DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUIT µPC8126GR 900 MHz BAND DIRECT QUADRATURE MODULATOR IC FOR DIGITAL MOBILE COMMUNICATION DESCRIPTION The µPC8126GR is a silicon monilithic integrated circuit designed as 900 MHz band direct guadrature modulator for digital mobile communication systems. This Si-MMIC consists of pre-mixer for RF and IF local oscillator and 900 MHz band guadrature modulator which are packaged in 20 pin SSOP. The device has power save function and can operate 2.7 V to 3.6 V supply voltage. Therefore, it can contribute to make RF block small, high performance and low power consumption. FEATURES • Direct modulation range : 915 MHz to 960 MHz • Pre-mixer for RF and IF local oscillator is incorporated. • External local filter can be applied between pre-mixer output and modulator input port. • Low operation current : ICC = 35 mA (typ.) @VCC = 3 V • Equipped with power save function. • 20 pin SSOP suitable for high density surface mounting. APPLICATIONS • Digital cellular phones (PDC900 MHz etc.) ORDERING INFORMATION PART NUMBER PACKAGE µPC8126GR-E1 20 pin plastic SSOP (225 mil) SUPPLYING FORM Embossed tape, 12 mm wide. Pins 1 through 10 are in tape pullout direction. QUANTITY 2500 pcs/Reel To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: µPC8126GR, Quantity: 20 pcs/Unit) Caution electro-static sensitive devices. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. P11487EJ2V0DS00 (2nd edition) Date Published October 1999 N CP(K) Printed in Japan The mark shows major revised points. © 1997, 1999 µPC8126GR INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS (Top View) VCC1 1 20 RF-Loin Lo Pre-mixer MIXout 2 19 GND GND 3 18 IF-Loin Loinb 4 17 Vps2 Loin 5 16 GND VCC2 6 15 MODout Vps1 7 14 VCC3 GND 8 13 GND I 9 12 Q Ib 10 11 Qb ×2 90 deg. Phase Shifter (÷2) QUADRATURE MODULATOR SERIES PRODUCT Part Number Functions ICC (mA) fLO1in (MHz) fMODout (MHz) RF Mixer fRFout (MHz) Phase Shifter Package Application µPC8101GR 150 MHz Quad.Mod 15/@2.7 V 100 to 300 50 to 150 µPC8104GR RF Up-Converter + IF Quad.Mod 28/@3.0 V 100 to 400 µPC8105GR 400 MHz Quad.Mod 16/@3.0 V 100 to 400 External 16-pin SSOP (225 mil) µPC8110GR 1 GHz Direct Quad.Mod 24/@3.0 V 800 to 1 000 External µPC8125GR RF Up-Converter + IF Quad.Mod + AGC 36/@3.0 V 220 to 270 1 800 to 2 000 20-pin PDC800 MHz, etc. SSOP (225 mil) PHS µPC8126GR 900 MHz Direct Quad.Mod 35/@3.0 V with Offset-Mixer 915 to 960 915 to 960 889 to 960 889 to 960 µPC8126K µPC8129GR ×2LO IF Quad. Mod+RF Up-Converter 20-pin CT-2 etc. SSOP (225 mil) 900 to 1 900 Doubler Digital Comm. + F/F External F/F PDC800 MHz 28-pin QFN 28/@3.0 V 200 to 800 100 to 400 800 to 1 900 F/F 20-pin GSM, SSOP (225 mil) DCS1800, etc. µPC8139GR-7JH Transceiver IC (1.9 GHz Indirect Quad. Mod + RX-IF + IF VCO) TX: 32.5 RX: 4.8 /@3.0 V 220 to 270 1 800 to 2 000 CR 30-pin PHS TSSOP (225 mil) µPC8158K 28/@3.0 V 100 to 300 800 to 1 500 RF Up-Converter + IF Quad.Mod + AGC Remark As for detail information of series products, please refer to each data sheet. 2 Data Sheet P11487EJ2V0DS00 28-pin QFN PDC800 M/1.5 G µPC8126GR APPLICATION EXAMPLE [PDC800MHz] SUB ANT LNA 2nd MIX 1st MIX TO DEMOD. SW MAIN ANT RSSI RSSI OUT 1st LO 2nd LO SW PLL1 PLL2 SW I 0° φ (÷2) PA AGC ×2 Filter 90° deg. Q µPC8126GR Data Sheet P11487EJ2V0DS00 3 µPC8126GR ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL RATING UNIT Supply voltage VCC 4.0 V TA = +25 °C, 1, 6, 14 pin Power Save Control Voltage Vps 4.0 V TA = +25 °C, 7, 17 pin Power Dissipation PD Operating Ambient Temperature TA −40 to +85 °C Storage Temperature Tstg −55 to +150 °C Note 1. Note 1 430 mW TEST CONDITIONS TA = +85 °C Mounted on a 50 × 50 × 1.6 mm double copper clad epoxy glass PWB. RECOMMENDED OPERATING CONDITIONS PARAMETER SYMBOL MIN. TYP. MAX. UNIT Supply Voltage VCC 2.7 3.0 3.6 V Operating Ambient Temperature TA −25 +25 +75 C Pre-Mix. RF Input Frequency fRFin 700 1200 MHz Pre-Mix. RF Input Power PRFin −13 −11 −9 dBm Pre-Mix. IF Input Frequency fIFin 120 135 270 MHz Pre-Mix. IF Input Power PIFin −14 −12 −10 dBm Pre-Mix. Output Frequency fMIXout 915 960 MHz Modulator Output Frequency fMODout 915 960 MHz −14.5 dBm 10 MHz 500 mVp-p Modulator Lo Input Frequency fLoin Modulator Lo Input Power PLoin −22.5 I/Q Input Frequency fI/Qin DC I/Q Input Amplitude VI/Qin −18.5 250 4 Data Sheet P11487EJ2V0DS00 TEST CONDITIONS PRFin = −11 dBm P (fIFin × 7) ≤ −65 dBc PIFin = −12 dBm Single ended Input Differential Input µPC8126GR ELECTRICAL CHARACTERISTICS (TA = +25 °C, VCC1 = VCC2 = VCC3 = 3.0 V, Vps1, Vps2 ≥ 2.2 V Unless Otherwise Specified) PARAMETER SYMBOL MIN. TYP. MAX. UNIT TEST CONDITIONS 35 44 mA No Input signals 0 15 µA Vps ≤ 0.5 V (Low), No Input Signals −9 −6 dBm −35 −30 dBc ImR −40 −30 dBc IM3 (I/Q) −45 −30 dBc −65 dBc MODULATOR + PRE-MIXER TOTAL (TEST CIRCUIT 1) Total Circuit Current ICC (TOTAL) Total Circuit Current at Sleep Mode ICC (ps) TOTAL Modulator Output Power PMODout Local Oscillator Leakage LoL Image Rejection I/Q 3rd Order Intermodulation fIF-Lo × 7 Harmonics Power Save Response Time 24 −12 Note 2 7fIF-Lo fIFin = 135 MHz, PIFin = −12 dBm fRFin = 813 MHz, PRFin = −11 dBm fMODout = 948 MHz + fI/Q fI/Qin = 2.625 kHz VI/Qin = 500 mVp-p (Single ended) I/Q (DC) = Ib/Qb (DC) = VCC/2 Data Rate: 42 kbps, RNYQ: α = 0.5 MOD Pattern: All Zero Rise Time Tps (RISE) 3 5 µs Vps: Low to High Fall Time Tps (FALL) 3 5 µs Vps: High to Low EVM 1.6 3.5 %rms ACP (∆f = ±50 kHz) −65 −60 dBc Error Vector Magnitude Adjacent Channel Power fIFin = 135 MHz, PIFin = −12 dBm fRFin = 813 MHz, PRFin = −11 dBm fMODout = 948 MHz + fI/Q fI/Qin = 2.625 kHz VI/Qin = 500 mVp-p (Single ended) I/Q (DC) = Ib/Qb (DC) = VCC/2 Data Rate: 42 kbps, RNYQ: α = 0.5 MOD Pattern: PN9 Port Current-7pin Ips (7 pin) 620 µA No Input Signals Port Current-17pin Ips (17 pin) 400 µA No Input Signals Note 2. fLoL = fIFin + fRFin Data Sheet P11487EJ2V0DS00 5 µPC8126GR STANDARD CHARACTERISTICS FOR REFERENCE (TA = +25 °C, VCC1 = VCC2 = VCC3 = 3.0 V, Vps1, Vps2 ≥ 2.2 V Unless Otherwise Specified) PARAMETER SYMBOL MIN. TYP. MAX. UNIT TEST CONDITIONS ICC (MOD) 27.5 34 mA No Input Signals ICC (ps) (MOD) 0 10 µA Vps ≤ 0.5 V (Low), No Input Signals 180 kΩ fI/Q = DC to 10 MHz − fMODout = 948 MHz MODULATOR (TEST CIRCUIT 1) Modulator Circuit Current Modulator Circuit Current at Sleep Mode Input Impedance I and Q Port ZI/Qin 90 Modulator Output Port VSWR VSWR (MOD) 1.5 : 1 ICC (MIX) 7.5 10 mA No Input Signals Pre-Mixer Circuit Current at Sleep Mode ICC (ps) (MIX) 0 5 µA Vps ≤ 0.5 V (Low), No Input Signals Pre-Mixer Conversion Gain CG (MIX) −5 −3 −1 dB Pre-Mixer Output Power Pout (MIX) −17 −15 −13 dBm fRFin = 813 MHz, PRFin = −11 dBm fIFin = 135 MHz, PIFin = −12 dBm fMIXout = 948 MHz PRE-MIXER (TEST CIRUCIT 2) Pre-Mixer Circuit Current 6 Data Sheet P11487EJ2V0DS00 µPC8126GR PIN EXPLANATIONS Pin No. Symbol Supply Vol. (V) Pin Vol. (V) @3 V Description 1 VCC1 (Pre-Mixer) 2.7 to 3.6 − Supply voltage pin for the premixer. An internal regulator helps keep the device stable against temperature or VCC variation. 2 Pre-Mixout 2.7 to 3.6 − Output from the pre-Mixer. This pin is designed as pen collector. Due to the high impedance output, this pin should be externally equipped with LC matching circuit to next stage. 3 GND (Modulator) 0 − Ground pin for the modulator. Connect to the ground with minimum inductance. Track length should be kept as short as possible. 4 LOinb − 2.6 Bypass of Lo input for modulator. This pin is grounded through around 33 pF capacitor. 5 LOin − 2.6 Lo input for the phase shifter. Connect around 300 Ω between pin 4 and 5 to match to 50 Ω by LC. 6 VCC2 2.7 to 3.6 − Supply voltage pin for the phase shifter and IQ Mixer. An internal regulator helps keep the device stable against temperature or VCC variation. 7 VPS1 (Modulator) VPS − Power save control pin for the modulator can control On/Sleep state with bias as follows. VPS (V) 8 GND (Modulator) 0 − Equivalent Circuit 2 5 4 7 STATE 2.2 to 3.6 ON (Active Mode) 0 to 0.5 OFF (Sleep Mode) Ground pin for the modulator. Connect to the ground with minimum inductance. Track length should be kept as short as possible. Data Sheet P11487EJ2V0DS00 7 µPC8126GR PIN EXPLANATIONS Pin Vol. (V) @3 V Pin No. Symbol 9 I VCC/2 − Input for I signal. This input impedance is 180 kΩ. In case of that I/Q input signals are single ended, amplitude of the signal is 500 mVp-p max. Note 3 10 Ib VCC/2 − Input for I signal. This input impedance is 180 kΩ. In case of that I/Q input signals are single ended, VCC/2 biased DC signal should be input. In case of that I/Q input signals are differential, amplitude of the signal is 250m Vp-p; max. Note 3 11 Qb Supply Vol. (V) VCC/2 − Description Input for Q signal. This input impedance is 180 kΩ. In case of that I/Q input signals are single ended, VCC/2 biased DC signal should be input. In case of that I/Q input signals are differential, amplitude of the signal is 250 mVp-p max. Note 3 12 Q VCC/2 − Input for Q signal. This input impedance is 180 kΩ. In case of that I/Q input signals are single ended, amplitude of the signal is 500 mVp-p max. Note 3 13 GND (Modulator) 0 − Ground pin for the modulator. Connect to the ground with minimum inductance. Track length should be kept as short as possible. 14 VCC3 2.7 to 3.6 − Supply voltage pin for the output buffer amplifier of modulator. An internal regulator helps keep the device stable against temperature or VCC variation. 15 MODout − 1.6 Equivalent Circuit 9 10 11 12 Output pin from the modulator. This is emitter follower output. So this output impedance is low. 15 16 8 GND (Modulator) 0 − Ground pin for the modulator. Connect to the ground with minimum inductance. Track length should be kept as short as possible. Data Sheet P11487EJ2V0DS00 µPC8126GR PIN EXPLANATIONS Pin No. 17 Symbol Supply Vol. (V) VPS2 (Pre-Mix.) VPS Pin Vol. (V) @3 V − Description Power save control pin can control the On/Sleep state with bias as follows. VPS (V) 18 IF-Loin − 1.3 Equivalent Circuit 17 STATE 2.2 to 3.6 ON (Active Mode) 0 to 0.5 OFF (Sleep Mode) IF input pin for the pre-Mixer. This pin is biased internally. Capacitor should be connected in series, and grounded through 51 Ω. 18 19 GND (Pre-Mix.) 0 − Ground pin for modulator. Connect to the ground with minimum inductance. Track length should be kept as short as possible. 20 RF-Loin − 2.3 RF input pin for the pre-Mixer. This pin is biased internally. Capacitor should be connected in series, and grounded through 51 Ω. Note 3 20 Relations between amplitude and VCC/2 bias of input signal are following. I/Q input signal (mVp-p) Supply Voltage (V) VCC 2.7 to 3.6 I/Q DC Voltage (V) VCC/2 = I = Ib = Q = Qb Single ended iinput I=Q Differential input I = Ib = Q = Qb ≤ 500 ≤ 250 1.35 to 1.8 Data Sheet P11487EJ2V0DS00 9 µPC8126GR EXPLANATION OF INTERNAL FUNCTION BLOCK 90 ° PHASE SHIFTER FUNCTION/OPERATION Input signal from LO is send to digital circuit of T-type flip-flop through frequency doubler. Output signal from T-type F/F is changed to same frequency as LO input and that have quadrature phase shift, 0 °, 90 °, 180 °, 270 °. These circuits have function of self phase correction to make correctly quadrature signals. BUFFER AMP. Buffer amplifiers for each phase signals to send to each mixers. MIXER Each signals from buffer amp. are quadrature modulated with two double-balanced mixers. High accurate phase and amplitude inputs are realized to good performance for image rejection. ADDER BLOCK DIAGRAM from LOin ×2 ÷ 2 F/F I Ib Qb Q Output signals from each mixers are added with adder and send to final amplifier. to MODout 10 Data Sheet P11487EJ2V0DS00 µPC8126GR STANDARD TYPICAL CHARACTERISTICS 〈 Modulator+Pre-Mixer Total〉〉 Test Circuit 2, TA = +25 °C, VCC1 = VCC2 = VCC3 = 3.0 V, Vps1 = Vps2 = 3.0 V, I/Q (DC) = Ib/Qb (DC) = VCC/2, VI/Qin = 420 mVp-p (Differential Input), fI/Qin = 2.625 kHz, fIFin = 135 MHz, PIFin = −12 dBm, fRFin = 813 MHz, PRFin = −11 dBm, fMODout = 948 MHz + fI/Qin, Data Rate = 42 kbps, RNYQ : α = 0.5, MOD Pattern : All Zero, Unless Otherwise Specified ICC (TOTAL) vs VCC ICC (TOTAL) - Total Circuit Current - mA 50 40 No input signal TA = +80 °C TA = +25 °C TA = –30 °C 30 20 10 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 3.0 3.5 4.0 VCC - Supply Voltage - V ICC (TOTAL) vs Vps ICC (TOTAL) - Total Circuit Current - mA 50 40 No input signal TA = +80 °C TA = +25 °C TA = –30 °C 30 20 10 0 0.5 1.0 1.5 2.0 2.5 Vps - Power Save Control Voltage - V Data Sheet P11487EJ2V0DS00 11 µPC8126GR PMODout vs VI/Qin (at TA = +25 °C) PMODout vs VI/Qin (at TA = –30 °C) 0 VCC = 3.6 V VCC = 3.0 V VCC = 2.7 V 0 –5 PMODout Modulator Output Power - dBm PMODout Modulator Output Power - dBm –5 –10 –15 –20 –25 10 20 50 100 200 5001000 PMODout vs VI/Qin (at TA = +80 °C) VCC = 3.6 V VCC = 3.0 V VCC = 2.7 V PMODout Modulator Output Power - (dBm) –5 –10 –15 –20 –25 10 20 50 100 200 5001000 VI/Qin - I/Q Input Amplitude - mVP-P 12 –10 –15 –20 –25 VI/Qin - I/Q Input Amplitude - mVP-P 0 VCC = 3.6 V VCC = 3.0 V VCC = 2.7 V Data Sheet P11487EJ2V0DS00 10 20 50 100 200 5001000 VI/Qin - I/Q Input Amplitude - mVP-P µPC8126GR LoL, ImR, IM3I/Q vs VI/Qin (at TA = –30 °C) LoL, ImR, IM3I/Q vs VI/Qin (at TA = +25 °C) –25 –25 IM 3 (I/Q) LoL IM 2 (I/Q) –35 –40 IM 3 (I/Q) –45 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc LoL –30 –30 –35 –40 ImR –45 ImR –50 10 –50 20 50 100 200 5001000 VI/Qin - I/Q Input Amplitude - mVP-P 10 20 50 100 200 5001000 VI/Qin - I/Q Input Amplitude - mVP-P LoL, ImR, IM3I/Q vs VI/Qin (at TA = +80 °C) –25 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc LoL –30 IM 3 (I/Q) –35 –40 ImR –45 –50 10 20 50 100 200 5001000 VI/Qin - I/Q Input Amplitude - mVP-P Data Sheet P11487EJ2V0DS00 13 µPC8126GR PMODout, LoL, ImR, IM3I/Q vs fLoin (at VCC = 3.0 V, TA = –30 °C) –5 –30 IM 2 (I/Q) ImR –50 –25 –55 –30 900 950 LoL IM 3 (I/Q) ImR –50 –25 IM 2 (iI/Q) –30 900 950 –10 –35 LoL –15 –40 IM 3 –45 (I/Q)j –20 ImR –50 IM 2(I/Q) –25 –30 –55 1000 900 950 1000 fLoin - Lo Input Frequency - MHz fLoin - Lo Input Frequency - MHz fLoin - Lo Input Frequency - MHz PMODout, LoL, ImR, IM3I/Q vs fLoin (at VCC = 2.7 V, TA = +25 °C) PMODout, LoL, ImR, IM3I/Q vs fLoin (at VCC = 3.0 V, TA = +25 °C) PMODout, LoL, ImR, IM3I/Q vs fLoin (at VCC =3.6 V, TA = +25 °C) –5 –20 IM 3 iI/Q j –25 –50 –30 –55 900 iI/Q j 950 1000 fLoin - Lo Input Frequency - MHz –10 –35 LoL –15 –40 –45 IM 3 –20 iI/Q j ImR –25 –50 IM 2 iI/Q j –30 –55 900 950 1000 fLoin - Lo Input Frequency - MHz Data Sheet P11487EJ2V0DS00 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc ImR IM 2 PMODout PMODout - Modulator Output Power - dBm LoL LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –15 –40 PMODout - Modulator Output Power - dBm –10 –5 –30 PMODout –35 –45 –5 –30 PMODout LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –20 –45 –55 1000 –30 14 –15 –40 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc (I/Q) –10 –35 PMODout - Modulator Output Power - dBm IM 3 –20 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –15 –40 PMODout - Modulator Output Power - dBm LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –10 LoL –45 PMODout PMODout PMODout –35 –5 –30 PMODout - Modulator Output Power - dBm –5 –30 PMODout, LoL, ImR, IM3I/Q vs fLoin (at VCC = 3.6 V, TA = –30 °C) –10 –35 LoL –40 IM 2 –15 iI/Q j –45 ImR IM 3 –20 iI/Q j –50 –25 –55 –30 900 950 1000 fLoin - Lo Input Frequency - MHz PMODout - Modulator Output Power - dBm PMODout, LoL, ImR, IM3I/Q vs fLoin (at VCC = 2.7 V, TA = –30 °C) µPC8126GR PMODout, LoL, ImR, IM3I/Q vs fLoin (at VCC = 3.0 V, TA = +80 °C) –5 –30 –20 –45 IM 2 (I/Q) IM 3 (I/Q) –25 LoL –15 –40 –45 ImR –20 IM 2 (I/Q) –25 –50 IM 3 –30 –55 900 950 –30 900 –10 –35 LoL –15 –40 IM 2 (I/Q) ImR –20 –45 –25 –50 IM 3 (I/Q) (I/Q) –55 1000 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc ImR –10 –35 PMODout - Modulator Output Power - dBm –15 –40 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc LoL PMODout - Modulator Output Power - dBm LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –10 –35 –50 PMODout PMODout PMODout –5 –30 950 –30 –55 1000 900 950 1000 fLoin - Lo Input Frequency - MHz fLoin - Lo Input Frequency - MHz fLoin - Lo Input Frequency - MHz PMODout, LoL, ImR, IM3I/Q vs PIF-Loin (at VCC = 2.7 V, TA = –30 °C) PMODout, LoL, ImR, IM3I/Q vs PIF-Loin (at VCC = 3.0 V, TA = –30 °C) PMODout, LoL, ImR, IM3I/Q vs PIF-Loin (at VCC = 3.6 V, TA = –30 °C) –5 –30 –45 (I/Q) –20 ImR –25 –50 –30 –55 –12 7 PIF-Loin Pre-Mix. IF Input Power - dBm –10 –35 LoL –15 –40 IM 2 (I/Q) IM 3 (I/Q) –20 –45 ImR –25 –50 –30 –55 –17 –12 7 PIF-Loin Pre-Mix. IF Input Power - dBm Data Sheet P11487EJ2V0DS00 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc IM 3 –17 PMODout PMODout - Modulator Output Power - dBm –15 (I/Q) LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc LoL –40 PMODout - Modulator Output Power - dBm LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –10 –5 –30 PMODout –35 IM 2 –5 –30 PMODout PMODout - Modulator Output Power - dBm –5 –30 PMODout, LoL, ImR, IM3I/Q vs fLoin (at VCC = 3.6 V, TA = +80 °C) –10 –35 LoL –15 –40 IM 3 –45 (I/Q) –20 ImR –25 –50 IM 2 (I/Q) –30 –55 –17 PMODout - Modulator Output Power - dBm PMODout, LoL, ImR, IM3I/Q vs fLoin (at VCC = 2.7 V, TA = +80 °C) –12 7 PIF-Loin Pre-Mix. IF Input Power - dBm 15 µPC8126GR PMODout, LoL, ImR, IM3I/Q vs PIF-Loin (at VCC =3.0 V, TA = +25 °C) –5 –30 ImR –20 IM 3(I/Q) –25 –50 –10 –35 LoL –15 –40 IM 3(I/Q) –20 –45 ImR –25 –50 –30 –12 –35 LoL –10 –15 –40 ImR –20 –45 IM 3(I/Q) –50 IM 2(I/Q) –25 IM 2(I/Q) IM 2 (I/Q) –55 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –15 –40 –17 PMODout PMODout - Modulator Output Power - dBm LoL LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –10 –35 –5 –30 PMODout PMODout - Modulator Output Power - dBm LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –5 –30 PMODout –45 PMODout, LoL, ImR, IM3I/Q vs PIF-Loin (at VCC =3.6 V, TA = +25 °C) PMODout - Modulator Output Power - dBm PMODout, LoL, ImR, IM3I/Q vs PIF-Loin (at VCC = 2.7 V, TA = +25 °C) –30 –55 –7 –17 –12 –30 –55 –7 –17 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm PIF-Loin - Pre-Mix. IF Input Power - dBm PIF-Loin - Pre-Mix. IF Input Power - dBm PMODout, LoL, ImR, IM3I/Q vs PIF-Loin (at VCC = 2.7 V, TA = +80 °C) PMODout, LoL, ImR, IM3I/Q vs PIF-Loin (at VCC =3.0 V, TA = +80 °C) PMODout, LoL, ImR, IM3I/Q vs PIF-Loin (at VCC =3.6 V, TA = +80 °C) –5 –30 –5 –30 –5 –30 –15 –20 –45 IM 2 (I/Q) –25 –50 LoL –15 –40 ImR –20 –45 IM 2 (I/Q) –25 –50 IM 3 (I/Q) –35 –10 LoL –15 –40 IM 2 (I/Q) –45 ImR –20 IM 3 (I/Q) –50 –25 –55 –30 PMODout - Modulator Output Power - dBm ImR –10 –35 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –40 PMODout PMODout - Modulator Output Power - dBm LoL LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –10 –35 PMODout - Modulator Output Power - dBm LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc PMODout PMODout IM 3 (I/Q) –30 –55 –17 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm 16 –30 –55 –17 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm Data Sheet P11487EJ2V0DS00 –17 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm µPC8126GR PMODout, LoL, ImR, IM3I/Q vs PRF-Loin (at VCC = 3.0 V, TA = –30 °C) –5 –30 –5 –30 IM 3 (I/Q) –20 –45 ImR –25 –50 –10 –35 LoL –40 IM 2 (I/Q) –15 IM 3 (I/Q) –20 –45 ImR –25 –50 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc IM 2 (I/Q) PMODout PMODout - Modulator Output Power - dBm –15 –40 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc LoL PMODout - Modulator Output Power - dBm –10 –35 –5 –30 PMODout PMODout LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc PMODout, LoL, ImR, IM3I/Q vs PRF-Loin (at VCC = 3.6 V, TA = –30 °C) –10 –35 LoL –15 –40 IM 3 (I/Q) ImR –45 –20 –25 –50 PMODout - Modulator Output Power - dBm PMODout, LoL, ImR, IM3I/Q vs PRF-Loin (at VCC = 2.7 V, TA = –30 °C) IM 2 (I/Q) –30 –55 –15 –11 –30 –55 –7 –15 –11 –30 –55 –7 –15 –11 –7 PRF-Loin - Pre-Mix. RF Input Power - dBm PRF-Loin - Pre-Mix. RF Input Power - dBm PRF-Loin - Pre-Mix. RF Input Power - dBm PMODout, LoL, ImR, IM3I/Q vs PRF-Loin (at VCC = 2.7 V, TA = +25 °C) PMODout, LoL, ImR, IM3I/Q vs PRF-Loin (at VCC = 3.0 V, TA = +25 °C) PMODout, LoL, ImR, IM3I/Q vs PRF-Loin (at VCC = 3.6 V, TA = +25 °C) PMODout –20 ImR –25 –50 LoL –15 –40 IM 3 (I/Q) –20 –45 ImR –25 –50 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc IM 3 (I/Q) –10 –35 PMODout - Modulator Output Power - dBm –15 –40 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc LoL PMODout - Modulator Output Power - dBm LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –10 –35 –5 –30 PMODout PMODout –45 –5 –30 –35 LoL –10 –15 –40 ImR –20 –45 IM 3 (I/Q) IM 2 (I/Q) –50 –25 –55 –30 PMODout - Modulator Output Power - dBm –5 –30 IM 2 (I/Q) IM 2 (I/Q) –30 –55 –15 –11 –7 PRF-Loin - Pre-Mix. RF Input Power - dBm –30 –55 –15 –11 –7 PRF-Loin - Pre-Mix. RF Input Power - dBm Data Sheet P11487EJ2V0DS00 –15 –11 –7 PRF-Loin - Pre-Mix. RF Input Power - dBm 17 µPC8126GR PMODout, LoL, ImR, IM3I/Q vs PRF-Loin (at VCC = 2.7 V, TA = +80 °C) PMODout, LoL, ImR, IM3I/Q vs PRF-Loin (at VCC = 3.0 V, TA = +80 °C) –5 –30 PMODout, LoL, ImR, IM3I/Q vs PRF-Loin (at VCC = 3.6 V, TA = +80 °C) –5 –30 –5 –30 IM 2 (I/Q) –45 –20 –50 –25 LoL –15 –40 IM 2 (I/Q) ImR –45 –20 –50 –25 IM 3 (I/Q) LoL –15 ImR –7 PRF-Loin - Pre-Mix. RF Input Power - dBm 18 –20 –45 IM 3 (I/Q) –25 –50 IM 2 (I/Q) –30 –11 –15 –40 IM 3 (I/Q) –55 –10 –35 PMODout - Modulator Output Power - dBm –15 –10 –35 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc ImR –40 PMODout PMODout - Modulator Output Power - dBm LoL LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –10 –35 PMODout - Modulator Output Power - dBm LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc PMODout PMODout –30 –55 –15 –11 –7 PRF-Loin - Pre-Mix. RF Input Power - dBm Data Sheet P11487EJ2V0DS00 –30 –55 –15 –11 –7 PRF-Loin - Pre-Mix. RF Input Power - dBm µPC8126GR PMODout, LoL, ImR, IM3I/Q vs I/Q(DC) (at VCC = 3.0 V, TA = –30 °C) –5 –30 PMODout IM 3 (I/Q) IM 2 (I/Q) –20 –45 ImR –50 –25 –55 –30 1.35 1.45 LoL –15 –40 IM 3 (I/Q) –45 ImR –20 IM 2 (I/Q) –50 –25 –55 –30 1.4 1.5 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –15 –40 –10 –35 PMODout - Modulator Output Power - dBm LoL LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –10 –35 –5 –30 PMODout PMODout - Modulator Output Power - dBm LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –5 –30 PMODout 1.25 PMODout, LoL, ImR, IM3I/Q vs I/Q(DC) (at VCC = 3.6 V, TA = –30 °C) 1.6 –10 –35 LoL –40 –15 IM 2 (I/Q) IM 3 (I/Q) –20 –45 ImR –50 –25 –55 –30 1.7 1.8 PMODout - Modulator Output Power - dBm PMODout, LoL, ImR, IM3I/Q vs I/Q(DC) (at VCC = 2.7 V, TA = –30 °C) 1.9 I/Q(DC) - I/Q Supply Voltage - V I/Q(DC) - I/Q Supply Voltage - V I/Q(DC) - I/Q Supply Voltage - V PMODout, LoL, ImR, IM3I/Q vs I/Q(DC) (at VCC = 2.7 V, TA = +25 °C) PMODout, LoL, ImR, IM3I/Q vs I/Q(DC) (at VCC = 3.0 V, TA = +25 °C) PMODout, LoL, ImR, IM3I/Q vs I/Q(DC) (at VCC = 3.6 V, TA = +25 °C) IM 3 (I/Q) –20 ImR –50 IM 2 (I/Q) –30 –55 1.25 –25 1.35 1.45 I/Q(DC) - I/Q Supply Voltage - V –10 –35 LoL –15 –40 –45 –20 IM 3 (I/Q) ImR IM 2 (I/Q) –50 –30 –55 1.4 –25 1.5 1.6 I/Q(DC) - I/Q Supply Voltage - V Data Sheet P11487EJ2V0DS00 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –45 PMODout PMODout - Modulator Output Power - dBm –15 –40 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc LoL PMODout - Modulator Output Power - dBm LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –10 –5 –30 PMODout PMODout –35 –5 –30 –10 –35 LoL –15 –40 –45 ImR –20 IM 3 (I/Q) IM 2 (I/Q) –50 –25 –55 –30 1.7 1.8 PMODout - Modulator Output Power - dBm –5 –30 1.9 I/Q(DC) - I/Q Supply Voltage - V 19 µPC8126GR ImR –20 –45 IM 2 (I/Q) –25 –50 PMODout PMODout –10 –35 LoL –15 –40 –45 ImR –20 IM 2 (I/Q) –50 IM 3 (I/Q) –5 –30 –25 –10 –35 LoL ImR –15 –40 –20 –45 IM 2 (I/Q) IM 3 (I/Q) –50 –25 –55 –30 IM 3 (I/Q) –30 –55 1.25 1.35 1.45 I/Q(DC) - I/Q Supply Voltage - V 20 –30 –55 1.4 1.5 1.6 I/Q(DC) - I/Q Supply Voltage - V Data Sheet P11487EJ2V0DS00 1.7 1.8 1.9 I/Q(DC) - I/Q Supply Voltage - V PMODout - Modulator Output Power - dBm –15 –40 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc LoL PMODout - Modulator Output Power - dBm –10 –35 –5 –30 PMODout PMODout, LoL, ImR, IM3I/Q vs I/Q(DC) (at VCC = 3.6 V, TA = +80 °C) LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc –5 –30 LoL - Local Oscillator Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd. Order Intermodulation - dBc PMODout, LoL, ImR, IM3I/Q vs I/Q(DC) (at VCC = 3.0 V, TA = +80 °C) PMODout - Modulator Output Power - dBm PMODout, LoL, ImR, IM3I/Q vs I/Q(DC) (at VCC = 2.7 V, TA = +80 °C) P(fIF × 7) vs PIF-Loin (at VCC = 3.0 V, TA = –30 °C) P(fIF × 7) vs PIF-Loin (at VCC = 3.6 V, TA = –30 °C) 0 0 0 –20 –20 –20 –40 –60 –80 –100 –120 –40 –60 –80 –100 Recommended operating range –17 –12 –120 –7 –40 –60 –80 –100 Recommended operating range –17 –12 –120 –7 Recommended operating range –17 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm PIF-Loin - Pre-Mix. IF Input Power - dBm P(fIF × 7) vs PIF-Loin (at VCC = 2.7 V, TA = +25 °C) P(fIF × 7) vs PIF-Loin (at VCC = 3.0 V, TA = +25 °C) P(fIF × 7) vs PIF-Loin (at VCC = 3.6 V, TA = +25 °C) 0 0 –20 –20 P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc –40 –60 –80 –100 –120 P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc PIF-Loin - Pre-Mix. IF Input Power - dBm –20 P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc P(fIF × 7) vs PIF-Loin (at VCC = 2.7 V, TA = –30 °C) P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc µPC8126GR –40 –60 –80 –100 Recommended operating range –17 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm –120 –40 –60 –80 –100 Recommended operating range –17 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm Data Sheet P11487EJ2V0DS00 –120 Recommended operating range –17 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm 21 P(fIF × 7) vs PIF-Loin (at VCC = 3.0 V, TA = +80 °C) P(fIF × 7) vs PIF-Loin (at VCC = 3.6 V, TA = +80 °C) 0 0 0 –20 –20 –20 –40 –60 –80 –100 –40 –60 –80 –100 Recommended operating range –120 –17 –12 –7 –40 –60 –80 –100 Recommended operating range –120 PIF-Loin - Pre-Mix. IF Input Power - dBm 22 P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc P(fIF × 7) vs PIF-Loin (at VCC = 2.7 V, TA = +80 °C) P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc µPC8126GR –17 Recommended operating range –120 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm Data Sheet P11487EJ2V0DS00 –17 –12 –7 PIF-Loin - Pre-Mix. IF Input Power - dBm µPC8126GR EVM, ∆φ, ∆A vs VI/Qin (at VCC = 2.7 V) EVM, ∆φ, ∆A vs VI/Qin (at VCC = 3.0 V) 5 Single ended Input MDO Pattern: PN9 5 Single ended Input MDO Pattern: PN9 EVM EVM ∆A 3 2 ∆φ 1 4 ∆A 3 2 ∆φ EVM - Error Vector Magnitude - %rms ∆φ - Phase Error - deg. ∆A - Magnitude Error -%rms 4 EVM - Error Vector Magnitude - %rms ∆φ - Phase Error - deg. ∆A - Magnitude Error -%rms 1 100 200 10 500 1000 100 200 10 VI/Qin - I/Q Input Amplitude - mVP-P –60 –70 –80 10 ∆ f = ±100 kHz 100200 500 1000 VI/Qin - I/Q Input Amplitude - mVP-P –40 ACP - Adjacent Channel Power - dBc ∆ f = ±50 kHz 3 2 ∆φ 100 200 10 ∆ f = ±50 kHz –60 –70 –80 10 ACP vs VI/Qin (at VCC = 3.6 V) Single ended Input MDO Pattern: PN9 –50 ∆ f = ±100 kHz 100200 500 1000 VI/Qin - I/Q Input Amplitude - mVP-P Data Sheet P11487EJ2V0DS00 500 1000 VI/Qin - I/Q Input Amplitude - mVP-P ACP vs VI/Qin (at VCC = 3.0 V) Single ended Input MDO Pattern: PN9 –50 500 1000 VI/Qin - I/Q Input Amplitude - mVP-P ACP vs VI/Qin (at VCC = 2.7 V) –40 ∆A 1 –40 ACP - Adjacent Channel Power - dBc EVM - Error Vector Magnitude - %rms ∆φ - Phase Error - deg. ∆A - Magnitude Error -%rms 5 Single ended Input MDO Pattern: PN9 EVM 4 ACP - Adjacent Channel Power - dBc EVM, ∆φ, ∆A vs VI/Qin (at VCC = 3.6 V) Single ended Input MDO Pattern: PN9 –50 ∆ f = ±50 kHz –60 –70 –80 ∆ f = ±100 kHz 10 100200 500 1000 VI/Qin - I/Q Input Amplitude - mVP-P 23 µPC8126GR TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM <PDC> 42kbps, RNYQ α = 0.5, MOD Pattern [000] TRACE A: Ch1 Spectrum A Marker 948 002 625. 0 Hz –9. 277 dBm 0 VI/Qin = 500 mVP-P (Single ended Input) dBm ATT 0 dB 1 2 IM 3 (I/Q) LoL 3 4 5 RBW 3 kHz VBW 3 kHz SWP 5. 0 s 10 dB /div 24 REF –10. 0 dB 10 dB/ ImR LogMag –100 dBm TYPICAL π/4DQPSK MODULATION OUTPUT SPECTRUM <PDC> 42kbps, RNYQ α = 0.5, MOD Pattern [PN9] CENTER 948. 00000 MHz Center: 948 MHz Span: 50 kHz No. 1: No. 2: No. 3: No. 4: No. 5: Data Sheet P11487EJ2V0DS00 SPAN 500 kHz * * * Multi Marker List * * * 0 Hz 0. 00 dB –50. 0 kHz –64. 50 dB –100. 0 kHz –77. 00 dB 50. 0 kHz –64. 75 dB 100. 0 kHz –77. 00 dB µPC8126GR MOD OUTPUT (15 pin) IMPEDANCE VCC = VPS = 2.7 V 1 : 49.039 Ω –21.127 Ω VCC = VPS = 3.0 V 1 : 49. 121 Ω 7.9465pF 948. 000 000 MHz MAEKER 1 948 MHz VSWR 2 : 1 MAEKER 1 948 MHz 1 START 500. 000 000 MHz –22.845 Ω 7.3486 pF 948. 000 000 pF VSWR 2 : 1 1 STOP 1 500. 000 000 MHz START 500. 000 000 MHz STOP 1 500. 000 000 MHz VCC = VPS = 3.6 V 1 : 49. 783 Ω –22.645 Ω MAEKER 1 948 MHz 7.1004 pF 948. 000 000 MHz VSWR 2 : 1 1 START 500. 000 000 MHz STOP 1 500. 000 000 MHz Data Sheet P11487EJ2V0DS00 25 µPC8126GR STANDARD TYPICAL CHARACTERISTICS <Pre-Mixer> Test Circuit 3, TA = +25 °C, VCC1 = 3.0 V, Vps2 = 3.0 V, fIFin = 135 MHz, PIFin = −12 dBm, fRFin = 813 MHz, PRFin = −11 dBm, fMIXout = 948 MHz ICC (MIX) - Pre-Mix. Circuit Current - mA ICC (MIX) vs VCC1 10 No input signal TA = +80 °C TA = +25 °C TA = –30 °C 7.5 5 2.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 3.5 4.0 VCC1 - Pre-Mix. Supply Voltage - V ICC (MIX) - Pre-Mix. Circuit Current - mA ICC (MIX) vs Vps2 No input signal TA = +80 °C TA = +25 °C TA = –30 °C 10 0 0.5 1.0 1.5 2.0 2.5 3.0 Vps2 - Pre-Mix. Supply Voltage - V 26 Data Sheet P11487EJ2V0DS00 µPC8126GR 0 0 0 –60 P ( f IF× 7 ) 0 Pout(MIX) 60 –80 80 –100 –120 –20 20 RFL –40 40 ImL –60 P ( f IF× 7 ) 60 –80 80 100 –100 120 –120 POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm ImL POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm 40 P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm 20 RFL –40 0 Pout(MIX) Pout(MIX) –20 Pout (MIX), RFL, ImL, P(fIF × 7) vs PIF-Loin (at VCC = 3.6 V, TA = –30 °C) P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc 0 Pout (MIX), RFL, ImL, P(fIF × 7) vs PIF-Loin (at VCC = 3.0 V, TA = –30 °C) –20 20 RFL –40 40 ImL –60 P ( f IF× 7 ) 60 –80 80 100 –100 100 120 –120 120 P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc Pout (MIX), RFL, ImL, P(fIF × 7) vs PIF-Loin (at VCC = 2.7 V, TA = –30 °C) –50 –40 –30 –20 –10 0 –50 –40 –30 –20 –10 0 –50 –40 –30 –20 –10 0 PIF-Loin - Pre-Mix. IF Input Power - dBm PIF-Loin - Pre-Mix. IF Input Power - dBm PIF-Loin - Pre-Mix. IF Input Power - dBm Pout (MIX), RFL, ImL, P(fIF × 7) vs PIF-Loin (at VCC = 2.7 V, TA = +25 °C) Pout (MIX), RFL, ImL, P(fIF × 7) vs PIF-Loin (at VCC = 3.0 V, TA = +25 °C) Pout (MIX), RFL, ImL, P(fIF × 7) vs PIF-Loin (at VCC = 3.6 V, TA = +25 °C) 0 0 0 0 0 Pout(MIX) Pout(MIX) –40 40 ImL –60 60 P ( f IF× 7 ) –80 80 –100 –120 20 RFL –40 40 ImL –60 P ( f IF× 7 ) 60 –80 80 100 –100 120 –120 POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm RFL –20 P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc 20 POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm –20 P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm Pout(MIX) –20 20 RFL –40 40 ImL –60 P ( f IF× 7 ) 60 –80 80 100 –100 100 120 –120 120 P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc 0 –50 –40 –30 –20 –10 0 –50 –40 –30 –20 –10 0 –50 –40 –30 –20 –10 0 PIF-Loin - Pre-Mix. IF Input Power - dBm PIF-Loin - Pre-Mix. IF Input Power - dBm PIF-Loin - Pre-Mix. IF Input Power - dBm Data Sheet P11487EJ2V0DS00 27 µPC8126GR 0 Pout (MIX), RFL, ImL, P(fIF × 7) vs PIF-Loin (at VCC = 3.0 V, TA = +80 °C) 0 0 0 0 Pout(MIX) –40 40 ImL 60 P ( f IF× 7 ) –80 80 –100 –120 20 RFL –40 40 ImL –60 60 P ( f IF× 7 ) –80 80 100 –100 120 –120 POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm RFL –20 P(fIF × 7) - fIF - Lo × 7 Harmonics - dBc 20 POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm –20 –20 20 RFL –40 40 ImL –60 60 P ( f IF× 7 ) –80 80 100 –100 100 120 –120 120 –50 –40 –30 –20 –10 0 –50 –40 –30 –20 –10 0 –50 –40 –30 –20 –10 0 PIF-Loin - Pre-Mix. IF Input Power - dBm PIF-Loin - Pre-Mix. IF Input Power - dBm PIF-Loin - Pre-Mix. IF Input Power - dBm Pout (MIX), RFL, ImL vs PRF-Loin (at VCC = 3.0 V, TA = –30 °C) Pout (MIX), RFL, ImL vs PRF-Loin (at VCC = 2.7 V, TA = –30 °C) 0 ImL RFL –60 –80 –20 POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm –20 –40 Pout(MIX) Pout(MIX) Pout(MIX) POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm Pout (MIX), RFL, ImL vs PRF-Loin (at VCC = 3.6 V, TA = –30 °C) 0 0 ImL RFL –40 –60 –80 –20 ImL –60 –80 –100 –100 –120 –120 –120 –20 –12 –4 –20 –12 –4 PIF-Loin - Pre-Mix. RF Input Power - dBm Data Sheet P11487EJ2V0DS00 RFL –40 –100 PIF-Loin - Pre-Mix. RF Input Power - dBm 28 0 Pout(MIX) P(fIF × 7) - fIF - Lo × 7 Harmonics - dBc POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm Pout(MIX) –60 Pout (MIX), RFL, ImL, P(fIF × 7) vs PIF-Loin (at VCC = 3.6 V, TA = +80 °C) P(fIF × 7) - fIF - Lo × 7 Harmonics - dBc Pout (MIX), RFL, ImL, P(fIF × 7) vs PIF-Loin (at VCC = 2.7 V, TA = +80 °C) –20 –12 –4 PIF-Loin - Pre-Mix. RF Input Power - dBm µPC8126GR Pout (MIX), RFL, ImL vs PRF-Loin (at VCC = 2.7 V, TA = +25 °C) Pout (MIX), RFL, ImL vs PRF-Loin (at VCC = 3.0 V, TA = +25 °C) Pout (MIX), RFL, ImL vs PRF-Loin (at VCC = 3.6 V, TA = +25 °C) 0 0 0 –40 RFL –60 –80 –20 ImL –40 RFL –60 –80 POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm ImL POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm –20 Pout (MIX) Pout (MIX) Pout (MIX) –20 ImL –40 RFL –60 –80 –100 –100 –100 –120 –120 –120 –20 –12 –4 PRF-Loin - Pre-Mix. RF Input Power - dBm –20 –12 –4 PRF-Loin - Pre-Mix. RF Input Power - dBm –20 –12 –4 PRF-Loin - Pre-Mix. RF Input Power - dBm Pout (MIX), RFL, ImL vs PRF-Loin (at VCC = 2.7 V, TA = +80 °C) Pout (MIX), RFL, ImL vs PRF-Loin (at VCC = 3.0 V, TA = +80 °C) Pout (MIX), RFL, ImL vs PRF-Loin (at VCC = 3.6 V, TA = +80 °C) 0 0 0 –40 –60 –80 RFL –20 ImL –40 RFL –60 –80 POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm ImL POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm POUT (MIX) - Pre-Mix. Output Power - dBc RFL - RF Local Oscillator Leakage - dBm ImL - Image Leakage - dBm –20 Pout (MIX) Pout (MIX) Pout (MIX) –20 ImL –40 –60 –80 –100 –100 –100 –120 –120 –120 –20 –12 –4 PRF-Loin - Pre-Mix. RF Input Power - dBm –20 –12 –4 PRF-Loin - Pre-Mix. RF Input Power - dBm Data Sheet P11487EJ2V0DS00 RFL –20 –12 –4 PRF-Loin - Pre-Mix. RF Input Power - dBm 29 µPC8126GR Pout(MIX) vs fMIXout (at VCC = 2.7 V, TA = –30 °C) Pout(MIX) vs fMIXout (at VCC = 3.0 V, TA = –30 °C) Pout(MIX) vs fMIXout (at VCC = 3.6 V, TA = –30 °C) 0 0 0 Pout (MIX) –40 –60 –80 –100 –120 Recommended operating range 900 950 –20 –40 –60 –80 –100 –120 Recommended operating range 1000 900 –40 –60 –80 –100 –120 Recommended operating range 1000 900 950 1000 fMIXout - Pre-Mix. Output Frequency - MHz fMIXout - Pre-Mix. Output Frequency - MHz Pout(MIX) vs fMIXout (at VCC = 2.7 V, TA = +25 °C) Pout(MIX) vs fMIXout (at VCC = 3.0 V, TA = +25 °C) Pout(MIX) vs fMIXout (at VCC = 3.6 V, TA = +25 °C) 0 0 0 Pout (MIX) –40 –60 –80 –100 –120 Pout (MIX) –20 Pout(MIX) - Pre-Mix. Output Power - dBm –20 Pout(MIX) - Pre-Mix. Output Power - dBm Pout(MIX) - Pre-Mix. Output Power - dBm 950 –20 fMIXout - Pre-Mix. Output Frequency - MHz Pout (MIX) –40 –60 –80 –100 Recommended operating range 900 950 1000 fMIXout - Pre-Mix. Output Frequency - MHz 30 Pout (MIX) Pout(MIX) - Pre-Mix. Output Power - dBm –20 Pout(MIX) - Pre-Mix. Output Power - dBm Pout(MIX) - Pre-Mix. Output Power - dBm Pout (MIX) –120 –20 –40 –60 –80 –100 Recommended operating range 900 950 1000 fMIXout - Pre-Mix. Output Frequency - MHz Data Sheet P11487EJ2V0DS00 –120 Recommended operating range 900 950 1000 fMIXout - Pre-Mix. Output Frequency - MHz µPC8126GR Pout(MIX) vs fMIXout (at VCC = 2.7 V, TA = +80 °C) Pout(MIX) vs fMIXout (at VCC = 3.0 V, TA = +80 °C) Pout(MIX) vs fMIXout (at VCC = 3.6 V, TA = +80 °C) 0 0 0 –40 –60 –80 –100 Recommended operating range 900 950 1000 fMIXout - Pre-Mix. Output Frequency - MHz –20 Pout(MIX) - Pre-Mix. Output Power - dBm –20 –120 Pout (MIX) Pout (MIX) Pout(MIX) - Pre-Mix. Output Power - dBm Pout(MIX) - Pre-Mix. Output Power - dBm Pout (MIX) –40 –60 –80 –100 –120 Recommended operating range 900 950 1000 fMIXout - Pre-Mix. Output Frequency - MHz Data Sheet P11487EJ2V0DS00 –20 –40 –60 –80 –100 –120 Recommended operating range 900 950 1000 fMIXout - Pre-Mix. Output Frequency - MHz 31 µPC8126GR TEST CIRCUIT 1 (Modulator+Pre-Mixer / In case of VI/Qin is single ended input) Signal Generator Spectrum Analyzer Voltage Source Signal Generator BPF RFin IFin Vps2 RFout VCC1 Q Qb 12 11 MODout 51 51 1000 pF 0.22 µ F 33 pF 20 100 pF 1000 pF 33 pF 19 18 17 16 15 14 13 PreMixer I/Q Mixer Frequency Doubler TFF I/Q Mixer 1 0.22 µF 2 3 15 nH 4 5 33 pF 22 nH 33 pF 100 pF 2 pF 1000 pF 6 7 100 pF 300 22 nH 6.8 nH 9 10 I Ib 0.22 µF 1000 pF 2 pF LOin VCC1 Vps1 Voltage VCC2 Source Mix out 6 pF 6.8 nH Voltage Source 6 pF 2 pF 6.8 nH 6.8 nH Filter 32 8 Data Sheet P11487EJ2V0DS00 Q Qb I/Q Signal Generator I Ib µPC8126GR TEST CIRCUIT 2 (Modulator+Pre-Mixer / In case of VI/Qin is differential input) Signal Generator Spectrum Analyzer Voltage Source Signal Generator BPF RFin IFin Vps2 51 RFout 51 20 18 Qb 100 K 0.22 µ F 10 pF 10 pF 22 K 22 K 100 pF 1000 pF 19 Q 1000 pF 33 pF 33 pF VCC1 17 16 15 14 13 12 11 PreMixer I/Q Mixer Frequency Doubler TFF I/Q Mixer 1 0.22 µ F 2 3 15 nH 4 5 22 nH 33 pF 100 pF 2 pF 1000 pF 6 7 100 pF 300 8 9 10 33 pF 0.22 µ F 22 nH 22 K 22 K 10 pF 10 pF 100 K 1000 pF 6.8 nH Q Qb I/Q Signal Generator I Ib 2 pF LOin VCC1 Vps1 Voltage VCC2 Source I Ib Mix out 6 pF 6.8 nH Voltage Source 6 pF 2 pF 6.8 nH 6.8 nH Filter Data Sheet P11487EJ2V0DS00 33 µPC8126GR TEST CIRCUIT 3 (Pre-Mixer) Signal Generator Voltage Source Signal Generator BPF RFin IFin Vps2 51 51 33 pF 1000 pF 20 19 18 17 MODout 16 15 VCC3 14 13 Q Qb 12 11 PreMixer I/Q Mixer Frequency Doubler TFF I/Q Mixer 1 2 15 nH 3 4 5 6 7 8 9 10 I Ib 0.22 µF 22 nH 100 pF 1000 pF 2 pF LOimb LOin VCC1 Voltage Source 34 VCC2 Vps1 Mix out Spectrum Analyzer Data Sheet P11487EJ2V0DS00 µPC8126GR APPLICATION CIRCUIT EXAMPLE 0.22 µ F 1000 pF Note 1 1 100 pF VCC1 RF-Loin 20 33 pF 15 nH 2 MIXout 3 GND GND 19 IF-Loin 18 51 Ω 51 Ω Filter 2 pF 22 nH 1000 pF 33 pF 6.8 nH 4 Loinb Vps2 17 5 Loin GND 16 6 VCC2 MODout 15 300 Ω 2 pF Note 2 22 nH 33 pF 0.22 µ F 1000 pF 33 pF 100 pF 7 Vps1 VCC3 14 1000 pF 100 pF 8 GND GND 13 9 I Q 12 10 Ib Qb 11 0.22 µ F TABLE 1 : Example of filter connect between pin2 and pin5 Kind of filter Circuit BPF Zin = 50 Ω 6 pF Notes 1. 6.8 nH 2 pF 6 pF 6.8 nH Zout = 50 Ω 6.8 nH fo = 948 MHz Insertion Loss = 3.5 dB 50 Ω matching circuit at fMIXout = 948 MHz. In case of using NEC’s evaluation board. 2. 50 Ω matching circuit at fLoin = 948 MHz. In case of using NEC’s evaluation board. Data Sheet P11487EJ2V0DS00 35 µPC8126GR EXAMPLE OF TEST CIRCUIT 1 ASSEMBLED ON EVALUATION BOARD 33 pF VCC3 51 Ω 100 pF 0.22 µ F 1000 pF Vps2 1000 pF 51 Ω 33 pF Qb 1000 pF 100 pF 0.22 µ F VCC1 15 nH Ib 33 pF 22 nH 6 pF Vps1 300 Ω 2 pF 6.8 nH 22 nH 2 pF 100 pF 0.22 µ F 33 pF 2 pF 6 pF 6.8 nH 6.8 nH VCC2 1000 pF 6.8 nH Notes 1. Double-sided patterning with 35 mm thick copper on polyhimid board. 2. GND pattern on backside. 3. solder coating over patterns. 4. , indicate through-holes. NOTICE The test circuits and board pattern on data sheet are for performance evaluation use only. In case of actual design-in, matching circuit should be determined using S-parameter of desired frequency in accordance to actual mounting pattern. 36 Data Sheet P11487EJ2V0DS00 µPC8126GR PACKAGE DIMENSIONS 20 PIN PLASTIC SSOP (225 mil) (UNIT: mm) 20 11 detail of lead end +7˚ 3˚–3˚ 1 10 6.7 ± 0.3 6.4 ± 0.2 1.8 MAX. 4.4 ± 0.1 1.5 ± 0.1 1.0 ± 0.2 0.5 ± 0.2 0.15 0.65 +0.10 0.22 –0.05 0.15 +0.10 –0.05 0.575 MAX. 0.10 M 0.1 ± 0.1 NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition. Data Sheet P11487EJ2V0DS00 37 µPC8126GR NOTE ON CORRECT USE (1) Observe precautions for handling because of electrostatic sensitive devices. (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). (3) Keep the track length of the ground pins as short as possible. (4) Connect a bypass capacitor (e.x. 1 000 pF) to the VCC pin. RECOMMENDED SOLDERING CONDITIONS This product should be soldered in the following recommended conditions. Other soldering method and conditions than the recommended conditions are to be consulted with sales representatives. µPC8126GR Soldering process Soldering conditions Symbol Infrared ray reflow Peak package’s surface temperature: 235 °C or below, Reflow time: 30 seconds or below (210 °C or higher) Note Number of reflow process: 2, Exposure limit : None IR35-00-2 VPS Peak package’s surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher ) Note Number of reflow process: 2, Exposure limit : None VP15-00-2 Wave soldering Solder temperature: 260 °C or below, Flow time: 10 seconds or below, Note Number of flow process: 1, Exposure limit : None WS60-00-1 Partial heating method Terminal temperature: 300 °C or below, Flow time: 3 seconds/pin or below, Note Exposure limit : None Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less. Caution Apply only a single process at once, except for ‘‘Partial heating method’’. For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). 38 Data Sheet P11487EJ2V0DS00 µPC8126GR [MEMO] Data Sheet P11487EJ2V0DS00 39 µPC8126GR • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8