VtCHR2
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 12 = 4 V
3.0


V[p-p]
G-ch. CHR threshold 2
VtCHG2
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 13 = 4 V
3.0


V[p-p]
B-ch. CHR threshold 2
VtCHB2
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 14 = 4 V
3.0


V[p-p]
R-ch. white level
CHRRW
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 12 = SG7
2.0


V[p-p]
G-ch. white level
CHRGW
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 13 = SG7
2.0


V[p-p]
B-ch. white level
CHRBW
SG2 (NTSC), ch.1 = "E0", ch.2 = "40"
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 14 = SG7
2.0


V[p-p]
R-ch. white level width
WCHRRW SG2 (NTSC), ch.1 = "E0", ch.2 = "40" 2.25
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 12 = SG7

3.75
µs
G-ch. white level width
WCHRGW SG2 (NTSC), ch.1 = "E0", ch.2 = "40" 2.25
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 13 = SG7

3.75
µs
SDB00050BEB
11
AN2526FH
■ Electrical Characteristics at Ta = 25°C (continued)
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
WCHRBW SG2 (NTSC), ch.1 = "E0", ch.2 = "40" 2.25
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, Pin 14 = SG7

3.75
µs
Y-system (continued)
B-ch. white level width
R-ch. RGB2 relative amplitude
VRGB2R
SG2 (NTSC), ch.1 = "A0"
− 0.45
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, ch.3 = "40"
ch.6 = "40", Pin 42 = 4 V

0.45
V[p-p]
B-ch. RGB2 relative amplitude
VRGB2B
SG2 (NTSC), ch.1 = "A0"
− 0.45
ch.5 = "80", ch.12 = "FF", ch.14 = "40"
ch.8/10/11/15 adjustment, ch.3 = "40"
ch.6 = "40", Pin 42 = 4 V

0.45
V[p-p]
Synchronous system
Horizontal sync. pulse low-level
VHDL



0.4
V
Horizontal sync. pulse amplitude
VHD

4.0


V[p-p]
Horizontal sync. pulse width
tHD

4.86

6.86
µs
Vertical sync. pulse low-level
VVDL



0.4
V
Vertical sync. pulse amplitude
VVD

4.0


V[p-p]
Horizontal sync. separation pulse
high-level
VHSSH
SG2 (NTSC)
4.0


V
Horizontal sync. separation pulse
amplitude
VHSS
SG2 (NTSC)
4.0


V[p-p]
Horizontal sync. separation pulse
width
tHSS
SG2 (NTSC)
3.8

5.8
µs
12
SDB00050BEB
AN2526FH
■ Electrical Characteristics at Ta = 25°C (continued)
• Testing signal waveform
Signal name
SG1
(Sine wave
Signal waveform
YV = 200 mV[p-p]
YY = 100 mV[p-p]
video signal)
YS = 300 mV[p-p]
SG2
YY = 700 mV[p-p]
(White signal)
YS = 300 mV[p-p]
YY = 700 mV[p-p]
SG3
(10-step wave)
YS = 300 mV[p-p]
Burst amplitude = 300 mV[p-p]
Chrominance amplitude = 600 mV[p-p]
SG5
(Color bar
Burst, chrominance frequency
NTSC = 3.579 545 MHz
PAL = 4.433 619 MHz
chrominance signal)
3.0 V
3 µs
SG7
(Character pulse)
GND
1H
SDB00050BEB
13
AN2526FH
■ Terminal Equivalent Circuits
Pin No.
Equivalent circuit
Description
Voltage · Waveform
1

VCC1:
5.0 V-system power supply pin
Supply current 40 mA typ.

VREF:
Reference voltage output pin
2.0 V typ.

R-ch. det.:
R-ch. clamping capacitor
coupling pin

G-ch. det.:
G-ch. clamping capacitor
coupling pin

B-ch. det.:
B-ch. clamping capacitor
coupling pin

2
Pin 1
VCC1
60 Ω
2
1 kΩ
26 kΩ
200 Ω
30 kΩ
3
1 kΩ
Pin 59
GND
Pin 1
1 kΩ VCC1
3
500 Ω
HSS
Pin 22
GND
4
1 kΩ
Pin 1
1 kΩ VCC1
4
500 Ω
HSS
Pin 22
GND
5
1 kΩ
Pin 1
1 kΩ VCC1
5
500 Ω
HSS
Pin 22
GND
14
SDB00050BEB
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
6
6
Description
Pin 1
VCC1
Dec.R-out:
Output pin of R signal demodulated from video signal
Pin 1
VCC1
Dec.G-out:
Output pin of G signal demodulated from video signal
Pin 1
VCC1
Dec.B-out:
Output pin of B signal demodulated from video signal
Voltage · Waveform
150 Ω
150 Ω
Pin 22
GND
7
7
150 Ω
150 Ω
Pin 22
GND
8
8
150 Ω
150 Ω
Pin 22
GND
9
R-in 1:
Analog R signal input
Pin 1
VCC1
Analog R signal
0.7 V[p-p]
typ.
9
BGP
5 kΩ
Pin 2
VREF
Pin 22
GND
SDB00050BEB
15
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
10
Description
G-in 1:
Analog G signal input
Pin 1
VCC1
Voltage · Waveform
Analog G signal
0.7 V[p-p]
typ.
5 kΩ
10
BGP
Pin 2
VREF
11
Pin 22
GND
B-in 1:
Analog B signal input
Pin 1
VCC1
Analog B signal
0.7 V[p-p]
typ.
5 kΩ
11
BGP
Pin 2
VREF
12
Pin 22
GND
R-in 2:
Character insertion signal input for R-ch., supporting analog and digital OSD.
Pin 1
VCC1
Analog OSD
0.7 V[p-p]
typ.
Digital OSD
5 kΩ
12
BGP
GND
Pin 2
VREF
13
VCC1
Pin 22
GND
G-in 2:
Character insertion signal input for G-ch., supporting analog and digital OSD.
Pin 1
VCC1
Analog OSD
0.7 V[p-p]
typ.
Digital OSD
13
BGP
5 kΩ
GND
Pin 2
VREF
16
VCC1
Pin 22
GND
SDB00050BEB
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
14
Pin 1
VCC1
Description
Voltage · Waveform
B-in 2:
Character insertion signal input for B-ch., supporting analog and digital OSD.
Analog OSD
0.7 V[p-p]
typ.
Digital OSD
5 kΩ
14
BGP
VCC1
GND
Pin 2
VREF
15
15
Pin 22
GND
BLK:
Black level indication control signal input pin
5 kΩ
49.3 kΩ
VCC1
GND
VSS
16
16
YS:
Character picking up signal
input
5 kΩ
49.3 kΩ
VCC1
GND
VSS
17
100 kΩ
Pin 18
Pin 20
VCC2
200 Ω
B-out:
B signal output pin
26 kΩ
17
2 kΩ
Pin 22
GND
18
100 kΩ
18
Pin 20
VCC2
Pin 17
2 kΩ
B-ch.AVE det.:
B-ch. output DC feedback
detection pin

8 kΩ
Pin 22
GND
SDB00050BEB
17
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
19
100 kΩ
Description
Pin 18
Pin 20
VCC2
200 Ω
Voltage · Waveform
G-out:
G signal output pin
26 kΩ
19
2 kΩ
Pin 22
GND

20
Pin 20
VCC2
21
200 kΩ
VCC2:
7.5 V system power supply
Supply current 12 mA typ.

AVE :
R,G,B output DC reference
voltage pin

GND 2:
Drive circuits system GND

G-ch.AVE det.:
G-ch. output DC feedback
detection pin

21
2 kΩ
200 kΩ
8 kΩ
Pin 22
GND

22
23
100 kΩ
23
Pin 20
VCC2
Pin 17
2 kΩ
8 kΩ
24
100 kΩ
200 Ω
Pin 18
Pin 22
GND
Pin 20
VCC2
R-out:
R signal output pin
26 kΩ
24
2 kΩ
Pin 22
GND
18
SDB00050BEB
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
25
100 kΩ
25
Description
Pin 20
VCC2
Pin 17
2 kΩ
8 kΩ
26

Pin 22
GND
Pin 19
VCC2
200 Ω
R-ch.AVE det.:
R-ch. output DC feedback
detection pin
Voltage · Waveform
Common out:
Voltage output pin for common.
Output impedance; Approx.
150 Ω
ch.3
15 kΩ
ch.3
26
100 kΩ
Pin 22
GND
27
Pin 40
VDD
27
5 kΩ
Test mode:
Logic test mode start signal
input pin; "Open" or "GND"
normally
High or Low
Test CLK:
Logic test pulse input pin;
"Open" or "GND" normally
High or Low
44.8 kΩ
Pin 37
VSS
28
Pin 40
VDD
28
5 kΩ
44.8 kΩ
Pin 37
VSS
29
Pin 1
VCC1
Field:
Field identifying signal
output pin
Output waveform
VCC1
29
Pin 40
VDD
0V
Field
Pin 37
VSS
SDB00050BEB
19
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
30
Pin 1
VCC1
Description
Voltage · Waveform
HSS:
Composite synchronous signal output pin
Output waveform
VCC1
30
Pin 40
VDD
0V
HSS
Pin 37
VSS
31
Pin 1
VCC1
VD:
Vertical synchronous signal
output pin
Output waveform
VCC1
31
Pin 40
VDD
0V
VD
Pin 37
VSS
32
Pin 1
VCC1
HD:
Horizontal synchronous signal output pin
Output waveform
VCC1
32
Pin 40
VDD
0V
HD
Pin 37
VSS
33
Pin 1
VCC1
PWM:
PWM signal output pin
Output waveform
VCC1
33
Pin 40
VDD
0V
PWM
Pin 37
VSS
34
5 kΩ
34
500 Ω
Pin 1
VCC1
100 kΩ
RST:
Capacitor coupling pin for
power-on reset
50 kΩ
Pin 37
VSS
20
SDB00050BEB

AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
35
Pin 40
VDD
35
5 kΩ
Description
Voltage · Waveform
VDB in:
Vertical synchronous pulse
input pin
High or Low
Ext. pol.:
1H reverse signal input pin
High or Low
50.2 kΩ
Pin 37
VSS
36
Pin 40
VDD
36
5 kΩ
50.2 kΩ
Pin 37
VSS

37
38
VSS : MOS system GND
Pin 40
VDD
38
5 kΩ
50.2 kΩ

Clamp in:
Clamp pulse input pin
Valid only in the external
clamp mode.
Positive polarity input.
High or Low
DAC mon.:
DAC DC voltage output pin
DC
Pin 37
VSS
39
1.5 pF
Pin 1
VCC1
200 Ω
39
2 kΩ
25 kΩ
20 kΩ Pin 59
GND
40

VDD:
Capacitor connection pin for
MOS part power supply.
3.0 V typ.

41

GND 3: Pulse system GND

PRGB:
Analog OSD signal input
Mode start-up signal input pin
Valid only in the analog OSD
mode
High = Analog OSD start up
High or Low
42
Pin 40
VDD
42
5 kΩ
53.8 kΩ
Pin 37
VSS
SDB00050BEB
21
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
Description
Pin 1
VCC1
43
2 kΩ
1H
1 kΩ
43
1 kΩ
2 kΩ
Pin 59
GND
44
10 kΩ
Pin 1
VCC1
10 kΩ
5 pF
44
AFC det.:
AFC filter connection pin
Input impedance; 100 kΩ or
more
Voltage · Waveform
H fO:
VCO oscillation frequency
adjusting resistor connection
pin

HSS in:
H-sync. input pin
Separates a sync signal from
luminance signal (video signal)
Input signal example:
Video signal
Bus-ch:
Switching pin for serial threewire control/I2C bus control
High = I2C bus
Open or Low = Serial threewire control
High or Low
2 kΩ
Pin 59
GND
45
8.4 kΩ
Pin 1
VCC1
Pin 2
VREF
45
20 kΩ
46
20 kΩ Pin 59
GND
Pin 40
VDD
46
4 kΩ
50 kΩ
Pin 37
VSS
47
Pin 40
VDD
47
DAC:
Serial clock input pin
4 kΩ
50 kΩ
Pin 37
VSS
22
SDB00050BEB
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
Description
48
Pin 40
VDD
50 Ω
4 kΩ
DAT:
Serial data input pin
500 Ω
ACK
48
Pin 37
VSS
49
Pin 59
GND
Pin 48
VDD
49
Voltage · Waveform
4 kΩ
50 kΩ
Pin 41
VSS
50
1 kΩ
1 kΩ
Pin 1
VCC1
2 kΩ
LEN:
Load pulse input pin, also
works as the slave address
conversion pin in the I2C bus
mode.
High = "88"
Low = "8A"
High or Low
ACC det.:
ACC capacitor connecting
pin, adjusting the amplitude
of a burst signal automatically

1 kΩ
50
5 kΩ 5 kΩ
1 kΩ
Pin 59
GND
51
Pin 1
VCC1
51
50 kΩ
C in:
Input signal example:
Chrominance signal signal inVideo signal
put pin
Input chrominance signal
(video signal)
Pin 59
GND
52
Pin 1
VCC1
200 Ω
60 Ω
52
L.det.:
Capacitor coupling pin for
the horizontal unlock detecting circuit

10 kΩ
60 Ω
12 kΩ
Pin 59
GND
SDB00050BEB
23
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
53
Description
Voltage · Waveform
Kill det.:
Killer capacitor coupling pin.
To prevent degradation of
image in a small amplitude of
a burst signal, this pin stops a
chrominance signal and the
mode changes to black and
white mode.

APC det.:
APC capacitor coupling pin.
41 kΩ Matching the phase of a crystal oscillation to that of burst
signal.
5 kΩ

Pin 1
VCC1
72 kΩ
53
1.5 kΩ
90 kΩ
Pin 59
GND
54
Pin 1
VCC1 1 kΩ 1 kΩ
31 kΩ
54
50 kΩ
5 kΩ
45 kΩ
100 kΩ 2 kΩ 1 kΩ 50 kΩ
2 kΩ
Pin 59
GND
55
26 kΩ
Pin 1
VCC1
VXOI :
Crystal oscillator connecting
pin
The pair with pin 56
NTSC 3.58 MHz
PAL 4.43 MHz
VXOO:
Crystal oscillator connecting
pin
The pair with pin 55
Output impedance;
Approximately 100 Ω
NTSC 3.58 MHz
PAL 4.43 MHz
6 kΩ
55
400 Ω
5 kΩ
15 pF
26 kΩ
56
500 Ω
Pin 59
GND
Pin 1
VCC1
56
500 Ω
24
Pin 59
GND
SDB00050BEB
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
57
1 kΩ
Pin 1
1 kΩ VCC1
Description
Voltage · Waveform
Y-det.:
Capacitor coupling pin for
luminance signal clamping

Trap:
Trap connecting pin
Trapping a chrominance signal by connecting external
inductor and capacitor. Not
necessary in case that an input signal is a component.

GND 3:
GND for chrominance and luminance signal process blocks

57
2 kΩ
Pin 59
GND
58
Pin 1
VCC1
2 kΩ
58
1 kΩ
50 Ω
60
2 kΩ
2 kΩ
Pin 59
GND

59
60
Pin 1
VCC1
20 kΩ
60
50 Ω
2 kΩ
2 kΩ
1 kΩ
Y-in:
Luminance signal input pin
Input luminance signal
(video signal)
Input signal example:
Video signal
R-Y out:
R-Y signal output pin, demodulated from a video signal
R-Y signal
58
2 kΩ
Pin 59
GND
61
1 kΩ
Pin 1
VCC1
61
1 kΩ
Pin 59
GND
SDB00050BEB
1H
25
AN2526FH
■ Terminal Equivalent Circuits (continued)
Pin No.
Equivalent circuit
62
Pin 1
VCC1
1 kΩ
Description
Voltage · Waveform
B-Y out:
B-Y signal output pin, demodulated from a video signal
B-Y signal
62
1H
1 kΩ
Pin 59
GND
63
5 kΩ
2 kΩ
5 kΩ
5 kΩ
2 kΩ
5 kΩ Pin 59
GND
Pin 1
VCC1
B-Y in:
B-Y signal input pin in a color
difference mode and in standard PAL.
1H
5 kΩ
5 kΩ Pin 59
GND
■ Usage Notes
• Since the following pins are low in a static electricity breakdown level, be cautious on use.
Pin 27 breakdown level
C = 200 pF
+ 200 V to 210 V
Pin 35 breakdown level
C = 200 pF
+ 180 V to 190 V
• Evaluated throughly on the application of this device in PAL.
26
B-Y signal
17.5 kΩ
64
5 kΩ
Pin 2
VREF
R-Y signal
1H
64
5 kΩ
R-Y in:
R-Y signal input pin in a color
difference mode and in standard PAL.
17.5 kΩ
63
5 kΩ
Pin 2
VREF
Pin 1
VCC1
5 kΩ
SDB00050BEB
AN2526FH
■ Technical Data
1. Serial interface description
1) Serial data control
In addition to its serial control by the conventional three-wire method, the AN2526FH can be controlled by the
I2C bus. The transmission method is selected by the voltage to be applied to Pin 46.
Three-wire control mode: Pin 46 = Low (connect to GND)
I2C bus mode: Pin 46 = High (Pin 41: connect to VDD )
It is recommended that the serial data is transferred during a vertical blanking period.
2) Three-wire control mode
A serial data is of three-line system communicating three kinds of signals of data, shift clock and load pulse
independently. The data to be communicated is made up by 12 bits in total of address (4 bits) and data (8 bits). The
DAC is composed of four blocks of serial-parallel conversion, address decoder, data latch and ladder resistors,
enabling to control 16 channels in total. Further, the mode setting such as the input signal switching is done by a
serial data to reduce the pin count.
(1) Serial data format
D11
D10
D9
D8
D7
D6
D5
Address block
D4
D3
D2
D1
D0
Data block
(2) Serial data input timing chart
Pin 48
S-data
D11
D10
D2
D1
D0
Pin 47
SCLK
Pin 49
LD
Timing chart expanded diagram
tCKH
tcf
Pin 47
SCLK
tcr
tCKL
tLDC
Pin 48
S-data
Pin 49
LD
tLDH
tDCH
tCHD
tCHL
SDB00050BEB
27
AN2526FH
■ Technical Data (continued)
1. Serial interface description (continued)
2) Three-wire control mode (continued)
(2) Serial data input timing chart (continued)
Parameter
Symbol
Min
Max
Unit
Clock low-level pulse width
tCKL
500

ns
Clock high-level pulse width
tCKH
500

ns
Clock rise time
tcr

20
ns
Clock fall time
tcf

20
ns
Data setup time
tDCH
30

ns
Data hold time
tCHD
60

ns
Load setup time
tCHL
200

ns
Load hold time
tLDC
100

ns
Load high-level pulse width
tLDH
500

ns
(3) Mode setting channel bits table
D11
D10
D9
D8
Selection-ch.
EVR control function
0
0
0
0
0
Vertical sync. signal output position
3
1
0
0
0
1
Horizontal sync. signal output position
5
0
1
0
0
2
PWM duty
6
1
1
0
0
3
Common pulse amplitude
7
0
0
1
0
4
Y-gain
8
1
0
1
0
5
Color gain
7
0
1
1
0
6
Hue
7
1
1
1
0
7
Black-limiter level
8
0
0
0
1
8
Brightness
8
1
0
0
1
9
Y-aperture gain
8
0
1
0
1
10
R-ch. sub-brightness
8
1
1
0
1
11
B-ch. sub-brightness
8
0
0
1
1
12
White peak limiter level
8
1
0
1
1
13
Gamma-1 Knee level
8
0
1
1
1
14
Gamma-2 Knee level
8
1
1
1
1
15
RGB contrast
7
A variety of mode-settings for the channels for 8 bits or less is made by using the data of the data block.
The contents of each mode setting are shown next.
28
SDB00050BEB
Number of bits
AN2526FH
■ Technical Data (continued)
1. Serial interface description (continued)
2) Three-wire control mode (continued)
(3) Mode setting channel bits table (continued)
• ch.0: Vertical sync. output position adjustment
D11
D10
D9
D8
D7
D6
D5
D4 to D3
D2
D1
D0
EXCHF FIXHD BOSC Hor. PLL start position adjustment
0
0
0
0


0
Automatic switching


1
263H/313H fixed (NTSC/PAL)

0
HD/VD output timing is serially variable

1
HD/VD output timing fixed
0
Odd number field: Advanced phase
1
Even number field: Advanced phase
<Vertical sync. output timing adjusting range>
Composite sync.
signal odd number
field
Pin 33 input
Pin 31 output
odd number field
FIXHD = "0"
8H
2H to 9H(D0 to D2)
Pin 31 output
odd number field
FIXHD = "1"
3Η
Composite sync.
signal even number
field
Pin 31 output
EXCHF = "1"
FIXHD = "0"
Pin 31 output
EXCHF = "1"
FIXHD = "1"
Pin 31 output
EXCHF = "0"
FIXHD = "0"
8H
1.5H to 8.5H(D0 to D2)
3Η
8H
2.5H to 9.5H (D0 to D2)
The above timing chart indicates (D2,D1,D0) = "101".
For (D2,D1,D0) = "000", the pin 31 output width is 9H.
Pin 31 output
EXCHF = "0"
FIXHD = "1"
3Η
The pin 31 timing is synchronous with the pin 33 input timing.
The above timing chart is just for reference.
SDB00050BEB
29
AN2526FH
■ Technical Data (continued)
1. Serial interface description (continued)
2) Three-wire control mode (continued)
(3) Mode setting channel bits table (continued)
• ch.0: (continued)
<Horizontal PLL start position adjustment range>
0-line
Composite sync.
signal odd number
field
1
2
3
Pin 33 input
6H to 9H (D3 to D4)
Horizontal PLL off
Odd number field
Horizontal PLL on
Composite sync.
signal even number
field
5.5H to 8.5H (D3 to D4)
EXCHF = "1"
Horizontal PLL off
EXCHF = "0"
Horizontal PLL off
Horizontal PLL on
6.5H to 9.5H (D3 to D4)
Horizontal PLL on
The above timing chart indicates (D4,D3) = "01".
PLL stop line number: 254-line (NTSC)
302-line (PAL)
• ch.1: Horizontal sync. output position adjustment
D11
1
D10
0
D9
0
D8
0
Composite sync.
signal input
(video signal)
D7
V Mode
D6
YUV
D5
RGB


0
Video signal input display mode


1
Analog RGB input display mode

0
Chrominance signal input mode

1
Color-difference signal input mode
0
PAL
1
NTSC
32fy
Pin 32
Horizontal sync. signal output
(D4,D3,D2,D1,D0) = (00000)
31fy
Pin 32
Horizontal sync. signal output
(D4,D3,D2,D1,D0) = (11111)
30
D3
Sync. signal separation delay time (Approximately 1 µs)
Pin 30
Composite sync. signal output
Pin 32
Horizontal sync. signal output
ch.0 (D6) = "1"
D4
32fy
1
(NTSC/PAL)
347fh
fh: Horizontal sync. frequency
1fy =
27fy
SDB00050BEB
D2
D1
D0
AN2526FH
■ Technical Data (continued)
1. Serial interface description (continued)
2) Three-wire control mode (continued)
(3) Mode setting channel bits table (continued)
• ch.1: Horizontal sync. output position adjustment (continued)
The delay time of pin 30 output to video signal is likely to vary according to an external constant connected
to pin 45. For an external constant, the characteristics in weak electric field must be evaluated adequately.
Though the horizontal sync. signal output adjustment range is designed by referring to the center of pin 30
output pulse, there would be some error according to VCO free-run frequency.
• ch.2: PWM duty adjustment
D11
D10
D9
D8
D7
D6
P mode YC mode

0
1
0
0
D5
D4
D3
0
Composite input mode
1
Component input mode
0
Standard PAL mode
1
Quasi PAL/NTSC mode
0 to 58H
D2
D1
D0
D2
D1
D0
D2
D1
D0
fh
: (NTSC/PAL)
58
Note that adjustment characteristics come to discontinuation around max. duty.
(D5,D4,D3,D2,D1,D0) = (000000): tw = 1H
= (000001): tw = 3H
= (000010): tw = 4H
= (110110): tw = 56H
= (110111): tw = 56H
= (111000): tw = 0H
= (111001): tw = 58H
• ch.3: Common pulse amplitude adjustment
D11
D10
D9
D8
D7
OSD
D6
D5
D4
D3
1
1
0
0
0
Analog OSD signal input mode
1
Digital OSD signal input mode
• ch.5: Color gain adjustment
D11
D10
D9
D8
D7
HTS
D6
D5
1
0
1
0
0
1H reverse inhibit mode
1
1H reverse mode
SDB00050BEB
D4
D3
31
AN2526FH
■ Technical Data (continued)
1. Serial interface description (continued)
2) Three-wire control mode (continued)
(3) Mode setting channel bits table (continued)
• ch.6: Hue adjustment
D11
D10
D9
D8
D7
CP
D6
D5
D4
D3
0
1
1
0
0
External clamp pulse input mode
1
Internal clamp (pedestal) mode
D2
D1
D0
• ch.9: Y-aperture gain adjustment
D11
D10
D9
D8
1
0
0
1
D7
D6
D5
D4
D3
D2
D1
D0
D5
D4
D3
D2
D1
D0
00h, 01h: Test mode
• ch.15: RGB contrast adjustment
D11
D10
D9
D8
D7
POL mode
D6
1
1
1
1
0
Internal POL 1H reverse mode
1
External POL 1H reverse mode
3) I2C bus control mode
A serial data is capable of transferring 9-bit unit of 8-bit transfer data and 1-bit answering data using two kinds
of signal lines of data and shift clock.
When a slave address after setting a start condition matches the address on the IC side, you can receive the data
to be transmitted from then. Once the stop condition is set up, the next transmitting data will be ignored until the
start condition is set up.
There are two kinds of transfer mode: an auto-increment mode which does not transmit subaddress, and data
upgrade mode which transmits sub-address + data by 2 bytes.
The typical models of communication sequence are shown below:
(1) Start condition
When the S-data changes from high level to low level at SCLK = high level, a data receiving mode becomes
available.
(2) Slave address transfer
The slave address of the AN2526FH is 88h at pin 49 = high level and 8Ah at pin 49 = low level.
When you use the slave address at 88h, 10h and 11h are prohibited on the application.
When you use the slave address at 8Ah, 14h and 15h are prohibited on the application.
Pin 48
S-data
1
2
3
4
5
6
7
8
9
1
2
Pin 47
SCLK
Subaddress transfer
Start condition
32
Acknowledge bit
SDB00050BEB
AN2526FH
■ Technical Data (continued)
1. Serial interface description (continued)
3) I2C bus control mode (continued)
(3) Subaddress transfer
When a data transfer mode bit is 0, all the serial data columns transferred until a stop condition is set is
regarded as the data block.
Pin 48
S-data
8
9
D7
D6
D5
D4
D3
D2
D1
D0
1
2
3
4
5
6
7
8
9
1
2
Pin 47
SCLK
Data transfer
Slave Address transfer
Acknowledge bit
Data transfer mode bit
"1": Data update mode
"0": Auto increment mode
(4) Data transfer
Pin 48
S-data
8
9
D7
D6
D5
D4
D3
D2
D1
D0
1
2
3
4
5
6
7
8
9
1
2
Pin 47
SCLK
Acknowledge bit
At auto increment mode: Data transfer
At data update mode: Subaddress transfer
(5) Stop condition
When S-data changes from low level to high level at SCLK = high level, data reception is halted.
(6) Pulse timing
Timing chart expanded diagram
Pin 48
S-data
tBUF
tHDDAT
tLOW
tf
Pin 47
SCLK
tSUSTO
tHDSTA
tr
tHIGH
SDB00050BEB
tSUDAT
33
AN2526FH
■ Technical Data (continued)
1. Serial interface description (continued)
3) I2C bus control mode (continued)
(6) Pulse timing (continued)
Parameter
Symbol
Min
Typ
Max
Unit
SCLK clock frequency
tSCL
0

400
kHz
Bus free-time for stop condition and start condition
tBUF
1.3


µs
tHDSTA
0.6


µs
SCLK clock low-state hold time
tLOW
1.3


µs
SCLK clock high-state hold time
tHIGH
0.6


µs
Data hold time
tHDDAT
0


µs
Data setup time
tSUDAT
100


ns
S-data, SCLK signal rise time
tr


300
ns
S-data, SCLK signal fall time
tf


300
ns
tSUSTO
0.6


µs
Hold time start condition
Stop condition setup time
(7) Mode setting channel bits table
D7
D6 to D4
Mode Don't Care
D3
D2
D1
D0
Selection
channel
0
0
0
0
0
Vertical sync. signal output position
3
0
0
0
1
1
Horizontal sync. signal output position
5
0
0
1
0
2
PWM duty
6
0
0
1
1
3
Common pulse amplitude
7
0
1
0
0
4
Y-gain
8
0
1
0
1
5
Color gain
7
0
1
1
0
6
Hue
7
0
1
1
1
7
Black-limiter level
8
1
0
0
0
8
Brightness
8
1
0
0
1
9
Y-aperture gain
8
1
0
1
0
10
R-ch. sub-brightness
8
1
0
1
1
11
B-ch. sub-brightness
8
1
1
0
0
12
White peak limiter
8
1
1
0
1
13
Gamma-1 Knee level
8
1
1
1
0
14
Gamma-2 Knee level
8
1
1
1
1
15
RGB contrast
7
EVR control function
In case that the channels have 8 bits or less of data bits number, the data in the data block is used to set various modes.
The content of each mode setting is same as three-wire control mode
34
SDB00050BEB
Number
of bits
AN2526FH
■ Technical Data (continued)
2. Recommended Operating Conditions
Parameter
Symbol
Min
Typ
Max
Unit
Composite video input signal
(Sync. chip - white)
YIN
0.9
1.0
1.1
V[p-p]
Y-input signal voltage
(Pedestal - white)
YIN
0.6
0.7
0.8
V[p-p]
C-input signal voltage
(Burst signal amplitude)
CIN
200
300
400
mV[p-p]
MOS input signal low-level voltage
VMOSL
0

0.8
V
MOS input signal high-level voltage
VMOSH
4.2

*
V
HSync
0.2
0.3
0.4
V[p-p]
fSD


1.0
MHz
RGBIN
0.6
0.7
0.8
V[p-p]
Synchronous signal input
(Pedestal - sync. chip)
Serial data transfer frequency
Analog RGB input signal
(Pedestal - white)
Note) *: Set it lower than VCC1 (Pin 1 voltage).
3. Power dissipation of package QFP064-P-1010
PD  T a
1.600
1.576
Mounted on standard board
(glass epoxy: 75 × 75 × t0.8 mm3)
Rth(j-a) = 79.3°C/W
1.400
Power dissipation PD (W)
1.200
1.000
0.814
0.800
0.600
Independent IC
without a heat sink
Rth(j-a) = 153.5°C/W
0.400
0.200
0.000
0
25
50
75
100
125
150
Ambient temperature Ta (°C)
SDB00050BEB
35
AN2526FH
■ New Package Dimensions (Unit: mm)
• QFP064-P-1010A (Lead-free package)
12.00±0.20
10.00±0.20
48
33
1
16
0.18±0.05
0.50
0.10
Seating plane
0.15±0.05
(1.00)
0° to 10°
0.50±0.20
36
SDB00050BEB
0.10 M
1.95±0.20
17
0.10±0.10
(1.25)
12.00±0.20
(1.25)
64
10.00±0.20
32
49
Request for your special attention and precautions in using the technical information
and semiconductors described in this material
(1) An export permit needs to be obtained from the competent authorities of the Japanese Government
if any of the products or technologies described in this material and controlled under the "Foreign
Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
(2) The technical information described in this material is limited to showing representative characteristics and applied circuits examples of the products. It neither warrants non-infringement of intellectual property right or any other rights owned by our company or a third party, nor grants any license.
(3) We are not liable for the infringement of rights owned by a third party arising out of the use of the
product or technologies as described in this material.
(4) The products described in this material are intended to be used for standard applications or general
electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:
• Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment,
combustion equipment, life support systems and safety devices) in which exceptional quality and
reliability are required, or if the failure or malfunction of the products may directly jeopardize life or
harm the human body.
• Any applications other than the standard applications intended.
(5) The products and product specifications described in this material are subject to change without
notice for modification and/or improvement. At the final stage of your design, purchasing, or use of
the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that
the latest specifications satisfy your requirements.
(6) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage, and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of
incidence of break down and failure mode, possible to occur to semiconductor products. Measures
on the systems such as redundant design, arresting the spread of fire or preventing glitch are
recommended in order to prevent physical injury, fire, social damages, for example, by using the
products.
(7) When using products for which damp-proof packing is required, observe the conditions (including
shelf life and amount of time let standing of unsealed items) agreed upon when specification sheets
are individually exchanged.
(8) This material may be not reprinted or reproduced whether wholly or partially, without the prior written
permission of Matsushita Electric Industrial Co., Ltd.
2002 JUL