ETC UPC8126GR-E1

DATA SHEET
BIPOLAR ANALOG INTEGRATED CIRCUIT
µPC8126GR
900 MHz BAND DIRECT QUADRATURE MODULATOR IC
FOR DIGITAL MOBILE COMMUNICATION
DESCRIPTION
The µPC8126GR is a silicon monilithic integrated circuit designed as 900 MHz band direct guadrature modulator
for digital mobile communication systems. This Si-MMIC consists of pre-mixer for RF and IF local oscillator and 900
MHz band guadrature modulator which are packaged in 20 pin SSOP. The device has power save function and can
operate 2.7 V to 3.6 V supply voltage. Therefore, it can contribute to make RF block small, high performance and low
power consumption.
FEATURES
• Direct modulation range : 915 MHz to 960 MHz
• Pre-mixer for RF and IF local oscillator is incorporated.
• External local filter can be applied between pre-mixer output and modulator input port.
• Low operation current
: ICC = 35 mA (typ.) @VCC = 3 V
• Equipped with power save function.
• 20 pin SSOP suitable for high density surface mounting.
APPLICATIONS
• Digital cellular phones (PDC900 MHz etc.)
ORDERING INFORMATION
PART NUMBER
PACKAGE
µPC8126GR-E1
20 pin plastic SSOP (225 mil)
SUPPLYING FORM
Embossed tape, 12 mm wide.
Pins 1 through 10 are in tape pullout direction.
QUANTITY
2500 pcs/Reel
To order evaluation samples, please contact your local NEC sales office.
(Part number for sample order: µPC8126GR, Quantity: 20 pcs/Unit)
Caution electro-static sensitive devices.
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Document No. P11487EJ2V0DS00 (2nd edition)
Date Published October 1999 N CP(K)
Printed in Japan
The mark
shows major revised points.
©
1997, 1999
µPC8126GR
INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS (Top View)
VCC1
1
20
RF-Loin
Lo Pre-mixer
MIXout
2
19
GND
GND
3
18
IF-Loin
Loinb
4
17
Vps2
Loin
5
16
GND
VCC2
6
15
MODout
Vps1
7
14
VCC3
GND
8
13
GND
I
9
12
Q
Ib
10
11
Qb
×2
90 deg.
Phase Shifter
(÷2)
QUADRATURE MODULATOR SERIES PRODUCT
Part Number
Functions
ICC
(mA)
fLO1in
(MHz)
fMODout
(MHz)
RF Mixer
fRFout (MHz)
Phase
Shifter
Package
Application
µPC8101GR
150 MHz Quad.Mod
15/@2.7 V 100 to 300 50 to 150
µPC8104GR
RF Up-Converter + IF
Quad.Mod
28/@3.0 V
100 to 400
µPC8105GR
400 MHz Quad.Mod
16/@3.0 V
100 to 400
External
16-pin
SSOP (225 mil)
µPC8110GR
1 GHz Direct Quad.Mod
24/@3.0 V
800 to 1 000
External
µPC8125GR
RF Up-Converter + IF
Quad.Mod + AGC
36/@3.0 V
220 to 270
1 800 to 2 000
20-pin
PDC800 MHz, etc.
SSOP (225 mil)
PHS
µPC8126GR
900 MHz Direct Quad.Mod 35/@3.0 V
with Offset-Mixer
915 to 960
915 to 960
889 to 960
889 to 960
µPC8126K
µPC8129GR
×2LO IF Quad. Mod+RF
Up-Converter
20-pin
CT-2 etc.
SSOP (225 mil)
900 to 1 900 Doubler
Digital Comm.
+ F/F
External
F/F
PDC800 MHz
28-pin QFN
28/@3.0 V 200 to 800 100 to 400 800 to 1 900
F/F
20-pin
GSM,
SSOP (225 mil) DCS1800, etc.
µPC8139GR-7JH Transceiver IC
(1.9 GHz Indirect Quad.
Mod + RX-IF + IF VCO)
TX: 32.5
RX: 4.8
/@3.0 V
220 to 270
1 800 to 2 000
CR
30-pin
PHS
TSSOP (225 mil)
µPC8158K
28/@3.0 V
100 to 300
800 to 1 500
RF Up-Converter + IF
Quad.Mod + AGC
Remark As for detail information of series products, please refer to each data sheet.
2
Data Sheet P11487EJ2V0DS00
28-pin QFN
PDC800 M/1.5 G
µPC8126GR
APPLICATION EXAMPLE
[PDC800MHz]
SUB ANT
LNA
2nd MIX
1st MIX
TO DEMOD.
SW
MAIN ANT
RSSI
RSSI OUT
1st LO
2nd LO
SW
PLL1 PLL2
SW
I
0°
φ
(÷2)
PA
AGC
×2
Filter
90° deg.
Q
µPC8126GR
Data Sheet P11487EJ2V0DS00
3
µPC8126GR
ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
RATING
UNIT
Supply voltage
VCC
4.0
V
TA = +25 °C, 1, 6, 14 pin
Power Save Control Voltage
Vps
4.0
V
TA = +25 °C, 7, 17 pin
Power Dissipation
PD
Operating Ambient Temperature
TA
−40 to +85
°C
Storage Temperature
Tstg
−55 to +150
°C
Note 1.
Note 1
430
mW
TEST CONDITIONS
TA = +85 °C
Mounted on a 50 × 50 × 1.6 mm double copper clad epoxy glass PWB.
RECOMMENDED OPERATING CONDITIONS
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
Supply Voltage
VCC
2.7
3.0
3.6
V
Operating Ambient Temperature
TA
−25
+25
+75
C
Pre-Mix. RF Input Frequency
fRFin
700
1200
MHz
Pre-Mix. RF Input Power
PRFin
−13
−11
−9
dBm
Pre-Mix. IF Input Frequency
fIFin
120
135
270
MHz
Pre-Mix. IF Input Power
PIFin
−14
−12
−10
dBm
Pre-Mix. Output Frequency
fMIXout
915
960
MHz
Modulator Output Frequency
fMODout
915
960
MHz
−14.5
dBm
10
MHz
500
mVp-p
Modulator Lo Input Frequency
fLoin
Modulator Lo Input Power
PLoin
−22.5
I/Q Input Frequency
fI/Qin
DC
I/Q Input Amplitude
VI/Qin
−18.5
250
4
Data Sheet P11487EJ2V0DS00
TEST CONDITIONS
PRFin = −11 dBm
P (fIFin × 7) ≤ −65 dBc
PIFin = −12 dBm
Single ended Input
Differential Input
µPC8126GR
ELECTRICAL CHARACTERISTICS
(TA = +25 °C, VCC1 = VCC2 = VCC3 = 3.0 V, Vps1, Vps2 ≥ 2.2 V Unless Otherwise Specified)
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
TEST CONDITIONS
35
44
mA
No Input signals
0
15
µA
Vps ≤ 0.5 V (Low),
No Input Signals
−9
−6
dBm
−35
−30
dBc
ImR
−40
−30
dBc
IM3 (I/Q)
−45
−30
dBc
−65
dBc
MODULATOR + PRE-MIXER TOTAL (TEST CIRCUIT 1)
Total Circuit Current
ICC (TOTAL)
Total Circuit Current at Sleep
Mode
ICC (ps) TOTAL
Modulator Output Power
PMODout
Local Oscillator Leakage
LoL
Image Rejection
I/Q 3rd Order Intermodulation
fIF-Lo × 7 Harmonics
Power Save
Response Time
24
−12
Note 2
7fIF-Lo
fIFin = 135 MHz, PIFin = −12 dBm
fRFin = 813 MHz, PRFin = −11 dBm
fMODout = 948 MHz + fI/Q
fI/Qin = 2.625 kHz
VI/Qin = 500 mVp-p
(Single ended)
I/Q (DC) = Ib/Qb (DC) = VCC/2
Data Rate: 42 kbps,
RNYQ: α = 0.5
MOD Pattern: All Zero
Rise Time
Tps (RISE)
3
5
µs
Vps: Low to High
Fall Time
Tps (FALL)
3
5
µs
Vps: High to Low
EVM
1.6
3.5
%rms
ACP
(∆f = ±50 kHz)
−65
−60
dBc
Error Vector Magnitude
Adjacent Channel Power
fIFin = 135 MHz, PIFin = −12 dBm
fRFin = 813 MHz, PRFin = −11 dBm
fMODout = 948 MHz + fI/Q
fI/Qin = 2.625 kHz
VI/Qin = 500 mVp-p
(Single ended)
I/Q (DC) = Ib/Qb (DC) = VCC/2
Data Rate: 42 kbps,
RNYQ: α = 0.5
MOD Pattern: PN9
Port Current-7pin
Ips (7 pin)
620
µA
No Input Signals
Port Current-17pin
Ips (17 pin)
400
µA
No Input Signals
Note 2.
fLoL = fIFin + fRFin
Data Sheet P11487EJ2V0DS00
5
µPC8126GR
STANDARD CHARACTERISTICS FOR REFERENCE
(TA = +25 °C, VCC1 = VCC2 = VCC3 = 3.0 V, Vps1, Vps2 ≥ 2.2 V Unless Otherwise Specified)
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
TEST CONDITIONS
ICC (MOD)
27.5
34
mA
No Input Signals
ICC (ps) (MOD)
0
10
µA
Vps ≤ 0.5 V (Low),
No Input Signals
180
kΩ
fI/Q = DC to 10 MHz
−
fMODout = 948 MHz
MODULATOR (TEST CIRCUIT 1)
Modulator Circuit Current
Modulator Circuit Current at
Sleep Mode
Input Impedance I and Q Port
ZI/Qin
90
Modulator Output Port VSWR
VSWR (MOD)
1.5 : 1
ICC (MIX)
7.5
10
mA
No Input Signals
Pre-Mixer Circuit Current at
Sleep Mode
ICC (ps) (MIX)
0
5
µA
Vps ≤ 0.5 V (Low),
No Input Signals
Pre-Mixer Conversion Gain
CG (MIX)
−5
−3
−1
dB
Pre-Mixer Output Power
Pout (MIX)
−17
−15
−13
dBm
fRFin = 813 MHz, PRFin = −11 dBm
fIFin = 135 MHz, PIFin = −12 dBm
fMIXout = 948 MHz
PRE-MIXER (TEST CIRUCIT 2)
Pre-Mixer Circuit Current
6
Data Sheet P11487EJ2V0DS00
µPC8126GR
PIN EXPLANATIONS
Pin
No.
Symbol
Supply
Vol. (V)
Pin
Vol. (V)
@3 V
Description
1
VCC1
(Pre-Mixer)
2.7 to 3.6
−
Supply voltage pin for the premixer.
An internal regulator helps keep the
device stable against temperature or
VCC variation.
2
Pre-Mixout
2.7 to 3.6
−
Output from the pre-Mixer. This pin
is designed as pen collector. Due to
the high impedance output, this pin
should be externally equipped with
LC matching circuit to next stage.
3
GND
(Modulator)
0
−
Ground pin for the modulator.
Connect to the ground with minimum
inductance.
Track length should be kept as short
as possible.
4
LOinb
−
2.6
Bypass of Lo input for modulator.
This pin is grounded through around
33 pF capacitor.
5
LOin
−
2.6
Lo input for the phase shifter.
Connect around 300 Ω between pin
4 and 5 to match to 50 Ω by LC.
6
VCC2
2.7 to 3.6
−
Supply voltage pin for the phase
shifter and IQ Mixer. An internal
regulator helps keep the device
stable against temperature or VCC
variation.
7
VPS1
(Modulator)
VPS
−
Power save control pin for the
modulator can control On/Sleep
state with bias as follows.
VPS (V)
8
GND
(Modulator)
0
−
Equivalent Circuit
2
5
4
7
STATE
2.2 to 3.6
ON (Active Mode)
0 to 0.5
OFF (Sleep Mode)
Ground pin for the modulator.
Connect to the ground with minimum
inductance.
Track length should be kept as short
as possible.
Data Sheet P11487EJ2V0DS00
7
µPC8126GR
PIN EXPLANATIONS
Pin
Vol. (V)
@3 V
Pin
No.
Symbol
9
I
VCC/2
−
Input for I signal.
This input impedance is 180 kΩ.
In case of that I/Q input signals are
single ended, amplitude of the signal
is 500 mVp-p max.
Note 3
10
Ib
VCC/2
−
Input for I signal.
This input impedance is 180 kΩ.
In case of that I/Q input signals are
single ended, VCC/2 biased DC
signal should be input.
In case of that I/Q input signals are
differential, amplitude of the signal is
250m Vp-p; max.
Note 3
11
Qb
Supply
Vol. (V)
VCC/2
−
Description
Input for Q signal.
This input impedance is 180 kΩ.
In case of that I/Q input signals are
single ended, VCC/2 biased DC
signal should be input.
In case of that I/Q input signals are
differential, amplitude of the signal is
250 mVp-p max.
Note 3
12
Q
VCC/2
−
Input for Q signal.
This input impedance is 180 kΩ.
In case of that I/Q input signals are
single ended, amplitude of the signal
is 500 mVp-p max.
Note 3
13
GND
(Modulator)
0
−
Ground pin for the modulator.
Connect to the ground with minimum
inductance.
Track length should be kept as short
as possible.
14
VCC3
2.7 to 3.6
−
Supply voltage pin for the output
buffer amplifier of modulator.
An internal regulator helps keep the
device stable against temperature or
VCC variation.
15
MODout
−
1.6
Equivalent Circuit
9
10
11
12
Output pin from the modulator.
This is emitter follower output.
So this output impedance is low.
15
16
8
GND
(Modulator)
0
−
Ground pin for the modulator.
Connect to the ground with minimum
inductance.
Track length should be kept as short
as possible.
Data Sheet P11487EJ2V0DS00
µPC8126GR
PIN EXPLANATIONS
Pin
No.
17
Symbol
Supply
Vol. (V)
VPS2
(Pre-Mix.)
VPS
Pin
Vol. (V)
@3 V
−
Description
Power save control pin can control
the On/Sleep state with bias as
follows.
VPS (V)
18
IF-Loin
−
1.3
Equivalent Circuit
17
STATE
2.2 to 3.6
ON (Active Mode)
0 to 0.5
OFF (Sleep Mode)
IF input pin for the pre-Mixer.
This pin is biased internally.
Capacitor should be connected in
series, and grounded through 51 Ω.
18
19
GND
(Pre-Mix.)
0
−
Ground pin for modulator.
Connect to the ground with minimum
inductance.
Track length should be kept as short
as possible.
20
RF-Loin
−
2.3
RF input pin for the pre-Mixer.
This pin is biased internally.
Capacitor should be connected in
series, and grounded through 51 Ω.
Note 3
20
Relations between amplitude and VCC/2 bias of input signal are following.
I/Q input signal (mVp-p)
Supply Voltage (V)
VCC
2.7 to 3.6
I/Q DC Voltage (V)
VCC/2 = I = Ib = Q = Qb
Single ended iinput
I=Q
Differential input
I = Ib = Q = Qb
≤ 500
≤ 250
1.35 to 1.8
Data Sheet P11487EJ2V0DS00
9
µPC8126GR
EXPLANATION OF INTERNAL FUNCTION
BLOCK
90 °
PHASE
SHIFTER
FUNCTION/OPERATION
Input signal from LO is send to digital circuit of
T-type flip-flop through frequency doubler.
Output signal from T-type F/F is changed to
same frequency as LO input and that have
quadrature phase shift, 0 °, 90 °, 180 °, 270 °.
These circuits have function of self phase
correction to make correctly quadrature signals.
BUFFER
AMP.
Buffer amplifiers for each phase signals to send
to each mixers.
MIXER
Each signals from buffer amp. are quadrature
modulated with two double-balanced mixers.
High accurate phase and amplitude inputs are
realized to good performance for image
rejection.
ADDER
BLOCK DIAGRAM
from LOin
×2
÷ 2 F/F
I
Ib
Qb
Q
Output signals from each mixers are added with
adder and send to final amplifier.
to MODout
10
Data Sheet P11487EJ2V0DS00
µPC8126GR
STANDARD TYPICAL CHARACTERISTICS 〈 Modulator+Pre-Mixer Total〉〉
Test Circuit 2, TA = +25 °C, VCC1 = VCC2 = VCC3 = 3.0 V, Vps1 = Vps2 = 3.0 V,
I/Q (DC) = Ib/Qb (DC) = VCC/2, VI/Qin = 420 mVp-p (Differential Input), fI/Qin = 2.625 kHz,
fIFin = 135 MHz, PIFin = −12 dBm, fRFin = 813 MHz, PRFin = −11 dBm, fMODout = 948 MHz + fI/Qin,
Data Rate = 42 kbps, RNYQ : α = 0.5,
MOD Pattern : All Zero, Unless Otherwise Specified
ICC (TOTAL) vs VCC
ICC (TOTAL) - Total Circuit Current - mA
50
40
No input signal
TA = +80 °C
TA = +25 °C
TA = –30 °C
30
20
10
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
3.0
3.5
4.0
VCC - Supply Voltage - V
ICC (TOTAL) vs Vps
ICC (TOTAL) - Total Circuit Current - mA
50
40
No input signal
TA = +80 °C
TA = +25 °C
TA = –30 °C
30
20
10
0
0.5
1.0
1.5
2.0
2.5
Vps - Power Save Control Voltage - V
Data Sheet P11487EJ2V0DS00
11
µPC8126GR
PMODout vs VI/Qin
(at TA = +25 °C)
PMODout vs VI/Qin
(at TA = –30 °C)
0
VCC = 3.6 V
VCC = 3.0 V
VCC = 2.7 V
0
–5
PMODout Modulator Output Power - dBm
PMODout Modulator Output Power - dBm
–5
–10
–15
–20
–25
10
20
50 100 200
5001000
PMODout vs VI/Qin
(at TA = +80 °C)
VCC = 3.6 V
VCC = 3.0 V
VCC = 2.7 V
PMODout Modulator Output Power - (dBm)
–5
–10
–15
–20
–25
10
20
50 100 200
5001000
VI/Qin - I/Q Input Amplitude - mVP-P
12
–10
–15
–20
–25
VI/Qin - I/Q Input Amplitude - mVP-P
0
VCC = 3.6 V
VCC = 3.0 V
VCC = 2.7 V
Data Sheet P11487EJ2V0DS00
10
20
50 100 200
5001000
VI/Qin - I/Q Input Amplitude - mVP-P
µPC8126GR
LoL, ImR, IM3I/Q vs VI/Qin
(at TA = –30 °C)
LoL, ImR, IM3I/Q vs VI/Qin
(at TA = +25 °C)
–25
–25
IM 3
(I/Q)
LoL
IM 2
(I/Q)
–35
–40
IM 3 (I/Q)
–45
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
LoL
–30
–30
–35
–40
ImR
–45
ImR
–50
10
–50
20
50 100 200
5001000
VI/Qin - I/Q Input Amplitude - mVP-P
10
20
50 100 200
5001000
VI/Qin - I/Q Input Amplitude - mVP-P
LoL, ImR, IM3I/Q vs VI/Qin
(at TA = +80 °C)
–25
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
LoL
–30
IM 3
(I/Q)
–35
–40
ImR
–45
–50
10
20
50 100 200
5001000
VI/Qin - I/Q Input Amplitude - mVP-P
Data Sheet P11487EJ2V0DS00
13
µPC8126GR
PMODout, LoL, ImR, IM3I/Q vs fLoin
(at VCC = 3.0 V, TA = –30 °C)
–5
–30
IM 2
(I/Q)
ImR
–50
–25
–55
–30
900
950
LoL
IM 3
(I/Q)
ImR
–50
–25
IM 2 (iI/Q)
–30
900
950
–10
–35
LoL
–15
–40
IM 3
–45
(I/Q)j
–20
ImR
–50
IM 2(I/Q)
–25
–30
–55
1000
900
950
1000
fLoin - Lo Input Frequency - MHz
fLoin - Lo Input Frequency - MHz
fLoin - Lo Input Frequency - MHz
PMODout, LoL, ImR, IM3I/Q vs fLoin
(at VCC = 2.7 V, TA = +25 °C)
PMODout, LoL, ImR, IM3I/Q vs fLoin
(at VCC = 3.0 V, TA = +25 °C)
PMODout, LoL, ImR, IM3I/Q vs fLoin
(at VCC =3.6 V, TA = +25 °C)
–5
–20
IM 3
iI/Q j
–25
–50
–30
–55
900
iI/Q j
950
1000
fLoin - Lo Input Frequency - MHz
–10
–35
LoL
–15
–40
–45
IM 3
–20
iI/Q j
ImR
–25
–50
IM 2
iI/Q j
–30
–55
900
950
1000
fLoin - Lo Input Frequency - MHz
Data Sheet P11487EJ2V0DS00
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
ImR
IM 2
PMODout
PMODout - Modulator Output Power - dBm
LoL
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–15
–40
PMODout - Modulator Output Power - dBm
–10
–5
–30
PMODout
–35
–45
–5
–30
PMODout
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–20
–45
–55
1000
–30
14
–15
–40
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
(I/Q)
–10
–35
PMODout - Modulator Output Power - dBm
IM 3
–20
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–15
–40
PMODout - Modulator Output Power - dBm
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–10
LoL
–45
PMODout
PMODout
PMODout
–35
–5
–30
PMODout - Modulator Output Power - dBm
–5
–30
PMODout, LoL, ImR, IM3I/Q vs fLoin
(at VCC = 3.6 V, TA = –30 °C)
–10
–35
LoL
–40
IM 2
–15
iI/Q j
–45
ImR
IM 3
–20
iI/Q j
–50
–25
–55
–30
900
950
1000
fLoin - Lo Input Frequency - MHz
PMODout - Modulator Output Power - dBm
PMODout, LoL, ImR, IM3I/Q vs fLoin
(at VCC = 2.7 V, TA = –30 °C)
µPC8126GR
PMODout, LoL, ImR, IM3I/Q vs fLoin
(at VCC = 3.0 V, TA = +80 °C)
–5
–30
–20
–45
IM 2
(I/Q)
IM 3
(I/Q)
–25
LoL
–15
–40
–45
ImR
–20
IM 2
(I/Q)
–25
–50
IM 3
–30
–55
900
950
–30
900
–10
–35
LoL
–15
–40
IM 2
(I/Q)
ImR
–20
–45
–25
–50
IM 3
(I/Q)
(I/Q)
–55
1000
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
ImR
–10
–35
PMODout - Modulator Output Power - dBm
–15
–40
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
LoL
PMODout - Modulator Output Power - dBm
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–10
–35
–50
PMODout
PMODout
PMODout
–5
–30
950
–30
–55
1000
900
950
1000
fLoin - Lo Input Frequency - MHz
fLoin - Lo Input Frequency - MHz
fLoin - Lo Input Frequency - MHz
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin
(at VCC = 2.7 V, TA = –30 °C)
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin
(at VCC = 3.0 V, TA = –30 °C)
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin
(at VCC = 3.6 V, TA = –30 °C)
–5
–30
–45
(I/Q)
–20
ImR
–25
–50
–30
–55
–12
7
PIF-Loin Pre-Mix. IF Input Power - dBm
–10
–35
LoL
–15
–40
IM 2
(I/Q)
IM 3
(I/Q)
–20
–45
ImR
–25
–50
–30
–55
–17
–12
7
PIF-Loin Pre-Mix. IF Input Power - dBm
Data Sheet P11487EJ2V0DS00
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
IM 3
–17
PMODout
PMODout - Modulator Output Power - dBm
–15
(I/Q)
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
LoL
–40
PMODout - Modulator Output Power - dBm
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–10
–5
–30
PMODout
–35
IM 2
–5
–30
PMODout
PMODout - Modulator Output Power - dBm
–5
–30
PMODout, LoL, ImR, IM3I/Q vs fLoin
(at VCC = 3.6 V, TA = +80 °C)
–10
–35
LoL
–15
–40
IM 3
–45
(I/Q)
–20
ImR
–25
–50
IM 2
(I/Q)
–30
–55
–17
PMODout - Modulator Output Power - dBm
PMODout, LoL, ImR, IM3I/Q vs fLoin
(at VCC = 2.7 V, TA = +80 °C)
–12
7
PIF-Loin Pre-Mix. IF Input Power - dBm
15
µPC8126GR
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin
(at VCC =3.0 V, TA = +25 °C)
–5
–30
ImR
–20
IM 3(I/Q)
–25
–50
–10
–35
LoL
–15
–40
IM 3(I/Q)
–20
–45
ImR
–25
–50
–30
–12
–35
LoL
–10
–15
–40
ImR
–20
–45
IM 3(I/Q)
–50
IM 2(I/Q)
–25
IM 2(I/Q)
IM 2 (I/Q)
–55
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–15
–40
–17
PMODout
PMODout - Modulator Output Power - dBm
LoL
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–10
–35
–5
–30
PMODout
PMODout - Modulator Output Power - dBm
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–5
–30
PMODout
–45
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin
(at VCC =3.6 V, TA = +25 °C)
PMODout - Modulator Output Power - dBm
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin
(at VCC = 2.7 V, TA = +25 °C)
–30
–55
–7
–17
–12
–30
–55
–7
–17
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
PIF-Loin - Pre-Mix. IF Input Power - dBm
PIF-Loin - Pre-Mix. IF Input Power - dBm
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin
(at VCC = 2.7 V, TA = +80 °C)
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin
(at VCC =3.0 V, TA = +80 °C)
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin
(at VCC =3.6 V, TA = +80 °C)
–5
–30
–5
–30
–5
–30
–15
–20
–45
IM 2 (I/Q)
–25
–50
LoL
–15
–40
ImR
–20
–45
IM 2 (I/Q)
–25
–50
IM 3 (I/Q)
–35
–10
LoL
–15
–40
IM 2 (I/Q)
–45
ImR
–20
IM 3 (I/Q)
–50
–25
–55
–30
PMODout - Modulator Output Power - dBm
ImR
–10
–35
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–40
PMODout
PMODout - Modulator Output Power - dBm
LoL
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–10
–35
PMODout - Modulator Output Power - dBm
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
PMODout
PMODout
IM 3 (I/Q)
–30
–55
–17
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
16
–30
–55
–17
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
Data Sheet P11487EJ2V0DS00
–17
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
µPC8126GR
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin
(at VCC = 3.0 V, TA = –30 °C)
–5
–30
–5
–30
IM 3 (I/Q)
–20
–45
ImR
–25
–50
–10
–35
LoL
–40
IM 2 (I/Q)
–15
IM 3 (I/Q)
–20
–45
ImR
–25
–50
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
IM 2 (I/Q)
PMODout
PMODout - Modulator Output Power - dBm
–15
–40
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
LoL
PMODout - Modulator Output Power - dBm
–10
–35
–5
–30
PMODout
PMODout
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin
(at VCC = 3.6 V, TA = –30 °C)
–10
–35
LoL
–15
–40
IM 3 (I/Q)
ImR
–45
–20
–25
–50
PMODout - Modulator Output Power - dBm
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin
(at VCC = 2.7 V, TA = –30 °C)
IM 2 (I/Q)
–30
–55
–15
–11
–30
–55
–7
–15
–11
–30
–55
–7
–15
–11
–7
PRF-Loin - Pre-Mix. RF Input Power - dBm
PRF-Loin - Pre-Mix. RF Input Power - dBm
PRF-Loin - Pre-Mix. RF Input Power - dBm
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin
(at VCC = 2.7 V, TA = +25 °C)
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin
(at VCC = 3.0 V, TA = +25 °C)
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin
(at VCC = 3.6 V, TA = +25 °C)
PMODout
–20
ImR
–25
–50
LoL
–15
–40
IM 3 (I/Q)
–20
–45
ImR
–25
–50
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
IM 3 (I/Q)
–10
–35
PMODout - Modulator Output Power - dBm
–15
–40
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
LoL
PMODout - Modulator Output Power - dBm
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–10
–35
–5
–30
PMODout
PMODout
–45
–5
–30
–35
LoL
–10
–15
–40
ImR
–20
–45
IM 3 (I/Q)
IM 2 (I/Q)
–50
–25
–55
–30
PMODout - Modulator Output Power - dBm
–5
–30
IM 2 (I/Q)
IM 2 (I/Q)
–30
–55
–15
–11
–7
PRF-Loin - Pre-Mix. RF Input Power - dBm
–30
–55
–15
–11
–7
PRF-Loin - Pre-Mix. RF Input Power - dBm
Data Sheet P11487EJ2V0DS00
–15
–11
–7
PRF-Loin - Pre-Mix. RF Input Power - dBm
17
µPC8126GR
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin
(at VCC = 2.7 V, TA = +80 °C)
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin
(at VCC = 3.0 V, TA = +80 °C)
–5
–30
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin
(at VCC = 3.6 V, TA = +80 °C)
–5
–30
–5
–30
IM 2 (I/Q)
–45
–20
–50
–25
LoL
–15
–40
IM 2 (I/Q)
ImR
–45
–20
–50
–25
IM 3 (I/Q)
LoL
–15
ImR
–7
PRF-Loin - Pre-Mix. RF Input Power - dBm
18
–20
–45
IM 3 (I/Q)
–25
–50
IM 2 (I/Q)
–30
–11
–15
–40
IM 3 (I/Q)
–55
–10
–35
PMODout - Modulator Output Power - dBm
–15
–10
–35
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
ImR
–40
PMODout
PMODout - Modulator Output Power - dBm
LoL
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–10
–35
PMODout - Modulator Output Power - dBm
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
PMODout
PMODout
–30
–55
–15
–11
–7
PRF-Loin - Pre-Mix. RF Input Power - dBm
Data Sheet P11487EJ2V0DS00
–30
–55
–15
–11
–7
PRF-Loin - Pre-Mix. RF Input Power - dBm
µPC8126GR
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)
(at VCC = 3.0 V, TA = –30 °C)
–5
–30
PMODout
IM 3 (I/Q)
IM 2 (I/Q)
–20
–45
ImR
–50
–25
–55
–30
1.35
1.45
LoL
–15
–40
IM 3 (I/Q)
–45
ImR
–20
IM 2 (I/Q)
–50
–25
–55
–30
1.4
1.5
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–15
–40
–10
–35
PMODout - Modulator Output Power - dBm
LoL
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–10
–35
–5
–30
PMODout
PMODout - Modulator Output Power - dBm
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–5
–30
PMODout
1.25
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)
(at VCC = 3.6 V, TA = –30 °C)
1.6
–10
–35
LoL
–40
–15
IM 2 (I/Q)
IM 3 (I/Q)
–20
–45
ImR
–50
–25
–55
–30
1.7
1.8
PMODout - Modulator Output Power - dBm
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)
(at VCC = 2.7 V, TA = –30 °C)
1.9
I/Q(DC) - I/Q Supply Voltage - V
I/Q(DC) - I/Q Supply Voltage - V
I/Q(DC) - I/Q Supply Voltage - V
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)
(at VCC = 2.7 V, TA = +25 °C)
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)
(at VCC = 3.0 V, TA = +25 °C)
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)
(at VCC = 3.6 V, TA = +25 °C)
IM 3 (I/Q)
–20
ImR
–50
IM 2 (I/Q)
–30
–55
1.25
–25
1.35
1.45
I/Q(DC) - I/Q Supply Voltage - V
–10
–35
LoL
–15
–40
–45
–20
IM 3 (I/Q)
ImR
IM 2 (I/Q)
–50
–30
–55
1.4
–25
1.5
1.6
I/Q(DC) - I/Q Supply Voltage - V
Data Sheet P11487EJ2V0DS00
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–45
PMODout
PMODout - Modulator Output Power - dBm
–15
–40
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
LoL
PMODout - Modulator Output Power - dBm
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–10
–5
–30
PMODout
PMODout
–35
–5
–30
–10
–35
LoL
–15
–40
–45
ImR
–20
IM 3 (I/Q)
IM 2 (I/Q)
–50
–25
–55
–30
1.7
1.8
PMODout - Modulator Output Power - dBm
–5
–30
1.9
I/Q(DC) - I/Q Supply Voltage - V
19
µPC8126GR
ImR
–20
–45
IM 2 (I/Q)
–25
–50
PMODout
PMODout
–10
–35
LoL
–15
–40
–45
ImR
–20
IM 2 (I/Q)
–50
IM 3 (I/Q)
–5
–30
–25
–10
–35
LoL
ImR
–15
–40
–20
–45
IM 2 (I/Q)
IM 3 (I/Q)
–50
–25
–55
–30
IM 3 (I/Q)
–30
–55
1.25
1.35
1.45
I/Q(DC) - I/Q Supply Voltage - V
20
–30
–55
1.4
1.5
1.6
I/Q(DC) - I/Q Supply Voltage - V
Data Sheet P11487EJ2V0DS00
1.7
1.8
1.9
I/Q(DC) - I/Q Supply Voltage - V
PMODout - Modulator Output Power - dBm
–15
–40
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
LoL
PMODout - Modulator Output Power - dBm
–10
–35
–5
–30
PMODout
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)
(at VCC = 3.6 V, TA = +80 °C)
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
–5
–30
LoL - Local Oscillator Leakage - dBc
ImR - Image Rejection - dBc
IM3I/Q - I/Q 3rd. Order Intermodulation - dBc
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)
(at VCC = 3.0 V, TA = +80 °C)
PMODout - Modulator Output Power - dBm
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)
(at VCC = 2.7 V, TA = +80 °C)
P(fIF × 7) vs PIF-Loin
(at VCC = 3.0 V, TA = –30 °C)
P(fIF × 7) vs PIF-Loin
(at VCC = 3.6 V, TA = –30 °C)
0
0
0
–20
–20
–20
–40
–60
–80
–100
–120
–40
–60
–80
–100
Recommended operating range
–17
–12
–120
–7
–40
–60
–80
–100
Recommended operating range
–17
–12
–120
–7
Recommended operating range
–17
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
PIF-Loin - Pre-Mix. IF Input Power - dBm
P(fIF × 7) vs PIF-Loin
(at VCC = 2.7 V, TA = +25 °C)
P(fIF × 7) vs PIF-Loin
(at VCC = 3.0 V, TA = +25 °C)
P(fIF × 7) vs PIF-Loin
(at VCC = 3.6 V, TA = +25 °C)
0
0
–20
–20
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
–40
–60
–80
–100
–120
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
PIF-Loin - Pre-Mix. IF Input Power - dBm
–20
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
P(fIF × 7) vs PIF-Loin
(at VCC = 2.7 V, TA = –30 °C)
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
µPC8126GR
–40
–60
–80
–100
Recommended operating range
–17
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
–120
–40
–60
–80
–100
Recommended operating range
–17
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
Data Sheet P11487EJ2V0DS00
–120
Recommended operating range
–17
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
21
P(fIF × 7) vs PIF-Loin
(at VCC = 3.0 V, TA = +80 °C)
P(fIF × 7) vs PIF-Loin
(at VCC = 3.6 V, TA = +80 °C)
0
0
0
–20
–20
–20
–40
–60
–80
–100
–40
–60
–80
–100
Recommended operating range
–120
–17
–12
–7
–40
–60
–80
–100
Recommended operating range
–120
PIF-Loin - Pre-Mix. IF Input Power - dBm
22
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
P(fIF × 7) vs PIF-Loin
(at VCC = 2.7 V, TA = +80 °C)
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
µPC8126GR
–17
Recommended operating range
–120
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
Data Sheet P11487EJ2V0DS00
–17
–12
–7
PIF-Loin - Pre-Mix. IF Input Power - dBm
µPC8126GR
EVM, ∆φ, ∆A vs VI/Qin
(at VCC = 2.7 V)
EVM, ∆φ, ∆A vs VI/Qin
(at VCC = 3.0 V)
5 Single ended Input
MDO Pattern: PN9
5 Single ended Input
MDO Pattern: PN9
EVM
EVM
∆A
3
2
∆φ
1
4
∆A
3
2
∆φ
EVM - Error Vector Magnitude - %rms
∆φ - Phase Error - deg.
∆A - Magnitude Error -%rms
4
EVM - Error Vector Magnitude - %rms
∆φ - Phase Error - deg.
∆A - Magnitude Error -%rms
1
100 200
10
500 1000
100 200
10
VI/Qin - I/Q Input Amplitude - mVP-P
–60
–70
–80
10
∆ f = ±100 kHz
100200 500 1000
VI/Qin - I/Q Input Amplitude - mVP-P
–40
ACP - Adjacent Channel Power - dBc
∆ f = ±50 kHz
3
2
∆φ
100 200
10
∆ f = ±50 kHz
–60
–70
–80
10
ACP vs VI/Qin
(at VCC = 3.6 V)
Single ended Input
MDO Pattern: PN9
–50
∆ f = ±100 kHz
100200 500 1000
VI/Qin - I/Q Input Amplitude - mVP-P
Data Sheet P11487EJ2V0DS00
500 1000
VI/Qin - I/Q Input Amplitude - mVP-P
ACP vs VI/Qin
(at VCC = 3.0 V)
Single ended Input
MDO Pattern: PN9
–50
500 1000
VI/Qin - I/Q Input Amplitude - mVP-P
ACP vs VI/Qin
(at VCC = 2.7 V)
–40
∆A
1
–40
ACP - Adjacent Channel Power - dBc
EVM - Error Vector Magnitude - %rms
∆φ - Phase Error - deg.
∆A - Magnitude Error -%rms
5 Single ended Input
MDO Pattern: PN9
EVM
4
ACP - Adjacent Channel Power - dBc
EVM, ∆φ, ∆A vs VI/Qin
(at VCC = 3.6 V)
Single ended Input
MDO Pattern: PN9
–50
∆ f = ±50 kHz
–60
–70
–80
∆ f = ±100 kHz
10
100200 500
1000
VI/Qin - I/Q Input Amplitude - mVP-P
23
µPC8126GR
TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM
<PDC> 42kbps, RNYQ α = 0.5, MOD Pattern [000]
TRACE A: Ch1 Spectrum
A Marker
948 002 625. 0 Hz
–9. 277 dBm
0
VI/Qin = 500 mVP-P (Single ended Input)
dBm
ATT 0 dB
1
2
IM 3 (I/Q)
LoL
3
4
5
RBW 3 kHz
VBW 3 kHz
SWP 5. 0 s
10
dB
/div
24
REF –10. 0 dB
10 dB/
ImR
LogMag
–100
dBm
TYPICAL π/4DQPSK MODULATION OUTPUT SPECTRUM
<PDC> 42kbps, RNYQ α = 0.5, MOD Pattern [PN9]
CENTER 948. 00000 MHz
Center: 948 MHz
Span: 50 kHz
No. 1:
No. 2:
No. 3:
No. 4:
No. 5:
Data Sheet P11487EJ2V0DS00
SPAN 500 kHz
* * * Multi Marker List * * *
0 Hz
0. 00 dB
–50. 0 kHz
–64. 50 dB
–100. 0 kHz
–77. 00 dB
50. 0 kHz
–64. 75 dB
100. 0 kHz
–77. 00 dB
µPC8126GR
MOD OUTPUT (15 pin) IMPEDANCE
VCC = VPS = 2.7 V
1 : 49.039 Ω
–21.127 Ω
VCC = VPS = 3.0 V
1 : 49. 121 Ω
7.9465pF
948. 000 000 MHz
MAEKER 1
948 MHz
VSWR
2 : 1
MAEKER 1
948 MHz
1
START 500. 000 000 MHz
–22.845 Ω
7.3486 pF
948. 000 000 pF
VSWR
2 : 1
1
STOP 1 500. 000 000 MHz
START 500. 000 000 MHz
STOP 1 500. 000 000 MHz
VCC = VPS = 3.6 V
1 : 49. 783 Ω
–22.645 Ω
MAEKER 1
948 MHz
7.1004 pF
948. 000 000 MHz
VSWR
2 : 1
1
START 500. 000 000 MHz
STOP 1 500. 000 000 MHz
Data Sheet P11487EJ2V0DS00
25
µPC8126GR
STANDARD TYPICAL CHARACTERISTICS <Pre-Mixer>
Test Circuit 3, TA = +25 °C, VCC1 = 3.0 V, Vps2 = 3.0 V, fIFin = 135 MHz, PIFin = −12 dBm, fRFin = 813 MHz,
PRFin = −11 dBm, fMIXout = 948 MHz
ICC (MIX) - Pre-Mix. Circuit Current - mA
ICC (MIX) vs VCC1
10
No input signal
TA = +80 °C
TA = +25 °C
TA = –30 °C
7.5
5
2.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
3.5
4.0
VCC1 - Pre-Mix. Supply Voltage - V
ICC (MIX) - Pre-Mix. Circuit Current - mA
ICC (MIX) vs Vps2
No input signal
TA = +80 °C
TA = +25 °C
TA = –30 °C
10
0
0.5
1.0
1.5
2.0
2.5
3.0
Vps2 - Pre-Mix. Supply Voltage - V
26
Data Sheet P11487EJ2V0DS00
µPC8126GR
0
0
0
–60
P ( f IF× 7 )
0
Pout(MIX)
60
–80
80
–100
–120
–20
20
RFL
–40
40
ImL
–60
P ( f IF× 7 )
60
–80
80
100
–100
120
–120
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
ImL
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
40
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
20
RFL
–40
0
Pout(MIX)
Pout(MIX)
–20
Pout (MIX), RFL, ImL, P(fIF × 7)
vs PIF-Loin
(at VCC = 3.6 V, TA = –30 °C)
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
0
Pout (MIX), RFL, ImL, P(fIF × 7)
vs PIF-Loin
(at VCC = 3.0 V, TA = –30 °C)
–20
20
RFL
–40
40
ImL
–60
P ( f IF× 7 )
60
–80
80
100
–100
100
120
–120
120
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
Pout (MIX), RFL, ImL, P(fIF × 7)
vs PIF-Loin
(at VCC = 2.7 V, TA = –30 °C)
–50 –40 –30 –20 –10 0
–50 –40 –30 –20 –10 0
–50 –40 –30 –20 –10 0
PIF-Loin - Pre-Mix. IF Input Power - dBm
PIF-Loin - Pre-Mix. IF Input Power - dBm
PIF-Loin - Pre-Mix. IF Input Power - dBm
Pout (MIX), RFL, ImL, P(fIF × 7)
vs PIF-Loin
(at VCC = 2.7 V, TA = +25 °C)
Pout (MIX), RFL, ImL, P(fIF × 7)
vs PIF-Loin
(at VCC = 3.0 V, TA = +25 °C)
Pout (MIX), RFL, ImL, P(fIF × 7)
vs PIF-Loin
(at VCC = 3.6 V, TA = +25 °C)
0
0
0
0
0
Pout(MIX)
Pout(MIX)
–40
40
ImL
–60
60
P ( f IF× 7 )
–80
80
–100
–120
20
RFL
–40
40
ImL
–60
P ( f IF× 7 )
60
–80
80
100
–100
120
–120
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
RFL
–20
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
20
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
–20
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
Pout(MIX)
–20
20
RFL
–40
40
ImL
–60
P ( f IF× 7 )
60
–80
80
100
–100
100
120
–120
120
P(fIF × 7) - fIF-Lo × 7 Harmonics - dBc
0
–50 –40 –30 –20 –10 0
–50 –40 –30 –20 –10 0
–50 –40 –30 –20 –10 0
PIF-Loin - Pre-Mix. IF Input Power - dBm
PIF-Loin - Pre-Mix. IF Input Power - dBm
PIF-Loin - Pre-Mix. IF Input Power - dBm
Data Sheet P11487EJ2V0DS00
27
µPC8126GR
0
Pout (MIX), RFL, ImL, P(fIF × 7)
vs PIF-Loin
(at VCC = 3.0 V, TA = +80 °C)
0
0
0
0
Pout(MIX)
–40
40
ImL
60
P ( f IF× 7 )
–80
80
–100
–120
20
RFL
–40
40
ImL
–60
60
P ( f IF× 7 )
–80
80
100
–100
120
–120
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
RFL
–20
P(fIF × 7) - fIF - Lo × 7 Harmonics - dBc
20
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
–20
–20
20
RFL
–40
40
ImL
–60
60
P ( f IF× 7 )
–80
80
100
–100
100
120
–120
120
–50 –40 –30 –20 –10 0
–50 –40 –30 –20 –10 0
–50 –40 –30 –20 –10 0
PIF-Loin - Pre-Mix. IF Input Power - dBm
PIF-Loin - Pre-Mix. IF Input Power - dBm
PIF-Loin - Pre-Mix. IF Input Power - dBm
Pout (MIX), RFL, ImL vs PRF-Loin
(at VCC = 3.0 V, TA = –30 °C)
Pout (MIX), RFL, ImL vs PRF-Loin
(at VCC = 2.7 V, TA = –30 °C)
0
ImL
RFL
–60
–80
–20
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
–20
–40
Pout(MIX)
Pout(MIX)
Pout(MIX)
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
Pout (MIX), RFL, ImL vs PRF-Loin
(at VCC = 3.6 V, TA = –30 °C)
0
0
ImL
RFL
–40
–60
–80
–20
ImL
–60
–80
–100
–100
–120
–120
–120
–20
–12
–4
–20
–12
–4
PIF-Loin - Pre-Mix. RF Input Power - dBm
Data Sheet P11487EJ2V0DS00
RFL
–40
–100
PIF-Loin - Pre-Mix. RF Input Power - dBm
28
0
Pout(MIX)
P(fIF × 7) - fIF - Lo × 7 Harmonics - dBc
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
Pout(MIX)
–60
Pout (MIX), RFL, ImL, P(fIF × 7)
vs PIF-Loin
(at VCC = 3.6 V, TA = +80 °C)
P(fIF × 7) - fIF - Lo × 7 Harmonics - dBc
Pout (MIX), RFL, ImL, P(fIF × 7)
vs PIF-Loin
(at VCC = 2.7 V, TA = +80 °C)
–20
–12
–4
PIF-Loin - Pre-Mix. RF Input Power - dBm
µPC8126GR
Pout (MIX), RFL, ImL
vs PRF-Loin
(at VCC = 2.7 V, TA = +25 °C)
Pout (MIX), RFL, ImL
vs PRF-Loin
(at VCC = 3.0 V, TA = +25 °C)
Pout (MIX), RFL, ImL
vs PRF-Loin
(at VCC = 3.6 V, TA = +25 °C)
0
0
0
–40
RFL
–60
–80
–20
ImL
–40
RFL
–60
–80
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
ImL
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
–20
Pout (MIX)
Pout (MIX)
Pout (MIX)
–20
ImL
–40
RFL
–60
–80
–100
–100
–100
–120
–120
–120
–20
–12
–4
PRF-Loin - Pre-Mix. RF Input Power - dBm
–20
–12
–4
PRF-Loin - Pre-Mix. RF Input Power - dBm
–20
–12
–4
PRF-Loin - Pre-Mix. RF Input Power - dBm
Pout (MIX), RFL, ImL
vs PRF-Loin
(at VCC = 2.7 V, TA = +80 °C)
Pout (MIX), RFL, ImL
vs PRF-Loin
(at VCC = 3.0 V, TA = +80 °C)
Pout (MIX), RFL, ImL
vs PRF-Loin
(at VCC = 3.6 V, TA = +80 °C)
0
0
0
–40
–60
–80
RFL
–20
ImL
–40
RFL
–60
–80
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
ImL
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
POUT (MIX) - Pre-Mix. Output Power - dBc
RFL - RF Local Oscillator Leakage - dBm
ImL - Image Leakage - dBm
–20
Pout (MIX)
Pout (MIX)
Pout (MIX)
–20
ImL
–40
–60
–80
–100
–100
–100
–120
–120
–120
–20
–12
–4
PRF-Loin - Pre-Mix. RF Input Power - dBm
–20
–12
–4
PRF-Loin - Pre-Mix. RF Input Power - dBm
Data Sheet P11487EJ2V0DS00
RFL
–20
–12
–4
PRF-Loin - Pre-Mix. RF Input Power - dBm
29
µPC8126GR
Pout(MIX) vs fMIXout
(at VCC = 2.7 V, TA = –30 °C)
Pout(MIX) vs fMIXout
(at VCC = 3.0 V, TA = –30 °C)
Pout(MIX) vs fMIXout
(at VCC = 3.6 V, TA = –30 °C)
0
0
0
Pout (MIX)
–40
–60
–80
–100
–120 Recommended operating range
900
950
–20
–40
–60
–80
–100
–120 Recommended operating range
1000
900
–40
–60
–80
–100
–120 Recommended operating range
1000
900
950
1000
fMIXout - Pre-Mix. Output Frequency - MHz
fMIXout - Pre-Mix. Output Frequency - MHz
Pout(MIX) vs fMIXout
(at VCC = 2.7 V, TA = +25 °C)
Pout(MIX) vs fMIXout
(at VCC = 3.0 V, TA = +25 °C)
Pout(MIX) vs fMIXout
(at VCC = 3.6 V, TA = +25 °C)
0
0
0
Pout (MIX)
–40
–60
–80
–100
–120
Pout (MIX)
–20
Pout(MIX) - Pre-Mix. Output Power - dBm
–20
Pout(MIX) - Pre-Mix. Output Power - dBm
Pout(MIX) - Pre-Mix. Output Power - dBm
950
–20
fMIXout - Pre-Mix. Output Frequency - MHz
Pout (MIX)
–40
–60
–80
–100
Recommended operating range
900
950
1000
fMIXout - Pre-Mix. Output Frequency - MHz
30
Pout (MIX)
Pout(MIX) - Pre-Mix. Output Power - dBm
–20
Pout(MIX) - Pre-Mix. Output Power - dBm
Pout(MIX) - Pre-Mix. Output Power - dBm
Pout (MIX)
–120
–20
–40
–60
–80
–100
Recommended operating range
900
950
1000
fMIXout - Pre-Mix. Output Frequency - MHz
Data Sheet P11487EJ2V0DS00
–120
Recommended operating range
900
950
1000
fMIXout - Pre-Mix. Output Frequency - MHz
µPC8126GR
Pout(MIX) vs fMIXout
(at VCC = 2.7 V, TA = +80 °C)
Pout(MIX) vs fMIXout
(at VCC = 3.0 V, TA = +80 °C)
Pout(MIX) vs fMIXout
(at VCC = 3.6 V, TA = +80 °C)
0
0
0
–40
–60
–80
–100
Recommended operating range
900
950
1000
fMIXout - Pre-Mix. Output Frequency - MHz
–20
Pout(MIX) - Pre-Mix. Output Power - dBm
–20
–120
Pout (MIX)
Pout (MIX)
Pout(MIX) - Pre-Mix. Output Power - dBm
Pout(MIX) - Pre-Mix. Output Power - dBm
Pout (MIX)
–40
–60
–80
–100
–120
Recommended operating range
900
950
1000
fMIXout - Pre-Mix. Output Frequency - MHz
Data Sheet P11487EJ2V0DS00
–20
–40
–60
–80
–100
–120
Recommended operating range
900
950
1000
fMIXout - Pre-Mix. Output Frequency - MHz
31
µPC8126GR
TEST CIRCUIT 1 (Modulator+Pre-Mixer / In case of VI/Qin is single ended input)
Signal Generator
Spectrum Analyzer
Voltage
Source
Signal Generator
BPF
RFin
IFin Vps2
RFout
VCC1
Q
Qb
12
11
MODout
51
51
1000 pF
0.22 µ F
33 pF
20
100 pF
1000 pF
33 pF
19
18
17
16
15
14
13
PreMixer
I/Q
Mixer
Frequency
Doubler
TFF
I/Q
Mixer
1
0.22 µF
2
3
15 nH
4
5
33 pF
22 nH
33 pF
100 pF
2 pF
1000 pF
6
7
100 pF
300
22 nH
6.8 nH
9
10
I
Ib
0.22 µF
1000 pF
2 pF
LOin VCC1 Vps1
Voltage VCC2
Source
Mix out
6 pF
6.8 nH
Voltage
Source
6 pF
2 pF 6.8 nH
6.8 nH
Filter
32
8
Data Sheet P11487EJ2V0DS00
Q
Qb
I/Q Signal
Generator
I
Ib
µPC8126GR
TEST CIRCUIT 2 (Modulator+Pre-Mixer / In case of VI/Qin is differential input)
Signal Generator
Spectrum Analyzer
Voltage
Source
Signal Generator
BPF
RFin
IFin Vps2
51
RFout
51
20
18
Qb
100 K
0.22 µ F
10 pF
10 pF
22 K
22 K
100 pF
1000 pF
19
Q
1000 pF
33 pF
33 pF
VCC1
17
16
15
14
13
12
11
PreMixer
I/Q
Mixer
Frequency
Doubler
TFF
I/Q
Mixer
1
0.22 µ F
2
3
15 nH
4
5
22 nH
33 pF
100 pF
2 pF
1000 pF
6
7
100 pF
300
8
9
10
33 pF
0.22 µ F
22 nH
22 K
22 K
10 pF
10 pF
100 K
1000 pF
6.8 nH
Q
Qb
I/Q Signal
Generator
I
Ib
2 pF
LOin VCC1 Vps1
Voltage VCC2
Source
I
Ib
Mix out
6 pF
6.8 nH
Voltage
Source
6 pF
2 pF 6.8 nH
6.8 nH
Filter
Data Sheet P11487EJ2V0DS00
33
µPC8126GR
TEST CIRCUIT 3 (Pre-Mixer)
Signal Generator
Voltage
Source
Signal Generator
BPF
RFin
IFin
Vps2
51
51
33 pF
1000
pF
20
19
18
17
MODout
16
15
VCC3
14
13
Q
Qb
12
11
PreMixer
I/Q
Mixer
Frequency
Doubler
TFF
I/Q
Mixer
1
2
15 nH
3
4
5
6
7
8
9
10
I
Ib
0.22 µF
22 nH
100 pF
1000 pF
2 pF
LOimb LOin
VCC1
Voltage
Source
34
VCC2 Vps1
Mix out
Spectrum Analyzer
Data Sheet P11487EJ2V0DS00
µPC8126GR
APPLICATION CIRCUIT EXAMPLE
0.22 µ F
1000 pF
Note 1
1
100 pF
VCC1
RF-Loin
20
33 pF
15 nH
2
MIXout
3
GND
GND
19
IF-Loin
18
51 Ω
51 Ω
Filter
2 pF 22 nH
1000 pF
33 pF
6.8 nH
4
Loinb
Vps2
17
5
Loin
GND
16
6
VCC2
MODout
15
300 Ω
2 pF
Note 2
22 nH
33 pF
0.22 µ F
1000 pF
33 pF
100 pF
7
Vps1
VCC3
14
1000 pF
100 pF
8
GND
GND
13
9
I
Q
12
10
Ib
Qb
11
0.22 µ F
TABLE 1 : Example of filter connect between pin2 and pin5
Kind of filter
Circuit
BPF
Zin = 50 Ω
6 pF
Notes 1.
6.8 nH
2 pF
6 pF
6.8 nH
Zout = 50 Ω
6.8 nH
fo = 948 MHz
Insertion Loss = 3.5 dB
50 Ω matching circuit at fMIXout = 948 MHz.
In case of using NEC’s evaluation board.
2.
50 Ω matching circuit at fLoin = 948 MHz.
In case of using NEC’s evaluation board.
Data Sheet P11487EJ2V0DS00
35
µPC8126GR
EXAMPLE OF TEST CIRCUIT 1 ASSEMBLED ON EVALUATION BOARD
33 pF
VCC3
51 Ω
100 pF 0.22 µ F 1000 pF
Vps2
1000 pF
51 Ω
33 pF
Qb
1000 pF 100 pF 0.22 µ F
VCC1
15 nH
Ib
33 pF
22 nH
6 pF
Vps1
300 Ω
2 pF 6.8 nH 22 nH
2 pF
100 pF
0.22 µ F
33 pF
2 pF
6 pF 6.8 nH 6.8 nH
VCC2
1000 pF
6.8 nH
Notes 1. Double-sided patterning with 35 mm thick copper on polyhimid board.
2. GND pattern on backside.
3. solder coating over patterns.
4. ,
indicate through-holes.
NOTICE The test circuits and board pattern on data sheet are for performance evaluation use only. In case of
actual design-in, matching circuit should be determined using S-parameter of desired frequency in
accordance to actual mounting pattern.
36
Data Sheet P11487EJ2V0DS00
µPC8126GR
PACKAGE DIMENSIONS
20 PIN PLASTIC SSOP (225 mil) (UNIT: mm)
20
11
detail of lead end
+7˚
3˚–3˚
1
10
6.7 ± 0.3
6.4 ± 0.2
1.8 MAX.
4.4 ± 0.1
1.5 ± 0.1
1.0 ± 0.2
0.5 ± 0.2
0.15
0.65
+0.10
0.22 –0.05
0.15
+0.10
–0.05
0.575 MAX.
0.10 M
0.1 ± 0.1
NOTE
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
Data Sheet P11487EJ2V0DS00
37
µPC8126GR
NOTE ON CORRECT USE
(1) Observe precautions for handling because of electrostatic sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
(3) Keep the track length of the ground pins as short as possible.
(4) Connect a bypass capacitor (e.x. 1 000 pF) to the VCC pin.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered in the following recommended conditions.
Other soldering method and
conditions than the recommended conditions are to be consulted with sales representatives.
µPC8126GR
Soldering process
Soldering conditions
Symbol
Infrared ray reflow
Peak package’s surface temperature: 235 °C or below,
Reflow time: 30 seconds or below (210 °C or higher)
Note
Number of reflow process: 2, Exposure limit : None
IR35-00-2
VPS
Peak package’s surface temperature: 215 °C or below,
Reflow time: 40 seconds or below (200 °C or higher )
Note
Number of reflow process: 2, Exposure limit : None
VP15-00-2
Wave soldering
Solder temperature: 260 °C or below,
Flow time: 10 seconds or below,
Note
Number of flow process: 1, Exposure limit : None
WS60-00-1
Partial heating method
Terminal temperature: 300 °C or below,
Flow time: 3 seconds/pin or below,
Note
Exposure limit : None
Note Exposure limit before soldering after dry-pack package is opened.
Storage conditions: 25 °C and relative humidity at 65 % or less.
Caution Apply only a single process at once, except for ‘‘Partial heating method’’.
For details of recommended soldering conditions for surface mounting, refer to information
document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
38
Data Sheet P11487EJ2V0DS00
µPC8126GR
[MEMO]
Data Sheet P11487EJ2V0DS00
39
µPC8126GR
• The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98. 8