TS4890 RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE ACTIVE LOW ■ OPERATING FROM VCC = 2.2V to 5.5V ■ 1W RAI L TO RAIL OUTPUT POWER @ PIN CONNECTIONS (Top View) Vcc=5V, THD=1%, f=1kHz, with 8Ω Load TS4890ID, TS4890IDT - SO8 ■ ULTRA LOW CONSUMPTION IN STANDBY MODE (10nA) ■ 75dB PSRR @ 217Hz from 5 to 2.2V ■ POP & CLICK REDUCTION CIRCUITRY ■ ULTRA LOW DISTORTION (0.1%) ■ UNITY GAIN STABLE ■ AVAILABLE IN SO8, MiniSO8 & DFN8 DESCRIPTION The TS4890 (MiniSO8 & SO8) is an Audio Power Amplifier capable of delivering 1W of continuous RMS. ouput power into 8Ω load @ 5V. This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS. An external standby mode control reduces the supply current to less than 10nA. An internal thermal shutdown protection is also provided. The TS4890 have been designed for high quality audio applications such as mobile phones and to minimize the number of external components. Standby 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 TS4890IST - MiniSO8 Standby 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 TS4890IQT - DFN8 STANDBY 1 8 VOUT 2 BYPASS 2 7 GND VIN+ 3 6 Vcc VIN- 4 5 VOUT 1 The unity-gain stable amplifier can be configured by external gain setting resistors. TYPICAL APPLICATION SCHEMATIC APPLICATIONS ■ Mobile Phones (Cellular / Cordless) ■ Laptop / Notebook Computers ■ PDAs ■ Portable Audio Devices Cfeed Rfeed Rin -40, +85°C - Vout1 5 + Q • • 4890I 4890 4890 2 Bypass 1 Standby Av=-1 + Rstb Cb Vout2 8 Bias GND D Vin+ Vcc Marking S Vin- RL 8 Ohms Package • TS4890 4 3 ORDER CODE Cs Vcc Audio Input Cin Part Temperature Number Range Vcc 6 TS4890 7 MiniSO & DFN only available in Tape & Reel: with T suffix. SO is available in Tube (D) and of Tape & Reel (DT) June 2003 1/32 TS4890 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Supply voltage 2) Value Unit 6 V GND to VCC V Toper Operating Free Air Temperature Range -40 to + 85 °C Tstg Storage Temperature Tj Rthja Pd ESD ESD 1. 2. 3. 4. Parameter 1) Input Voltage -65 to +150 °C Maximum Junction Temperature 150 °C Thermal Resistance Junction to Ambient3) SO8 MiniSO8 DFN8 175 215 70 See Power Derating Curves Fig. 24 2 200 Class A 260 Power Dissipation4) Human Body Model Machine Model Latch-up Immunity Lead Temperature (soldering, 10sec) °C/W W kV V °C All voltages values are measured with respect to the ground pin. The magnitude of input signal must never exceed VCC + 0.3V / G ND - 0.3V Device is protected in case of over temperature by a thermal shutdown active @ 150°C. Exceeding the power derating curves during a long period may involve abnormal working of the device. OPERATING CONDITIONS Symbol VCC VICM VSTB RL Parameter Supply Voltage Value Unit 2.2 to 5.5 V Common Mode Input Voltage Range GND + 1V to VCC V Standby Voltage Input : Device ON Device OFF 1.5 ≤ VSTB ≤ VCC GND ≤ VSTB ≤ 0.5 V 4 - 32 Ω Load Resistor 1) Rthja Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 2) 1. This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 24) 2. When mounted on a 4 layers PCB 2/32 150 190 41 °C/W TS4890 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 6 8 mA Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 1 W 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms 77 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 5.5 8 mA Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 450 mW Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms 77 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz 3/32 TS4890 VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 5 8 mA Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 260 mW Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms 77 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz VCC = 2.2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 5 8 mA Standby Current 1) No input signal, Vstdby = GND, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 180 mW Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 100mV rms 77 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. 1. Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz 4/32 TS4890 Components Functional Description Rin Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Cin Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin Cs Supply Bypass capacitor which provides power supply filtering Cb Bypass pin capacitor which provides half supply filtering Cfeed Rstb Gv Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed)) Pull-down resistor which fixes the right supply level on the standby pin Closed loop gain in BTL configuration = 2 x (Rfeed / Rin) REMARKS 1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF. 1. External resistors are not needed for having better stability when supply @ Vcc down to 3V. The quiescent current still remains the same. 2. The standby response time is about 1µs. 5/32 TS4890 Fig. 1 : Open Loop Frequency Response Fig. 2 : Open Loop Frequency Response 0 -140 0 -120 -140 0 -160 -180 1 10 100 1000 10000 -180 -20 -200 -220 -40 0.3 1 10 Frequency (kHz) Fig. 3 : Open Loop Frequency Response Vcc = 3.3V RL = 8Ω Tamb = 25°C -100 -120 20 -140 -160 0 Gain -60 Phase (Deg) Gain (dB) Phase Vcc = 3.3V ZL = 8Ω + 560pF Tamb = 25°C Phase 10 100 1000 Frequency (kHz) 10000 -140 -160 -180 -200 -20 -220 -40 0.3 -240 Fig. 5 : Open Loop Frequency Response Gain 60 Vcc = 2.6V RL = 8Ω Tamb = 25°C Gain -60 -120 20 -140 -160 0 10000 Vcc = 2.6V ZL = 8Ω + 560pF Tamb = 25°C Phase -200 6/32 1 10 100 1000 Frequency (kHz) 10000 -240 -40 -60 -120 -140 -160 0 -180 -200 -20 -220 -220 -40 0.3 -20 -100 20 -180 -20 -240 -80 40 Gain (dB) -100 100 1000 Frequency (kHz) 0 60 -40 Phase (Deg) Gain (dB) Phase 10 80 -20 -80 40 1 Fig. 6 : Open Loop Frequency Response 0 80 -60 -120 0 -200 1 -40 -100 20 -220 -40 0.3 -20 -80 40 -180 -20 -220 0 60 -40 -80 40 10000 80 -20 Gain (dB) Gain 60 100 1000 Frequency (kHz) Fig. 4 : Open Loop Frequency Response 0 80 -60 -100 20 -200 -40 0.3 -40 -80 Phase -160 -20 -20 Phase (Deg) -120 40 Vcc = 5V ZL = 8Ω + 560pF Tamb = 25°C Phase (Deg) Gain (dB) -60 -100 20 Gain -40 -80 Phase 60 -40 0.3 1 10 100 1000 Frequency (kHz) 10000 -240 Phase (Deg) 40 0 -20 Gain (dB) Vcc = 5V RL = 8Ω Tamb = 25°C Gain Phase (Deg) 60 TS4890 Fig. 7 : Open Loop Frequency Response 60 -60 -120 20 -140 -160 0 Gain (dB) -100 Phase -120 -140 -160 0 -180 -200 -20 -200 -220 -220 10 100 1000 Frequency (kHz) 10000 -40 0.3 -240 Fig. 9 : Open Loop Frequency Response 80 Phase 60 -80 100 -100 80 -120 60 Gain (dB) Gain -140 40 -160 20 0 -20 -40 0.3 -180 10 -80 100 -100 80 -140 40 -160 20 -180 0 -20 -40 0.3 -200 Vcc = 2.6V CL = 560pF Tamb = 25°C 1 10 100 1000 Frequency (kHz) 10000 -120 -140 -200 Vcc = 3.3V CL = 560pF Tamb = 25°C 1 10 -220 100 1000 Frequency (kHz) 10000 -240 -80 -100 Phase -120 60 Phase (Deg) Gain (dB) Gain -100 Phase Fig. 12 : Open Loop Frequency Response -120 60 -80 -180 -40 0.3 10000 Phase -240 -160 -220 Fig. 11 : Open Loop Frequency Response 80 10000 20 -20 100 100 1000 Frequency (kHz) 40 -200 100 1000 Frequency (kHz) 10 Gain 0 Vcc = 5V CL = 560pF Tamb = 25°C 1 Phase (Deg) 100 1 Fig. 10 : Open Loop Frequency Response Gain (dB) 1 Gain Gain (dB) -40 0.3 -60 -100 20 -180 -20 -40 -80 40 Phase (Deg) Phase -20 Phase (Deg) -40 -80 40 Vcc = 2.2V RL = 8Ω, + 560pF Tamb = 25°C Gain Phase (Deg) Gain 60 -20 -140 40 -160 20 -180 0 -220 -20 -240 -40 0.3 -200 Vcc = 2.2V CL = 560pF Tamb = 25°C 1 Phase (Deg) Vcc = 2.2V RL = 8Ω Tamb = 25°C 0 80 0 80 Gain (dB) Fig. 8 : Open Loop Frequency Response -220 10 100 1000 Frequency (kHz) 10000 -240 7/32 TS4890 Fig. 13 : Power Supply Rejection Ratio (PSRR) vs Power supply Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor -10 -30 -50 -60 -20 -30 PSRR (dB) PSRR (dB) -40 Vripple = 200mVrms Rfeed = 22kΩ Input = floating RL = 8Ω Tamb = 25°C Vcc = 5V to 2.2V Cb = 1µF & 0.1µF -40 Vcc = 5 to 2.2V Cb = 1µF & 0.1µF Rfeed = 22kΩ Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Cfeed=0 Cfeed=150pF Cfeed=330pF -50 -60 -70 -70 Cfeed=680pF -80 10 100 1000 10000 Frequency (Hz) -80 10 100000 Fig. 15 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor Cb=10µF PSRR (dB) -30 -40 Cin=1µF -20 Cb=47µF -50 100000 Vcc = 5 to 2.2V Rfeed = 22k, Rin = 22k Cb = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C Cin=330nF PSRR (dB) -20 -10 Vcc = 5 to 2.2V Rfeed = 22k Rin = 22k, Cin = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C 1000 10000 Frequency (Hz) Fig. 16 : Power Supply Rejection Ratio (PSRR) vs Input Capacitor -10 Cb=1µF 100 Cin=220nF -30 -40 -60 Cin=100nF -50 -70 Cin=22nF Cb=100µF -80 10 100 1000 10000 -60 10 100000 100 Frequency (Hz) Fig. 17 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor -40 Rfeed=110kΩ Rfeed=47kΩ -50 -60 Rfeed=22kΩ -70 -80 10 8/32 100000 1.4 Vcc = 5 to 2.2V Cb = 1µF & 0.1µF Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Rfeed=10kΩ 100 1000 10000 Frequency (Hz) 100000 Output power @ 1% THD + N (W) PSRR (dB) -30 10000 Fig. 18 : Pout @ THD + N = 1% vs Supply Voltage vs RL -10 -20 1000 Frequency (Hz) 1.2 1.0 8Ω Gv = 2 & 10 Cb = 1µF F = 1kHz BW < 125kHz Tamb = 25°C 6Ω 4Ω 0.8 16Ω 0.6 0.4 0.2 32Ω 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 TS4890 Fig. 19 : Pout @ THD + N = 10% vs Supply Voltage vs RL Fig. 20 : Power Dissipation vs Pout 1.4 1.8 1.6 1.4 Gv = 2 & 10 Cb = 1µF F = 1kHz BW < 125kHz Tamb = 25°C 8Ω Power Dissipation (W) Output power @ 10% THD + N (W) 2.0 6Ω 4Ω 1.2 1.0 16Ω 0.8 0.6 Vcc=5V 1.2 F=1kHz THD+N<1% RL=4Ω 1.0 0.8 0.6 RL=8Ω 0.4 0.4 0.2 0.0 2.5 0.2 32Ω 3.0 3.5 4.0 4.5 RL=16Ω 0.0 0.0 5.0 0.2 0.4 Vcc (V) 0.6 0.40 Vcc=3.3V F=1kHz 0.5 THD+N<1% 0.35 RL=4Ω 0.4 0.3 0.2 RL=8Ω 0.4 0.6 0.25 0.20 0.15 RL=8Ω RL=16Ω 0.00 0.0 0.8 0.1 0.2 0.3 0.4 Output Power (W) Fig. 23 : Power Dissipation vs Pout Fig. 24 : Power Derating Curves 0.40 2.0 Vcc=2.6V 0.35 F=1kHz THD+N<1% 0.30 1.8 1.6 RL=4Ω 0.25 0.20 0.15 RL=8Ω 0.10 Power Dissipation (W) Power Dissipation (W) 1.4 RL=4Ω 0.30 Output Power (W) 0.00 0.0 1.2 Vcc=2.6V F=1kHz THD+N<1% 0.05 RL=16Ω 0.05 1.0 0.10 0.1 0.2 0.8 Fig. 22 : Power Dissipation vs Pout Power Dissipation (W) Power Dissipation (W) Fig. 21 : Power Dissipation vs Pout 0.0 0.0 0.6 Output Power (W) QFN8 1.4 1.2 1.0 SO8 0.8 0.6 0.4 0.0 0.1 0.2 Output Power (W) MiniSO8 0.2 RL=16Ω 0.3 0 25 50 75 100 125 150 Ambiant Temperature (°C) 9/32 TS4890 Fig. 25 : THD + N vs Output Power Fig. 26 : THD + N vs Output Power 10 10 RL = 4Ω, Vcc = 5V Gv = 10 Cb = Cin = 1µF BW < 125kHz, Tamb = 25°C THD + N (%) THD + N (%) Rl = 4Ω Vcc = 5V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 20kHz 20kHz 1 20Hz 20Hz, 1kHz 0.1 1E-3 1kHz 0.01 0.1 Output Power (W) 0.1 1E-3 1 Fig. 27 : THD + N vs Output Power 1 Fig. 28 : THD + N vs Output Power 10 10 RL = 4Ω, Vcc = 3.3V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 0.01 0.1 Output Power (W) 1 RL = 4Ω, Vcc = 3.3V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 20kHz 1 20kHz 0.1 20Hz 1kHz 20Hz, 1kHz 0.1 1E-3 0.01 0.1 Output Power (W) 1 Fig. 29 : THD + N vs Output Power 0.01 0.1 Output Power (W) 10 RL = 4Ω, Vcc = 2.6V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 RL = 4Ω, Vcc = 2.6V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 20kHz 20kHz 20Hz 0.1 20Hz, 1kHz 0.1 1E-3 10/32 1 Fig. 30 : THD + N vs Output Power THD + N (%) THD + N (%) 10 1E-3 0.01 Output Power (W) 0.1 1E-3 1kHz 0.01 Output Power (W) 0.1 TS4890 Fig. 31 : THD + N vs Output Power Fig. 32 : THD + N vs Output Power 10 10 RL = 4Ω, Vcc = 2.2V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) RL = 4Ω, Vcc = 2.2V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 20kHz 1 20kHz 20Hz 0.1 1kHz 20Hz, 1kHz 0.1 1E-3 0.01 Output Power (W) 0.1 1E-3 Fig. 33 : THD + N vs Output Power 0.1 Fig. 34 : THD + N vs Output Power 10 10 RL = 8Ω Vcc = 5V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 20Hz, 1kHz THD + N (%) THD + N (%) 0.01 Output Power (W) 20kHz RL = 8Ω Vcc = 5V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 20Hz 20kHz 0.1 0.1 1kHz 1E-3 0.01 0.1 Output Power (W) 1E-3 1 1 Fig. 36 : THD + N vs Output Power Fig. 35 : THD + N vs Output Power 10 10 RL = 8Ω, Vcc = 3.3V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 0.01 0.1 Output Power (W) 1 20Hz, 1kHz RL = 8Ω, Vcc = 3.3V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 20Hz 20kHz 20kHz 0.1 0.1 1kHz 1E-3 0.01 0.1 Output Power (W) 1 1E-3 0.01 0.1 Output Power (W) 1 11/32 TS4890 Fig. 37 : THD + N vs Output Power Fig. 38 : THD + N vs Output Power 10 RL = 8Ω, Vcc = 2.6V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 10 1 0.1 0.01 Output Power (W) 0.1 20kHz 1kHz 1E-3 Fig. 39 : THD + N vs Output Power 0.01 Output Power (W) 0.1 Fig. 40 : THD + N vs Output Power 10 10 RL = 8Ω, Vcc = 2.2V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 20Hz 0.1 1E-3 1 1kHz RL = 8Ω, Vcc = 2.2V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 20Hz 20kHz 20kHz 20Hz 0.1 1kHz 0.1 1E-3 0.01 Output Power (W) 0.1 1E-3 Fig. 41 : THD + N vs Output Power 0.01 Output Power (W) 0.1 Fig. 42 : THD + N vs Output Power 10 10 RL = 8Ω Vcc = 5V Gv = 2 Cb = 0.1µF, Cin = 1µF BW < 125kHz Tamb = 25°C 20kHz RL = 8Ω, Vcc = 5V, Gv = 10 Cb = 0.1µF, Cin = 1µF BW < 125kHz, Tamb = 25°C 20Hz THD + N (%) THD + N (%) 1 20kHz 20Hz, 1kHz 1 RL = 8Ω, Vcc = 2.6V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 20Hz 1kHz 1 20kHz 1kHz 0.1 1E-3 12/32 0.1 0.01 0.1 Output Power (W) 1 1E-3 0.01 0.1 Output Power (W) 1 TS4890 Fig. 43 : THD + N vs Output Power Fig. 44 : THD + N vs Output Power 10 RL = 8Ω, Vcc = 3.3V Gv = 2 Cb = 0.1µF, Cin = 1µF BW < 125kHz Tamb = 25°C RL = 8Ω, Vcc = 3.3V, Gv = 10 Cb = 0.1µF, Cin = 1µF BW < 125kHz, Tamb = 25°C THD + N (%) THD + N (%) 10 1 20Hz 20kHz 1 20kHz 20Hz 1kHz 1kHz 0.1 0.1 1E-3 0.01 0.1 Output Power (W) 1 Fig. 45 : THD + N vs Output Power 1 10 RL = 8Ω, Vcc = 2.6V Gv = 2 Cb = 0.1µF, Cin = 1µF BW < 125kHz Tamb = 25°C RL = 8Ω, Vcc = 2.6V, Gv = 10 Cb = 0.1µF, Cin = 1µF BW < 125kHz, Tamb = 25°C 1 20Hz 20kHz 1 20kHz 1kHz 0.1 1E-3 0.01 Output Power (W) 0.1 1E-3 Fig. 47 : THD + N vs Output Power 10 0.01 Output Power (W) 0.1 Fig. 48 : THD + N vs Output Power 10 RL = 8Ω, Vcc = 2.2V, Gv = 10 Cb = 0.1µF, Cin = 1µF BW < 125kHz, Tamb = 25°C THD + N (%) RL = 8Ω, Vcc = 2.2V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 20Hz 20kHz 1 20kHz 1kHz 20Hz 1kHz 0.1 1E-3 20Hz 1kHz 0.1 THD + N (%) 0.01 0.1 Output Power (W) Fig. 46 : THD + N vs Output Power THD + N (%) THD + N (%) 10 1E-3 0.1 0.01 Output Power (W) 0.1 1E-3 0.01 Output Power (W) 0.1 13/32 TS4890 Fig. 49 : THD + N vs Output Power Fig. 50 : THD + N vs Output Power 10 10 20kHz RL = 16Ω, Vcc = 5V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) 1 RL = 16Ω, Vcc = 5V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 20kHz 0.1 0.1 1kHz 20Hz, 1kHz 0.01 1E-3 0.01 0.1 Output Power (W) 1 Fig. 51 : THD + N vs Output Power 0.01 1E-3 20kHz 0.1 1 RL = 16Ω Vcc = 3.3V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 20kHz 0.1 1kHz 20Hz 20Hz, 1kHz 0.01 1E-3 0.01 Output Power (W) 0.01 1E-3 0.1 Fig. 53 : THD + N vs Output Power THD + N (%) THD + N (%) 0.1 10 RL = 16Ω Vcc = 2.6V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 20kHz 0.1 1 RL = 16Ω Vcc = 2.6V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C 20Hz 20kHz 0.1 20Hz, 1kHz 0.01 1E-3 14/32 0.01 Output Power (W) Fig. 54 : THD + N vs Output Power 10 1 1 10 RL = 16Ω, Vcc = 3.3V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 0.01 0.1 Output Power (W) Fig. 52 : THD + N vs Output Power 10 1 20Hz 0.01 Output Power (W) 1kHz 0.1 0.01 1E-3 0.01 Output Power (W) 0.1 TS4890 Fig. 55 : THD + N vs Output Power Fig. 56 : THD + N vs Output Power 1 10 RL = 16Ω Vcc = 2.2V Gv = 10, Cb = Cin = 1µF BW < 125kHz, Tamb = 25°C RL = 16Ω Vcc = 2.2V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 10 20kHz 20Hz 0.1 1 20kHz 0.1 20Hz 1kHz 0.01 1E-3 1kHz 0.01 Output Power (W) 0.1 Fig. 57 : THD + N vs Frequency 100 1 Pout = 1.2W 1000 Frequency (Hz) RL = 4Ω, Vcc = 5V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C 100 RL = 4Ω, Vcc = 3.3V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Pout = 540mW 100 1000 Frequency (Hz) 10000 RL = 4Ω, Vcc = 3.3V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 540mW Pout = 270mW 0.1 20 1000 Frequency (Hz) Fig. 60 : THD + N vs Frequency THD + N (%) THD + N (%) Pout = 600mW 0.1 0.01 20 10000 Fig. 59 : THD + N vs Frequency 1 0.1 Pout = 1.2W RL = 4Ω, Vcc = 5V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 600mW 0.1 20 0.01 Output Power (W) Fig. 58 : THD + N vs Frequency THD + N (%) THD + N (%) 1 0.01 1E-3 Pout = 270mW 10000 0.1 20 100 1000 Frequency (Hz) 10000 15/32 TS4890 Fig. 61 : THD + N vs Frequency RL = 4Ω, Vcc = 2.6V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C RL = 4Ω, Vcc = 2.6V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Pout = 240mW THD + N (%) THD + N (%) 1 Fig. 62 : THD + N vs Frequency Pout = 240 & 120mW Pout = 120mW 0.1 20 100 1000 Frequency (Hz) Fig. 63 : THD + N vs Frequency 100 1000 Frequency (Hz) 10000 Fig. 64 : THD + N vs Frequency RL = 4Ω, Vcc = 2.2V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) 1 0.1 20 10000 Pout = 175mW RL = 4Ω, Vcc = 2.2V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 175mW Pout = 88mW Pout = 88mW 0.1 20 100 1000 Frequency (Hz) 0.1 20 10000 Fig. 65 : THD + N vs Frequency 100 1000 Frequency (Hz) 10000 Fig. 66 : THD + N vs Frequency 1 Cb = 0.1µF Cb = 1µF RL = 8Ω Vcc = 5V Gv = 2 Pout = 450mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 1 RL = 8Ω Vcc = 5V Gv = 2 Pout = 900mW BW < 125kHz Tamb = 25°C Cb = 0.1µF Cb = 1µF 0.1 20 16/32 100 1000 Frequency (Hz) 10000 0.1 20 100 1000 Frequency (Hz) 10000 TS4890 Fig. 67 : THD + N vs Frequency Fig. 68 : THD + N vs Frequency THD + N (%) 1 Cb = 0.1µF 1 Cb = 0.1µF Cb = 1µF Cb = 1µF 0.1 20 0.1 100 1000 Frequency (Hz) 10000 Fig. 69 : THD + N vs Frequency 20 1000 Frequency (Hz) 10000 1 Cb = 0.1µF Cb = 1µF RL = 8Ω, Vcc = 3.3V Gv = 2 Pout = 200mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) RL = 8Ω, Vcc = 3.3V Gv = 2 Pout = 400mW BW < 125kHz Tamb = 25°C 0.1 Cb = 0.1µF Cb = 1µF 0.1 1000 Frequency (Hz) 10000 100 1000 Frequency (Hz) 10000 Fig. 72 : THD + N vs Frequency RL = 8Ω, Vcc = 3.3V Gv = 10 Pout = 400mW BW < 125kHz Tamb = 25°C 1 20 Cb = 0.1µF Cb = 1µF RL = 8Ω, Vcc = 3.3V Gv = 10 Pout = 200mW BW < 125kHz Tamb = 25°C 1 THD + N (%) 100 Fig. 71 : THD + N vs Frequency THD + N (%) 100 Fig. 70 : THD + N vs Frequency 1 20 RL = 8Ω, Vcc = 5V Gv = 10 Pout = 450mW BW < 125kHz Tamb = 25°C THD + N (%) RL = 8Ω, Vcc = 5V Gv = 10 Pout = 900mW BW < 125kHz Tamb = 25°C Cb = 0.1µF Cb = 1µF 0.1 0.1 20 100 1000 Frequency (Hz) 10000 20 100 1000 Frequency (Hz) 10000 17/32 TS4890 Fig. 73 : THD + N vs Frequency Fig. 74 : THD + N vs Frequency 1 1 Cb = 1µF RL = 8Ω, Vcc = 2.6V Gv = 2 Pout = 110mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) Cb = 0.1µF RL = 8Ω, Vcc = 2.6V Gv = 2 Pout = 220mW BW < 125kHz Tamb = 25°C Cb = 0.1µF Cb = 1µF 0.1 0.1 100 1000 Frequency (Hz) 10000 Fig. 75 : THD + N vs Frequency THD + N (%) 100 1000 Frequency (Hz) 10000 Fig. 76 : THD + N vs Frequency RL = 8Ω, Vcc = 2.6V Gv = 10 Pout = 220mW BW < 125kHz Tamb = 25°C 1 20 Cb = 0.1µF 1 Cb = 0.1µF THD + N (%) 20 RL = 8Ω, Vcc = 2.6V Gv = 10 Pout = 110mW BW < 125kHz Tamb = 25°C Cb = 1µF Cb = 1µF 0.1 0.1 20 100 1000 Frequency (Hz) 10000 Fig. 77 : THD + N vs Frequency 20 100 1000 Frequency (Hz) 10000 Fig. 78 : THD + N vs Frequency 1 1 Cb = 1µF RL = 8Ω, Vcc = 2.2V Gv = 2 Pout = 75mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) Cb = 0.1µF RL = 8Ω, Vcc = 2.2V Gv = 2 Pout = 150mW BW < 125kHz Tamb = 25°C Cb = 0.1µF Cb = 1µF 0.1 20 18/32 0.1 100 1000 Frequency (Hz) 10000 20 100 1000 Frequency (Hz) 10000 TS4890 Fig. 80 : THD + N vs Frequency RL = 8Ω, Vcc = 2.2V Gv = 10 Pout = 150mW BW < 125kHz Tamb = 25°C THD + N (%) 1 Cb = 0.1µF RL = 8Ω, Vcc = 2.2V Gv = 10 Pout = 72mW BW < 125kHz Tamb = 25°C 1 Cb = 0.1µF THD + N (%) Fig. 79 : THD + N vs Frequency Cb = 1µF Cb = 1µF 0.1 0.1 20 100 1000 Frequency (Hz) 20 10000 1000 Frequency (Hz) 10000 Fig. 82 : THD + N vs Frequency Fig. 81 : THD + N vs Frequency 1 1 RL = 16Ω, Vcc = 5V Gv = 10, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) RL = 16Ω, Vcc = 5V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) 100 Pout = 310mW 0.1 Pout = 620mW 0.1 Pout = 310mW Pout = 620mW 0.01 20 100 1000 Frequency (Hz) 10000 0.01 20 1000 Frequency (Hz) 10000 Fig. 84 : THD + N vs Frequency Fig. 83 : THD + N vs Frequency 1 1 THD + N (%) RL = 16Ω, Vcc = 3.3V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) 100 Pout = 270mW 0.1 RL = 16Ω, Vcc = 3.3V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 270mW 0.1 Pout = 135mW Pout = 135mW 0.01 20 100 1000 Frequency (Hz) 10000 20 100 1000 Frequency (Hz) 10000 19/32 TS4890 Fig. 85 : THD + N vs Frequency Fig. 86 : THD + N vs Frequency 1 1 RL = 16Ω, Vcc = 2.6V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 160mW THD + N (%) THD + N (%) RL = 16Ω, Vcc = 2.6V Gv = 10, Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 Pout = 80mW 0.1 Pout = 80mW 0.01 20 100 1000 Frequency (Hz) Pout = 160mW 0.01 20 10000 1000 Frequency (Hz) 10000 Fig. 88 : THD + N vs Frequency Fig. 87 : THD + N vs Frequency 1 1 RL = 16Ω, Vcc = 2.2V Gv = 10, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) RL = 16Ω, Vcc = 2.2V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) 100 Pout = 50 & 100mW 0.1 Pout = 50mW 0.1 Pout = 100mW 0.01 20 100 1000 Frequency (Hz) 0.01 20 10000 Fig. 89 : Signal to Noise Ratio vs Power Supply with Unweighted Filter (20Hz to 20kHz) 80 RL=8Ω RL=4Ω SNR (dB) RL=16Ω SNR (dB) 10000 90 90 80 70 Gv = 2 Cb = Cin = 1µF THD+N < 0.4% Tamb = 25°C 60 20/32 1000 Frequency (Hz) Fig. 90 :Signal to Noise Ratio Vs Power Supply with Unweighted Filter (20Hz to 20kHz) 100 50 2.2 100 2.5 3.0 3.5 Vcc (V) 4.0 4.5 5.0 RL=8Ω 70 RL=16Ω RL=4Ω Gv = 10 Cb = Cin = 1µF THD+N < 0.4% Tamb = 25°C 60 50 2.2 2.5 3.0 3.5 Vcc (V) 4.0 4.5 5.0 TS4890 Fig. 91 : Signal to Noise Ratio vs Power Supply with Weighted Filter type A Fig. 92 : Signal to Noise Ratio vs Power Supply with Weighted Filter Type A 100 110 100 90 RL=4Ω RL=16Ω 90 SNR (dB) SNR (dB) RL=8Ω 80 Gv = 2 Cb = Cin = 1µF THD+N < 0.4% Tamb = 25°C 70 60 2.2 2.5 3.0 3.5 Vcc (V) 4.0 4.5 5 6 -15 Icc (mA) Gain (dB) Cfeed = 680pF Cin = 470nF Cfeed = 2.2nF 100 1000 Frequency (Hz) Vstandby = Vcc Tamb = 25°C 0 1 2 3 4 5 Vcc (V) Fig. 96 : Current Consumption vs Standby Voltage @ Vcc = 3.3V 7 6 6 5 5 4 Icc (mA) Icc (mA) 5.0 3 10000 Fig. 95 : Current Consumption vs Standby Voltage @ Vcc = 5V 4 3 3 2 2 1 0 0.0 4.5 4 0 -25 10 4.0 1 Rin = Rfeed = 22kΩ Tamb = 25°C Cin = 82nF 3.5 Vcc (V) 2 Cin = 22nF -20 3.0 5 Cfeed = 330pF -10 2.5 Fig. 94 : Current Consumption vs Power Supply Voltage (no load) 7 -5 RL=4Ω Gv = 10 Cb = Cin = 1µF THD+N < 0.4% Tamb = 25°C 60 2.2 10 0 RL=16Ω 70 5.0 Fig. 93 : Frequency Response Gain vs Cin, & Cfeed RL=8Ω 80 Vcc = 5V Tamb = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Vstandby (V) 4.0 4.5 5.0 1 0 0.0 Vcc = 3.3V Tamb = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 Vstandby (V) 21/32 TS4890 Fig. 97 : Current Consumption vs Standby Voltage @ Vcc = 2.6V Fig. 98 : Current Consumption vs Standby Voltage @ Vcc = 2.2V 6 5 5 4 Icc (mA) Icc (mA) 4 3 3 2 2 1 1 Vcc = 2.2V Tamb = 25°C Vcc = 2.6V Tamb = 25°C 0 0.0 0.5 1.0 1.5 Vstandby (V) 2.0 0 0.0 2.5 Fig. 99 : Clipping Voltage vs Power Supply Voltage and Load Resistor Vout1 & Vout2 Clipping Voltage Low side (V) Vout1 & Vout2 Clipping Voltage High side (V) 0.7 0.6 0.5 RL = 4Ω RL = 8Ω 0.4 0.3 0.2 0.1 RL = 16Ω 2.5 Tamb = 25°C 0.9 0.8 3.0 3.5 4.0 4.5 0.8 0.7 0.6 RL = 4Ω 0.5 RL = 8Ω 0.4 0.3 0.2 0.1 RL = 16Ω 0.0 2.2 5.0 2.5 3.0 Power supply Voltage (V) 3.5 4.0 4.5 Fig. 102 : Vout1+Vout2 A-weighted Noise Floor 120 100 Av = 10 80 60 40 Standby mode Av = 2 Output Noise Voltage ( V) 120 Vcc = 2.2V to 5V, Tamb = 25 C Cb = Cin = 1 F Input Grounded BW = 20Hz to 20kHz (Unweighted) Vcc = 2.2V to 5V, Tamb = 25 C Cb = Cin = 1 F Input Grounded BW = 20Hz to 20kHz (A-Weighted) 100 80 Av = 10 60 40 Standby mode Av = 2 20 20 0 0 20 100 1000 Frequency (Hz) 5.0 Power supply Voltage (V) Fig. 101 : Vout1+Vout2 Unweighted Noise Floor Output Noise Voltage ( V) 2.0 1.0 Tamb = 25°C 0.0 2.2 22/32 1.0 1.5 Vstandby (V) Fig. 100 :Clipping Voltage vs Power Supply Voltage and Load Resistor 1.0 0.9 0.5 10000 20 100 1000 Frequency (Hz) 10000 TS4890 APPLICATION INFORMATION Fig. 103 : Demoboard Schematic C1 R2 C2 R1 S1 Vcc Vcc Vcc S2 GND C6 + 100µ R3 6 C3 C5 R4 C4 Pos input S6 Vcc Neg. input P1 C7 100n 4 R5 VinVin+ 3 - Vout1 5 + C9 + 470µ S5 Positive Input mode P2 Vcc S8 Standby R8 10k GND S4 GND S7 R6 2 Bypass 1 Standby Av=-1 + Vout2 8 C10 + 470µ Bias GND R7 1.5k OUT1 S3 D1 PW ON TS4890 7 + C11 + C12 1u C8 Fig. 104 : SO8 & MiniSO8 Demoboard Components Side 23/32 TS4890 Fig. 105 : SO8 & MiniSO8 Demoboard Top Solder Layer The output power is : Pout = (2 VoutRMS )2 (W) RL For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration. ■ Gain In Typical Application Schematic (cf. page 1) In flat region (no effect of Cin), the output voltage of the first stage is : Rfeed Vout1 = − Vin (V) Rin For the second stage : Vout2 = -Vout1 (V) Fig. 106 : SO8 & MiniSO8 Demoboard Bottom Solder Layer The differential output voltage is Rfeed Vout2 − Vout1 = 2 Vin (V) Rin The differential gain named gain (Gv) for more convenient usage is : Gv = Vout2 − Vout1 Rfeed =2 Vin Rin Remark : Vout2 is in phase with Vin and Vout1 is 180 phased with Vin. It means that the positive terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1. ■ Low and high frequency response ■ BTL Configuration Principle The TS4890 is a monolithic power amplifier with a BTL output type. BTL (Bridge Tied Load) means that each end of the load are connected to two single ended output amplifiers. Thus, we have : Single ended output 1 = Vout1 = Vout (V) Single ended output 2 = Vout2 = -Vout (V) And Vout1 - Vout2 = 2Vout (V) 24/32 In low frequency region, the effect of Cin starts. Cin with Rin forms a high pass filter with a -3dB cut off frequency . FCL = 1 2πRinCin (Hz) In high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel on Rfeed. Its form a low pass filter with a -3dB cut off frequency . 1 FCH = (Hz) 2π Rfeed Cfeed TS4890 ■ Power dissipation and efficiency Hypothesis : • Voltage and current in the load are sinusoidal (Vout and Iout) • Supply voltage is a pure DC source (Vcc) Regarding the load we have : VOUT = VPEAK sin ωt (V) VOUT ( A) RL and POUT 2 V = PEAK (W) 2 RL Then, the average current delivered by the supply voltage is Icc AVG = 2 VPEAK ( A) π RL The power delivered by the supply voltage is Psupply = Vcc IccAVG (W) Then, the power dissipated by the amplifier is Pdiss = Psupply - Pout (W) Pdiss = 2 2 Vcc π RL POUT − POUT (W ) and the maximum value is obtained when ∂Pdiss =0 ∂POUT and its value is Pdiss max = 2 Vcc 2 π2RL π = 78.5% 4 ■ Decoupling of the circuit Two capacitors are needed to bypass properly the TS4890. A power supply bypass capacitor Cs and a bias voltage bypass capacitor Cb. Cs has especially an influence on the THD+N in high frequency (above 7kHz) and indirectly on the power supply disturbances. With 100µF, you can expect similar THD+N performances like shown in the datasheet. and IOUT = The maximum theoretical value is reached when Vpeak = Vcc, so (W) If Cs is lower than 100µF, in high frequency increase THD+N and disturbances on the power supply rail are less filtered. To the contrary, if Cs is higher than 100µF, those disturbances on the power supply rail are more filtered. Cb has an influence on THD+N in lower frequency, but its function is critical on the final result of PSRR with input grounded in lower frequency. If Cb is lower than 1µF, THD+N increase in lower frequency (see THD+N vs frequency curves) and the PSRR worsens up If Cb is higher than 1µF, the benefit on THD+N in lower frequency is small but the benefit on PSRR is substantial (see PSRR vs. Cb curves). Note that Cin has a non-negligible effect on PSRR in lower frequency. Lower is its value, higher is the PSRR (see fig. 13). ■ Pop and Click performance In order to have the best performances with the pop and click circuitry, the formula below must be follow : τin ≤ τb Remark : This maximum value is only depending on power supply voltage and load values. With The efficiency is the ratio between the output power and the power supply and η= π VPEAK POUT = P sup ply 4 Vcc τin = (Rin + Rfeed ) × Cin (s) τb = 50kΩ × Cb (s) 25/32 TS4890 ■ Power amplifier design examples The first amplifier has a gain of Rfeed =3 Rin Given : • Load impedance : 8Ω • Output power @ 1% THD+N : 0.5W • Input impedance : 10kΩ min. • Input voltage peak to peak : 1Vpp • Bandwidth frequency : 20Hz to 20kHz (0, -3dB) • THD+N in 20Hz to 20kHz < 0.5% @Pout=0.45W • Ambient temperature max = 50°C • SO8 package First of all, we must calculate the minimum power supply voltage to obtain 0.5W into 8Ω. See curves in fig. 15, we can read 3.5V. Thus, the power supply voltage value min. will be 3.5V. Following the equation : maximum Pdiss max = power 2 Vcc 2 π2RL dissipation (W) with 3.5V we have Pdissmax=0.31W. Refer to power derating curves (fig. 24), with 0.31W the maximum ambient temperature will be 100°C. This last value could be higher if you follow the example layout shows on the demoboard (better dissipation). The gain of the amplifier in flat region will be : GV = VOUTPP 2 2RLPOUT = = 5.65 VINPP VINPP We have Rin > 10kΩ. Let's take Rin = 10kΩ, then Rfeed = 28.25kΩ. We could use for Rfeed = 30kΩ in normalized value and the gain will be Gv = 6. and the theoretical value of the -3dB cut of higher frequency is 2MHz/3 = 660kHz. We can keep this value or limiting the bandwidth by adding a capacitor Cfeed, in parallel on Rfeed. Then CFEED = So, we could use for Cfeed a 220pF capacitor value that gives 24kHz. Now, we can choose the value of Cb with the constraint THD+N in 20Hz to 20kHz < 0.5% @ Pout=0.45W. If you refer to the closest THD+N vs frequency measurement : fig. 71 (Vcc=3.3V, Gv=10), with Cb = 1µF, the THD+N vs frequency is always below 0.4%. As the behaviour is the same with Vcc = 5V (fig. 67), Vcc = 2.6V (fig. 67). As the gain for these measurements is higher (worst case), we can consider with Cb = 1µF, Vcc = 3.5V and Gv = 6, that the THD+N in 20Hz to 20kHz range with Pout = 0.45W will be lower than 0.4%. In the following tables, you could find three another examples with values required for the demoboard. Remark : components with (*) marking are optional. Application n°1 : 20Hz to 20kHz bandwidth and 6dB gain BTL power amplifier. Components : In lower frequency we want 20 Hz (-3dB cut off frequency). Then CIN = 1 = 795nF 2π Rin FCL So, we could use for Cin a 1µF capacitor value that gives 16Hz. In Higher frequency we want 20kHz (-3dB cut off frequency). The Gain Bandwidth Product of the TS4890 is 2MHz typical and doesn't change when the amplifier delivers power into the load. 26/32 1 = 265pF 2π RFEED FCH Designator Part Type R1 22k / 0.125W R4 22k / 0.125W R6 Short Cicuit R7* (Vcc-Vf_led)/If_led R8 10k / 0.125W C5 470nF C6 100µF TS4890 Designator Part Type C7 100nF C9 Short Circuit C10 Short Circuit C12 1µF S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch S8 3 pts connector 2.54mm pitch P1 PCB Phono Jack D1* Led 3mm U1 TS4890ID or TS4890IS Application n°3 : 50Hz to 10kHz bandwidth and 10dB gain BTL power amplifier. Components : Designator Application n°2 : 20Hz to 20kHz bandwidth and 20dB gain BTL power amplifier. Part Type R1 33k / 0.125W R2 Short Circuit R4 22k / 0.125W R6 Short Cicuit R7* (Vcc-Vf_led)/If_led R8 10k / 0.125W C2 470pF C5 150nF C6 100µF C7 100nF C9 Short Circuit C10 Short Circuit C12 1µF S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch S8 3 pts connector 2.54mm pitch P1 PCB Phono Jack D1* Led 3mm U1 TS4890ID or TS4890IS Components : Designator Part Type R1 110k / 0.125W R4 22k / 0.125W R6 Short Cicuit R7* (Vcc-Vf_led)/If_led R8 10k / 0.125W C5 470nF C6 100µF C7 100nF C9 Short Circuit C10 Short Circuit C12 1µF S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch S8 3 pts connector 2.54mm pitch P1 PCB Phono Jack D1* Led 3mm U1 TS4890ID or TS4890IS Application n°4 : Differential inputs BTL power amplifier. In this configuration, we need to place these components : R1, R4, R5, R6, R7, C4, C5, C12. We have also : R4 = R5, R1 = R6, C4 = C5. The gain of the amplifier is: R1 G V D I FF = 2 -------R4 For Vcc=5V, a 20Hz to 20kHz bandwidth and 20dB gain BTL power amplifier you could follow the bill of material below. 27/32 TS4890 Components : Designator Part Type R1 110k / 0.125W R4 22k / 0.125W R5 22k / 0.125W R6 110k / 0.125W R7* (Vcc-Vf_led)/If_led R8 10k / 0.125W C4 470nF C5 470nF C6 100µF C7 100nF C9 Short Circuit C10 Short Circuit C12 1µF D1* Led 3mm S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch S8 3 pts connector 2.54mm pitch P1, P2 PCB Phono Jack U1 TS4890ID or TS4890IS 28/32 TS4890 ■ Note on how to use the PSRR curves How do we measure the PSRR ? (page 8) We have finished a design and we have chosen for the components : • Rin=Rfeed=22kΩ • Cin=100nF • Cb=1µF Fig. 108 : PSRR measurement schematic Rfeed 6 Vcc Vripple Vcc 4 The process to obtain the final curve (Cb=100µF, Cin=100nF, Rin=Rfeed=22kΩ) is a simple transfer point by point on each frequency of the curve on fig. 16 to the curve on fig. 15. The measurement result is shown on the next figure. Rin VinVin+ - Vout1 5 Vs- + Cin RL Rg 100 Ohms 2 Bypass 1 Standby Av=-1 + Cb Vout2 8 Vs+ Bias GND Now, on fig. 16, we can see the PSRR (input grounded) vs frequency curves. At 217Hz, we have a PSRR value of -36dB. In reality we want a value about -70dB. So, we need a gain of 34dB ! Now, on fig. 15 we can see the effect of Cb on the PSRR (input grounded) vs. frequency. With Cb=100µF, we can reach the -70dB value. 3 TS4890 7 ■ Principle of operation • We fixed the DC voltage supply (Vcc) • We fixed the AC sinusoidal ripple voltage (Vripple) • No bypass capacitor Cs is used Fig. 107 : PSRR changes with Cb The PSRR value for each frequency is : -30 PSRR (dB) -40 Rms (Vripple ) PSRR(dB) = 20 × Log10 Rms (Vs + − Vs − ) Vcc = 5 & 2.2V Rfeed = 22k, Rin = 22k Rg = 100Ω, RL = 8Ω Tamb = 25°C Cin=100nF Cb=1µF Remark : The measure of the Rms voltage is not a Rms selective measure but a full range (2 Hz to 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise. -50 -60 Cin=100nF Cb=100µF -70 10 100 1000 10000 100000 Frequency (Hz) ■ Note on PSRR measurement What is the PSRR ? The PSRR is the Power Supply Rejection Ratio. It's a kind of SVR in a determined frequency range. The PSRR of a device, is the ratio between a power supply disturbance and the result on the output. We can say that the PSRR is the ability of a device to minimize the impact of power supply disturbances to the output. 29/32 TS4890 PACKAGE MECHANICAL DATA SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 30/32 TS4890 PACKAGE MECHANICAL DATA 31/32 TS4890 PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom 32/32