DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUIT µPC8129GR UP CONVERTER WITH AGC FUNCTION + QUADRATURE MODULATOR IC FOR DIGITAL MOBILE COMMUNICATION SYSTEMS DESCRIPTION The µPC8129GR is a silicon monolithic integrated circuit designed as indirect quadrature modulator for digital mobile communication systems. This modulator consists of 0.8 GHz to 1.9 GHz up-converter and 100 MHz to 400 MHz quadrature modulator which are packaged in 20 pin SSOP. The device has power save function and can operate 2.7 to 5.5 V supply voltage, therefore, it can contribute to make RF block small, high performance and low power consumption. FEATURES • High linearity up converter is incorporated; PRFout = –5 dBm TYP./@fRFout = 900 MHz • Wide operating frequency range. Up converter ; fRFout = 800 MHz to 1900 MHz Modulator ; fLO1in = 200 MHz to 800 MHz fMODout = 100 MHz to 400 MHz, fI/Q = DC to 10 MHz • External IF filter can be applied between modulator output and up converter input terminal. • Low phase difference due to digital phase shifter is adopted. • Supply voltage: VCC = 2.7 to 5.5 V • Equipped with power save function. • 20 pin SSOP suitable for high density surface mounting. APPLICATIONS • Digital cellular phones (ex. GSM etc…) • Digital cordless phones ORDERING INFORMATION PART NUMBER µPC8129GR-E1 PACKAGE 20 pin plastic SSOP (225 mil) SUPPLYING FORM Embossed tape 12 mm wide. QTY 2.5 kp/Reel. Pins 1 through 10 are in pull-out direction. * To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: µPC8129GR) Caution electro-static sensitive device The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. P12781EJ2V0DS00 (2nd edition) Date Published October 1999 N CP(K) Printed in Japan The mark shows major revised points. © 1997, 1999 µPC8129GR INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS Up-Con in 1 Up-Con inb Reg. 20 VCC (MOD) 2 19 VCC (Up-con) MODout 3 18 RFout I 4 17 GND Ib 5 16 VPS Qb 6 15 VAGC Q 7 14 GND LO1 in 8 13 LO2 in LO1 inb 9 12 LO2 inb 11 GND 90deg. Phase Shifter ( 2) GND 10 QUADRATURE MODULATOR SERIES PRODUCT Part Number Functions ICC (mA) fLO1in (MHz) fMODout RF Mixer (MHz) fRFout (MHz) Phase Shifter Package Application µPC8101GR 150 MHz Quad.Mod 15/@2.7 V 100 to 300 50 to 150 µPC8104GR RF Up-Converter + IF Quad.Mod 28/@3.0 V 100 to 400 µPC8105GR 400 MHz Quad.Mod 16/@3.0 V 100 to 400 External 16-pin SSOP (225 mil) µPC8110GR 1 GHz Direct Quad.Mod 24/@3.0 V 800 to 1 000 External µPC8125GR RF Up-Converter + IF Quad.Mod + AGC 36/@3.0 V 220 to 270 1 800 to 2 000 20-pin PDC800 MHz, etc. SSOP (225 mil) PHS µPC8126GR 900 MHz Direct Quad.Mod 35/@3.0 V with Offset-Mixer 915 to 960 915 to 960 889 to 960 889 to 960 µPC8126K µPC8129GR ×2LO IF Quad. Mod+RF Up-Converter External F/F CT-2 etc. 20-pin SSOP (225 mil) 900 to 1 900 Doubler Digital Comm. + F/F PDC800 MHz 28-pin QFN 28/@3.0 V 200 to 800 100 to 400 800 to 1 900 F/F 20-pin GSM, SSOP (225 mil) DCS1800, etc. µPC8139GR-7JH Transceiver IC (1.9 GHz Indirect Quad. Mod + RX-IF + IF VCO) TX: 32.5 RX: 4.8 /@3.0 V 220 to 270 1 800 to 2 000 CR 30-pin PHS TSSOP (225 mil) µPC8158K 28/@3.0 V 100 to 300 800 to 1 500 2 RF Up-Converter + IF Quad.Mod + AGC Data Sheet P12781EJ2V0DS00 28-pin QFN PDC800 M/1.5 G µPC8129GR APPLICATION EXAMPLE [GSM] SUB ANT LNA RX 1st MIX 2nd MIX SW DEMO. I Q MAIN ANT 1st. LO 2nd. LO SW PLL1 PLL2 SW I AGC 0° φ (F/F) TX PA MODout = fLO/2 fLO 90 ° Q µPC8129GR Data Sheet P12781EJ2V0DS00 3 µPC8129GR ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL RATING UNIT Supply Voltage VCC 6.0 V Power Save Voltage VPS 6.0 V AGC Control Voltage VAGC 6.0 V IQ DC Offset Voltage IQ (DC) 4.0 V Power Dissipation PD 430 mW Operating Ambient Temperature TA –40 to +85 °C Storage Temperature Tstg –55 to +150 °C CONDITION TA = +25 °C Note TA = +85 °C Note Mounted on double sided copper clad 50 × 50 × 1.6 mm epoxy glass PWB. RECOMMENDED OPERATING CONDITIONS PARAMETER SYMBOL MIN. TYP. MAX. UNIT Supply Voltage VCC 2.7 3.0 5.5 V Operating Ambient Temperature TA –40 +25 +85 °C fRFout 800 1900 MHz Up Converter Input Freq. fUPCONin 100 400 MHz Modulator Output Frequency fMODout 800 MHz –5 dBm 1800 MHz –5 dBm 10 MHz 600 mVP-P Up Converter RF Frequency 4 LO1 Input Frequency fLO1in 200 LO1 Input Level PLO1in –15 LO2 Input Frequency fLO2in 800 LO2 Input Level PLO2in –15 I/Q Input Frequency fI/Qin DC I/Q Input Amplitude VI/Qin –10 –10 Data Sheet P12781EJ2V0DS00 CONDITIONS Single ended Input µPC8129GR ELECTRICAL CHARACTERISTICS (1) Conditions (unless otherwise specified): TA = +25 °C, VCC = 3 V, VPS = 3 V, RPS = 1 kΩ, VAGC = 3 V, RAGC = 10 kΩ I/Q DC = 1.5 V (Vbias(I) = Vbias(Ib) = Vbias (Q) = Vbias (Qb) = 1.5 V) fI/Qin = 67.7 kHz, VI/Qin = 500 mVP-P (single ended input, Ib = Qb = 0 mVP-P) Modulation Pattern: <0000> fLO1in = 500 MHz, PLO1in = –10 dBm fLO2in = 1150 MHz, PLO2in = –10 dBm fUPCONin = fMODout = fLO1in/2 + fI/Qin = 250 MHz + fI/Qin fRFout = 900 MHz – fI/Qin PARAMETER SYMBOL MIN. TYP. MAX. UNIT TEST CONDITIONS 20 28 37 mA No input signal 0.6 10 µA VPS ≤ 0.5 V –5 –2 dBm UP CONVERTER + QUADRATURE MODULATOR TOTAL Total Circuit Current Total Circuit Current at Power Save Mode Total Output Power ICC(TOTAL) ICC(PS)TOTAL1 PRFout –8 Local Oscillator Carrier Leakage LoL –40 –26.5 dBc Image Rejection (Side Band Leak) ImR –30 –26.5 dBc AGC Gain Control Rang GCR Power Save Rise Time TPS(rise) 2.0 Power Save Fall Time TPS(fall) 2.0 28 40 fLoL = fLO2 – fLO1/2 dB VAGC = 2.5 V to 0 V 5.0 µs VPS(Low) → VPS(High) 5.0 µs VPS(High) → VPS(Low) ICC(PS) (Up con.) 5.0 µA VPS ≤ 0.5 V ICC(PS) (MOD) 5.0 µA VPS ≤ 0.5 V UP CONVERTER BLOCK Circuit Current at Power Save Mode QUADRATURE MODULATOR BLOCK Circuit Current at Power Save Mode Data Sheet P12781EJ2V0DS00 5 µPC8129GR STANDARD CHARACTERISTICS FOR REFERENCE (1) Conditions (unless otherwise specified): TA = +25 °C, VCC = 3 V, VPS = 3 V, RPS = 1 kΩ, VAGC = 3 V, RAGC = 10 kΩ I/Q DC = 1.5 V (Vbias(I) = Vbias(Ib) = Vbias (Q) = Vbias (Qb) = 1.5 V) fI/Qin = 67.7 kHz, PI/Qin = 500 mVP-P (single ended input, Ib = Qb = 0 mVP-P) Modulation Pattern: <0000> fLO1in = 500 MHz, PLO1in = –10 dBm fLO2in = 1150 MHz, PLO2in = –10 dBm fUPCONin = fMODout = fLO1in/2 + fI/Qin = 250 MHz + fI/Qin fRFout = 900 MHz – fI/Qin PARAMETER SYMBOL REFERENCE UNIT TEST CONDITIONS ICC(PS)TOTAL2 60 µA ∆φ 1.8 deg. (rms) ICC(UpCon) 14 mA No input signal ICC(PS)UpCon 60 µA VPS ≤ 0.5 V, VAGC = 0 V CG 12 dB PUPCONin = –20 dBm PRF(sat) –1.5 dBm PUPCONin = –4 dBm OIP3 +6 dBm fUPCONin = 250.0 MHz/250.2 MHz MOD. Circuit Current ICC(MOD) 14 mA No input signal Output Power PMODout –16.5 dBm LO1 Carrier Leakage LoL –40 dBc Image Rejection (Side Band Leak) ImR –30 dBc I/Q 3rd Order Intermodulation Distortion IM3I/Q –50 dBc I/Q Input Impedance ZI/Q 200 kΩ I to Ib, Q to Qb IQ Bias Current II/Q 5 µA I, Ib, Q, Qb to GND (each) VSWR(Lo1) 1.2 : 1 – –133 dBc/Hz UP CONVERTER + QUADRATURE MODULATOR TOTAL Total Circuit Current at Power-Save Mode Phase Error VPS ≤ 0.5 V, VAGC = 0 V MOD Pattern: PN9 UP CONVERTER BLOCK UP Con. Circuit Current UP Con. Circuit Current at Power-Save Mode Conversion Gain Maximum Output Power Output 3rd Order Intercept Point QUADRATURE MODULATOR BLOCK LO1 Input VSWR Output Noise Floor 6 Data Sheet P12781EJ2V0DS00 fLoL = fLO1/2 ∆f = ±20 MHz µPC8129GR STANDARD CHARACTERISTICS FOR REFERENCE (2) Conditions (unless otherwise specified): TA = +25 °C, VCC = 3 V, VPS = 3 V, RPS = 1 kΩ, VAGC = 3 V, RAGC = 10 kΩ I/Q DC = 1.5 V (Vbias(I) = Vbias(Ib) = Vbias (Q) = Vbias (Qb) = 1.5 V) fI/Qin = 67.7 kHz, PI/Qin = 500 mVP-P (single ended input, Ib = Qb = 0 mVP-P) Modulation Pattern: <0000> fLO1in = 500 MHz, PLO1in = –10 dBm fLO2in = 1650 MHz, PLO2in = –10 dBm fUPCONin = fMODout = fLO1in/2 + fI/Qin = 250 MHz + fI/Qin fRFout = 1900 MHz + fI/Qin PARAMETER SYMBOL REFERENCE UNIT TEST CONDITIONS PRFout –12 dBm Local Oscillator Carrier Leakage LoL –40 dBc Image Rejection (Side Band Leak) ImR –30 dBc AGC Gain Control Rang GCR 45 dB VAGC = 2.5 V to 0 V ∆φ 1.8 deg. (rms) MOD Pattern: PN9 CG 5 dB PUPCONin = –20 dBm PRF(sat) –7 dBm PUPCONin = –4 dBm OIP3 –1 dBm fUPCONin = 250.0 MHz/250.2 MHz UP CONVERTER + QUADRATURE MODULATOR TOTAL Total Output Power Phase Error fLoL = fLO2 + fLO1/2 UP CONVERTER BLOCK Conversion Gain Maximum Output Power Output Intercept Point Data Sheet P12781EJ2V0DS00 7 µPC8129GR PIN EXPLANATION Pin Voltage Typ. (V) @VCC = 3 V Pin No. Symbol Supply Voltage (V) 18 RFout VCC – 1 UpCon in – 2.2 IF input for Up-converter. This pin is high impedance input. 2 UpCon inb – 2.2 Bypass of IF input. Grounded through external capacitor. Description Equivalent Circuit RF output from Up-Converter. This pin is open collector output. 18 3 MODout – 1.9 1 2 Output from modulator. This is emitter follower output. 3 4 I VCC/2 – Input for I signal. This input impedance is about 200 kΩ. Relations between amplitude and VCC/2 bias of input signal are following. VCC/2 (V) Signal Level (mVP-P) ≥ 1.35 ≤ 400 ≥ 1.5 ≤ 600 ≥ 1.75 ≤ 1000 Note 5 Ib VCC/2 – Input for I signal. This input impedance is about 200 kΩ. VCC/2 biased DC signal should be input. 6 Qb VCC/2 – Input for Q signal. This input impedance is about 200 kΩ VCC/2 biased DC signal should be input. 7 Q VCC/2 – Input for Q signal. This input impedance is about 200 kΩ. Relations between amplitude and VCC/2 bias of input signal are following. VCC/2 (V) Signal Level (mVP-P) ≥ 1.35 ≤ 400 ≥ 1.5 ≤ 600 ≥ 1.75 ≤ 1000 4 5 7 6 Note Note In the case of that I/Q input signals are single ended. Of course, I/Q signal inputs can be used either single endedly or differentially with proper terminations. 8 Data Sheet P12781EJ2V0DS00 µPC8129GR PIN EXPLANATION Pin No. Symbol Supply Voltage (V) Pin Voltage Typ. (V) @VCC = 3 V 8 LO1in – 0 9 10 LO1in b – 2.3 GND for Modulator 0 – LO2in b – 1.9 11 12 13 14 LO2in GND for Up-con. – 1.9 16 VAGC Power Save Lo1 input for phase shifter. This input impedance is 50 Ω matched internally. Equivalent Circuit 8 50 Ω Bypass of Lo1 input. This pin is grounded through internal capacitor. 9 Connect to the ground with minimum inductance. Track length should be kept as short as possible. Bypass of Lo2 input. Grounded through external capacitor. 13 Lo2 input of Up-converter. This pin is high impedance input. 0 – Connect to the ground with minimum inductance. Track length should be kept as short as possible. 0 to VCC – Input for AGC amplifier. Total Output Power can be controlled by changing input voltage. And as external series resistance (RAGC) connecting, a slope of AGC curve can be changed by the resistance (RAGC). 0 to VCC – Power save control pin can be controlled ON/OFF state with bias as follows; 17 15 Description VPS (V) STATE 2 to VCC ON (Active Mode) 0 to 0.5 OFF (Sleep Mode) 19 VCC for Upconverter 2.7 to 5.5 – Supply voltage pin for Upconverter. 20 VCC for Modulator 2.7 to 5.5 – Supply voltage pin for modulator. Internal regulator can be kept stable condition of supply bias against the variable temperature or VCC. 12 16 : Externally Data Sheet P12781EJ2V0DS00 9 µPC8129GR STANDARD TYPICAL CHARACTERISTICS <Modulator + Up-Converter Total at 900 MHz> Test Circuit 1, TA = +25 °C, VCC = 3 V, VPS = 3 V, RPS = 1 kΩ, VAGC = 3 V, RAGC = 10 kΩ I/Q DC = 1.5 V (Vbias(I) = Vbias(Ib) = Vbias(Q) = Vbias(Qb) = 1.5 V) fI/Qin = 67.7 kHz, VI/Qin = 500 mVP-P (single ended input, Ib = Qb = 0 mVP-P) Modulation Pattern: All Zero <0000>, fLO1in = 500 MHz, PLO1in = –10 dBm fLO2in = 1150 MHz, PLO2in = –10 dBm, fUPCONin = fMODout = fLO1in/2 + fI/Qin = 250 MHz + fI/Qin fRFout = 900 MHz – fI/Qin, Unless Otherwise Specified ICC (TOTAL) vs VCC ICC (TOTAL) vs VPS ICC - Total Circuit Current - mA ICC - Total Circuit Current - mA No input signal 40 30 20 10 30 20 10 : TA = +25 °C : TA = +85 °C : TA = –40 °C No input signal 0 1 2 3 4 5 0 6 ICC - Total Circuit Current - mA 10 0 +20 +40 +60 +80 No input signal Vps = 0.5 V 30 20 10 0 TA - Operating Ambient Temperature - °C 10 3 ICC (PS) TOTAL vs TA 20 –20 2 ICC (TOTAL) vs TA No input signal –40 1 VPS - Power Save Control Voltage - V 30 0 0 VCC - Supply Voltage - V ICC - Total Circuit Current at Power Save Mode - µ A 0 Data Sheet P12781EJ2V0DS00 –40 –20 0 +20 +40 +60 +80 TA - Operating Ambient Temperature - °C µPC8129GR ICC (PS) TOTAL1 vs VCC 150 ICC - Total Circuit Current at Power Save Mode - µ A ICC - Total Circuit Current at Power Save Mode - µ A ICC (PS) TOTAL2 vs TA No input signal Vps = 0.5 V VAGC = 0 V 125 100 75 50 25 0 –40 –20 0 +20 +40 +60 +80 No input signal Vps = 0.5 V 2 1 0 0 2 TA - Operating Ambient Temperature - °C 4 6 VCC - Supply Voltage - V ICC - Total Circuit Current at Power Save Mode - µ A ICC (PS) TOTAL2 vs VCC 150 No input signal Vps = 0.5 V VAGC = 0 V 125 100 75 50 25 0 0 2 4 6 VCC - Supply Voltage - V –20 PRFout ImR –10 –30 LoL –20 –40 IM3I/Q –30 –50 0 1 2 3 4 VCC - Supply Voltage - V 5 6 PRFout - Total Output Power - dBm 0 –20 0 PRFout ImR –10 –30 –20 IM3I/Q –40 LoL –40 –20 0 +20 +40 +60 +80 TA - Operating Ambient Temperature - °C Data Sheet P12781EJ2V0DS00 –50 LoL - Local Oscillator Carrier Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd Order Intermodulation Distortion - dBc PRFout, LoL, ImR, IM3I/Q vs TA LoL - Local Oscillator Carrier Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd Order Intermodulation Distortion - dBc PRFout - Total Output Power - dBm PRFout, LoL, ImR, IM3I/Q vs VCC 11 µPC8129GR ImR –10 –30 PRFout –20 –40 –30 –50 –40 –60 IM3I/Q 100 500 1000 –70 2000 –20 0 PRFout ImR –30 –10 LoL –40 –20 IM3I/Q –50 –30 –30 –20 VI/Qin - I/Q Input Amplitude - mVp-p –10 0 +10 PLO1in - LO1 Input Level - dBm ∆Φ vs VI/Qin PRFout vs PLO2in 7 ∆Φ - Phase Error - deg. (rms.) PRFout - Total Output Power - dBm MOD Pattern: PN9 0 –10 –20 –30 6 5 4 3 2 1 –40 –40 –30 –20 –10 0 0 100 500 1000 PLO2in - LO2 Input Level - dBm VI/Qin - I/Q Input Amplitude - mVP-P PRFout vs VAGC PRFout vs VAGC –30 TA = +85 °C –40 +25 °C –50 –40 °C –60 –70 0 1 2 3 –20 –30 GCR = 40.5 dB (VCC = 2.7 V) GCR = 41.7 dB (VCC = 5.5 V) –40 –50 –60 0 VAGC - AGC Control Voltage - V 12 GCR = 40.8 dB (VCC = 3 V) VCC = 5.5 V –20 –10 VCC = 3 V –10 0 VCC = 2.7 V 0 PRFout - Total Output Power - dBm PRFout - Total Output Power - dBm +10 1 2 3 4 5 VAGC - AGC Control Voltage - V Data Sheet P12781EJ2V0DS00 6 PRFout - Total Output Power - dBm –20 LoL LoL - Local Oscillator Carrier Leakage - dBc ImR - Image Rejection - dBc IM3I/O - I/Q 3rd Order Intermodulation Distortion - dBc 0 PRFout, LoL, ImR, IM3I/Q vs PLO1in LoL - Local Oscillator Carrier Leakage - dBc ImR - Image Rejection - dBc IM3I/O - I/Q 3rd Order Intermodulation Distortion - dBc PRFout - Total Output Power - dBm PRFout, LoL, ImR, IM3I/Q vs VI/Qin µPC8129GR PRFout vs VAGC +10 ATT 10dB =8 0k 10 kΩ, GC –30 GCR = 39.8 dB SLOPE Ω, –20 = 143 SL OP E= –10 dB/V 53 dB /V 0 RA –40 RAGC = PRFout - Total Output Power - dBm POWER SAVE RESPONSE µPC8129GR REF 0.0 dBm 10 dB/ RBW 3 MHz VBW 3 MHz –50 –60 0 1 2 3 SWP 50 µ s CENTER 900.0677 MHz SPAN 0 Hz VAGC - AGC Control Voltage - V TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM 1 ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ TYPICAL GMSK MODULATION OUTPUT SPECTRUM ATT 0 dB µPC8129GR REF –10.0 dBm 10 dB/ A write B view MARKER 899.200 MHz –77.25 dB 3 4 ADJ BS 135 kHz 2 3 4 DL –10.0 dBm 2 1 RBW 3 kHz RBW 3 kHz VBW 10 kHz VBW 10 kHz SWP 1.0 s 5 6 SWP 5.0 s CENTER 900.0000 MHz SPAN 500 KHz *** Multi Marker List *** No.1: 899.9323 MHz –4.80 dBm No.2: 900.0000 MHz –48.02 dBc No.3: 900.0677 MHz –29.88 dBc No.4: 900.2031 MHz –42.41 dBc TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ MARKER 900 MHz –4.67 dBm CENTER 900. 000 MHz No.1: No.2: No.3: No.4: No.5: No.6: ∆: SPAN 2.000 MHz *** Multi Marker List *** 899.200 MHz –77.25 dB 899.400 MHz –76.50 dB 899.600 MHz –68.00 dB 900.400 MHz –68.25 dB 900.600 MHz –77.50 dB 900.800 MHz –77.50 dB TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ MARKER 900 MHz –4.68 dBm MKR 900 MHz 1 2 fLO1in (= fIF) fLO1in (= 2fIF) fLO2in 750 MHz –43.6 dBm 3 2 fLO1in (= 3fIF) 2 fLO1in (= 4fIF) 800 MHz –49.5 dBm 850 MHz –56.6 dBm 5 2 fLO1in (= 5fIF) 1000 MHz –53.0 dBm 950 MHz –68.2 dBm RBW 300 kHz RBW 300 kHz VBW 300 kHz VBW 300 kHz 1050 MHz –59.4 dBm SWP 5.0 s SWP 5.0 s START 0 Hz STOP 2.460 GHz Data Sheet P12781EJ2V0DS00 CENTER 900.0 MHz SPAN 400.0 MHz 13 µPC8129GR TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) µPC8129GR REF 0.0 dBm 10 dB/ ATT 10 dB fLO1in = 500 MHz (fMODout = 250 MHz + fI/Q) fLO2 = 1130 MHz fRFout = 880 MHz MARKER 880.0 MHz –4.64 dBm TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) 1010 MHz –57.6 dBm 890 MHz –63.0 dBm 1000 MHz –54.8 dBm 950 MHz –65.5 dBm RBW 300 kHz VBW 300 kHz VBW 300 kHz SWP 5.0 s SWP 5.0 s CENTER 920.0 MHz SPAN 200.0 MHz TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) ATT 10 dB fLO1in = 500 MHz (fMODout = 250 MHz + fI/Qin) fLO2in = 1210 MHz fRFout = 960 MHz – fI/Qin MARKER 900 MHz –7.41 dBm 920 MHz –51.5 dBm 1000 MHz –49.9 dBm 880 MHz –59.9 dBm RBW 300 kHz VBW 300 kHz SWP 5.0 s CENTER 920.0 MHz 14 1000 MHz –53.0 dBm 850 MHz –56.2 dBm RBW 300 kHz MKR 900 MHz MARKER 900 MHz –4.66 dBm MKR 900 MHz 870 MHz –55.7 dBm µPC8129GR REF 0.0 dBm 10 dB/ ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ SPAN 200.0 MHz Data Sheet P12781EJ2V0DS00 CENTER 920.0 MHz SPAN 200.0 MHz µPC8129GR STANDARD TYPICAL CHARACTERISTICS <Modulator + Up-Converter Total at 1900 MHz> Test Circuit 2, TA = +25 °C, VCC = 3 V, VPS = 3 V, RPS = 1 kΩ, VAGC = 3 V, RAGC = 10 kΩ I/Q DC = 1.5 V (Vbias(I) = Vbias(Ib) = Vbias(Q) = Vbias(Qb) = 1.5 V) fI/Qin = 67.7 kHz, VI/Qin = 500 mVP-P (single ended input, Ib = Qb = 0 mVP-P) Modulation Pattern: All Zero <0000>, fLO1in = 500 MHz, PLO1in = –10 dBm fLO2in = 500 MHz, PLO2in = –10 dBm, fUPCONin = fMODout = fLO1in/2 + fI/Qin = 250 MHz + fI/Qin fRFout = 1900 MHz + fI/Qin, Unless Otherwise Specified PRFout vs VAGC PRFout vs VI/Qin 0 C =8 –40 RAGC = –50 GCR = 45.4 dB 10 kΩ, 0k Ω, SLOPE SLO –30 PRFout - Total Output Power - dBm PE –20 = 154 =5 9d dB/V B/V –10 RAG PRFout - Total Output Power - dBm 0 –60 –70 0 1 2 –30 –40 100 500 1000 2000 VAGC - AGC Control Voltage - V VI/Qin - I/Q Input Amplitude - mVP-P PRFout vs PLO1in PRFout vs PLO2in 0 PRFout - Total Output Power - dBm PRFout - Total Output Power - dBm –20 3 0 –10 –20 –30 –30 –10 –20 –10 0 +10 –10 –20 –30 –40 PLO1in - LO1 Input Level - dBm –30 –20 –10 0 +10 PLO2in - LO2 Input Level - dBm Data Sheet P12781EJ2V0DS00 15 µPC8129GR ∆Φ vs VI/Qin TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ 7 MOD Pattern: PN9 1 ∆Φ - Phase Error - deg. (rms) 6 5 3 4 2 4 3 2 RBW 3 kHz 1 VBW 10 kHz 0 100 500 1000 2000 SWP 1.0 s CENTER 1.9000000 GHz SPAN 500 kHz *** Multi Marker List *** No.1: 1.9000677 GHz –12.13 dBm No.2: 1.9000000 GHz –39.30 dBc No.3: 1.8999323 GHz –28.98 dBc No.4: 1.8997969 GHz –41.30 dBc VI/Qin - I/Q Input Amplitude - mVp-p TYPICAL GMSK MODULATION OUTPUT SPECTRUM ATT 0 dB µPC8129GR REF –10.0 dBm 10 dB/ A write B view MARKER 1. 899200 GHz –74. 75 dB TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ MARKER 1.900 GHz –11. 67 dBm fLO2in 1 2 fLO1in (= fIF) MKR 1.900 GHz fLO1in (= 2fIF) 32 fLO1in MKR 1.899200 GHz (= 3fIF) 2 fLO1in (= 4fIF) 3 DL –10.0 dBm 1 4 2 5 5 2 fLO1in (= 5fIF) 4 fLO1in 3 fLO1in 72 fLO1in (= 8fIF) (= 6fIF) (= 7fIF) 6 RBW 3 kHz RBW 300 kHz VBW 10 kHz VBW 300 kHz SWP 5.0 s SWP 5.0 s CENTER 1.900000 GHz No.1: No.2: No.3: No.4: No.5: No.6: ∆: SPAN 2. 000 MHz START 0 Hz *** Multi Marker List *** 1.899200 GHz –74.75 dB 1.899400 GHz –74.50 dB 1.899600 GHz –64.75 dB 1.900400 GHz –66.50 dB 1.900600 GHz –74.25 dB 1.900800 GHz –74.75 dB TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ 1 STOP 2.500 GHz fRFout = 1.71 GHz + fI/Qin fLO2in = 1.46 GHz 2 1 6 7 4 3 4 5 6 7 3 RBW 300 kHz RBW 300 kHz VBW 300 kHz VBW 300 kHz SWP 5.0 s SWP 5.0 s CENTER 1.9000 GHz No.1: No.2: No.3: No.4: No.5: No.6: No.7: 16 5 2 SPAN 600 MHz CENTER 1.7950 GHz *** Multi Marker List *** 1.900 GHz –11.71 dBm 1.650 GHz –24.07 dBm 1.750 GHz –64.52 dBm 1.800 GHz –63.37 dBm 2.000 GHz –61.09 dBm 2.050 GHz –59.39 dBm 2.150 GHz –31.62 dBm No.1: No.2: No.3: No.4: No.5: No.6: No.7: Data Sheet P12781EJ2V0DS00 SPAN 600 MHz *** Multi Marker List *** 1.710 GHz –15.16 dBm 1.670 GHz –61.50 dBm 1.750 GHz –67.84 dBm 1.920 GHz –46.33 dBm 1.940 GHz –58.68 dBm 1.960 GHz –27.94 dBm 2.000 GHz –62.11 dBm µPC8129GR TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ fRFout = 1.795 GHz + fI/Qin fLO2in = 1.545 GHz 1 2 TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ 1 2 7 5 3 6 34 4 RBW 300 kHz RBW 300 kHz VBW 300 kHz VBW 300 kHz SWP 5.0 s fRFout = 1.88 GHz + fI/Qin fLO2in = 1.63 GHz 56 SWP 5.0 s CENTER 1.7950 GHz No.1: No.2: No.3: No.4: No.5: No.6: No.7: *** Multi Marker List *** 1.795 GHz 1.545 GHz 1.590 GHz 1.750 GHz 1.840 GHz 2.000 GHz 2.045 GHz SPAN 600 MHz CENTER 1.7950 GHz –14.21 dBm –24.47 dBm –65.96 dBm –66.40 dBm –60.91 dBm –61.79 dBm –28.73 dBm No.1: No.2: No.3: No.4: No.5: No.6: Data Sheet P12781EJ2V0DS00 *** Multi Marker List *** 1.880 GHz 1.630 GHz 1.750 GHz 1.760 GHz 2.000 GHz 2.010 GHz SPAN 600 MHz –12.32 dBm –23.47 dBm –64.08 dBm –63.19 dBm –61.05 dBm –60.25 dBm 17 µPC8129GR STANDARD TYPICAL CHARACTERISTICS <Up-Converter Block> TA = +25 °C, VCC = 3.0 V, VPS = 3.0 V, fUPCONin = 250 MHz, PUPCONin = –20 dBm Test Circuit 1 (fRFout = 900 MHz, fLO2in = 1150 MHz) or Test Circuit 2 (fRFout = 1900 MHz, fLO2in = 1650 MHz), Unless Otherwise Specified –20 ut Fo PR –30 3 –40 –50 –60 –70 –50 –40 –30 –20 –10 0 –40 –50 –60 –70 –80 –50 CG - Conversion Gain - dB 15 fRFout = 900 MHz fLO2in = 1.15 GHz 5 fRFout = 1.9 GHz fLO2in = 1.65 GHz 0 –30 –20 –10 0 PLO2in - LO2 Input Level - dBm 18 Fo PR –30 CG vs PLO2in –40 ut –20 PUPCONin - Up-Converter Input Level - dBm 10 OIP3 = –1.3 dBm fRFout = 1.9000/1.9002 GHz –10 3 fRFout = 899.8/900.0 MHz –10 fUpConin = 250.0/250.2 MHz 0 fLO2in = 1.65 GHz IM OIP3 = +5.8 dBm 0 fLO2in = 1.15 GHz PRFout - Output Power - dBm IM3 - 3rd Order Intermoduration Distortion - dBm fUpConin = 250.0/250.2 MHz PRFout, IM3, vs PUpConin IM PRFout - Output Power - dBm IM3 - 3rd Order Intermoduration Distortion - dBm PRFout, IM3, vs PUpConin Data Sheet P12781EJ2V0DS00 –40 –30 –20 –10 0 PUPCONin - Up-Converter Input Level - dBm µPC8129GR STANDARD TYPICAL CHARACTERISTICS <Modulator Block> Test Circuit 1 or 2, TA = +25 °C, VCC = 3 V, VPS = 3 V I/Q DC = 1.5 V (Vbias(I) = Vbias(Ib) = Vbias(Q) = Vbias(Qb) = 1.5 V) fI/Qin = 67.7 kHz, VI/Qin = 500 mVP-P (single ended input, Ib = Qb = 0 mVP-P) Modulation Pattern: All Zero <0000>, fLO1in = 500 MHz, PLO1in = –10 dBm fMODout = fLO1in/2 + fI/Qin = 250 MHz + fI/Qin, Unless Otherwise Specified PMODout vs VI/Qin PMODout vs PLO1in PMODout - Moduration Output Power - dBm +10 0 –10 –20 –30 –40 100 200 500 1000 PMODout - Moduration Output Power - dBm –20 –10 –20 –30 –40 –30 –20 –10 VI/Qin - I/Q Input Amplitude - mVP-P PLO1in - LO1 Input Level - dBm PMODout, LoL, ImR, IM3I/Q vs fLO1in ∆Φ vs VI/Qin 0 –10 0 –50 –40 2000 –20 PRFout –30 LoL –30 –40 ImR –40 –50 –50 –60 IM3I/Q 100 200 500 1000 2000 –70 0 3 MOD Pattern: PN9 ∆Φ - Phase Error - deg. (rms.) –50 LoL - Local Oscillator Carrier Leakage - dBc ImR - Image Rejection - dBc IM3I/Q - I/Q 3rd Order Intermodulation Distortion - dBc PMODout - Moduration Output Power - dBm +10 2 1 fLO1in - LO1 Input Frequency - MHz 100 200 500 1000 2000 VI/Qin - I/Q Input Amplitude - mVP-P Data Sheet P12781EJ2V0DS00 19 µPC8129GR ∆Φ vs fLO1in TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM MOD Pattern: PN9 ∆Φ - Phase Error - deg. (rms.) ATT 10 dB µPC8129GR REF 0.0 dBm 10 dB/ 7 1 6 5 3 4 2 3 4 2 RBW 3 kHz 1 VBW 10 kHz 0 100 200 500 1000 2000 fLO1in - LO1 Input Frequency - MHz 20 SWP 1.0 s CENTER 250.0000 MHz SPAN 500 kMHz *** Multi Marker List *** –16.37 dBm No.1: 250.0677 MHz –39.49 dBc No.2: 250.0000 MHz –31.07 dBc No.3: 249.9323 MHz –58.80 dBc No.4: 249.7969 MHz Data Sheet P12781EJ2V0DS00 µPC8129GR LO1 INPUT (Pin8) IMPEDANCE VCC = VPS = 3 V MOD OUTPUT (Pin3) IMPEDANCE VCC = VPS = 3 V CH1 S11 1 U FS 2: 47.998 Ω 0.8066 Ω 256.76 pH 500.000 000 MHz MARKER 2 500 MHz CH1 S22 1 U FS 2: 31.195 Ω 14.908 Ω 9.4909 nH 250.000 000 MHz MARKER 2 250 MHz 2 3 2 1 31 MARKER 1: 100 MHz 2: 250 MHz 3: 400 MHz MARKER 1: 200 MHz 2: 500 MHz 3: 800 MHz START 100.000 000 MHz STOP 1 000.000 000 MHz START 50.000 000 MHz Up-Con. INPUT (Pin1) IMPEDANCE VCC = VPS = 3 V STOP 500.000 000 MHz LO2 INPUT (Pin13) IMPEDANCE VCC = VPS = 3 V CH1 S11 1 U FS 2: 101.78 Ω –387.03 Ω 1.6449 pF 250. 000 000 MHz MARKER 2 250 MHz CH1 S11 1 U FS 1: 22.379 Ω –93.543 Ω 1.8905 pF 900.000 000 MHz MARKER 1 900 MHz 2 1 3 MARKER 1 1: 100 MHz 2: 250 MHz 3: 400 MHz START 50.000 000 MHz STOP 500.000 000 MHz 3 2 START 800.000 000 MHz MARKER 1: 900 MHz 2: 1150 MHz 3: 1900 MHz STOP 2 000.000 000 MHz RF OUTPUT (Pin18) IMPEDANCE VCC = VPS = 3 V CH1 S22 1 U FS 1: 18.953 Ω –158.83 Ω 1.1134 pF 900.000 000 MHz MARKER 1 Connect to inductor 900 MHz (L2 = 100 nH) between pin18 and pin19 1 2 3 START 800.000 000 MHz MARKER 1: 900 MHz 2: 1150 MHz 3: 1900 MHz STOP 2 000.000 000 MHz Data Sheet P12781EJ2V0DS00 21 µPC8129GR TEST CIRCUIT 1 (In the case of fRFout = 900 MHz Band) 1 Up-Con. in VCC(MOD.) 10 nF VCC 20 1000 pF 100 pF 100 pF 2 Up-Con. inb VCC(UP-CON.) 19 3 MODout RFout 18 4 I GND 17 Ib(DC) 5 Ib VPS 16 6 Qb VAGC 15 Q(DC), VQin 7 Q GND 14 8 LO1in LO2in 13 1000 pF 10 nF RAGC = 10 kΩ Note 1 ZL = 50 Ω 6.8 nH 100 pF 9 LO1inb LO2inb 4 pF 12 100 pF 10 GND Notes 1. 50 Ω matching circuit at fLO2in = 1150 MHz. In the case of using NEC’s evaluation board. 2. 50 Ω matching circuit at fRFout = 900 MHz. In the case of using NEC’s evaluation board. Data Sheet P12781EJ2V0DS00 GND 11 VAGC 10 nF LO1in 22 100 pF 6 pF 1000 pF (Open) fRFout Note 2 RPS = 1 kΩ 10 nF Vps 10 nF Qb(DC) 10 nF VCC 1000 pF ZL = 50 Ω 15 nH I(DC), VIin 84 nH LO2in 100 pF µPC8129GR TEST CIRCUIT 2 (In the case of fRFout = 1900 MHz Band) 1 Up-Con. in VCC(MOD.) 10 nF VCC 20 1000 pF 100 pF 100 pF VCC(UP-CON.) 19 RFout 18 GND 17 Ib VPS 16 6 Qb VAGC 15 7 Q GND 14 8 LO1in LO2in 13 2 Up-Con. inb 3 MODout 4 I 5 10 nF Qb(DC) Q(DC), VQin 1000 pF ZL = 50 Ω 3 pF I(DC), VIin Ib(DC) 68 nH 1000 pF 10 nF 10 nF VCC fRFout 100 pF Note 2 RPS = 1 kΩ 10 nF Vps RAGC = 10 kΩ 10 nF VAGC 1000 pF LO1in 100 pF Note 1 ZL = 50 Ω 2 pF (Open) 9 LO1inb LO2inb LO2in 100 pF 12 100 pF 10 GND GND 11 Notes 1. 50 Ω matching circuit at fLO2in = 1650 MHz. In the case of using NEC’s evaluation board. 2. 50 Ω matching circuit at fRFout = 1900 MHz. In the case of using NEC’s evaluation board. Data Sheet P12781EJ2V0DS00 23 µPC8129GR Qb C = 10 nF C = 100 pF L = 6.8 nH RAGC = 10 kΩ C = 10 nF C = 100 pF Ib C = 10 nF C = 100 pF C = 1000 pF C = 1000 pF C = 1000 pF L = 15 nH C = 100 pF C = 10 nF VCC L= 84 nH C = 6 pF RPS = 1 kΩ C = 10 nF VPS VAGC C = 10 nF C = 4 pF C = 100 pF C = 100 pF C = 10 nF fLO2in = 1150 MHz fRFout = 900 MHz fLO1in = 500 MHz (fMODout = 250 MHz + fI/Qin) EXAMPLE OF TEST CIRCUIT 1 ASSEMBLED ON EVALUATION BOARD Notes 1. Double-sided patterning with 35 µm thick copper on 50 × 50 × 0.4 mm polyimide board. 2. GND pattern on backside. 3. Solder coating over patterns. 4. , indicate through-holes. NOTICE The test circuits and board pattern on data sheet are for performance evaluation use only. In the case of actual design-in, matching circuit should be determined using S-parameter of desired frequency in accordance to actual mounting pattern. 24 Data Sheet P12781EJ2V0DS00 µPC8129GR C = 1000 pF C = 100 pF C = 1000 pF C = 100 pF C = 100 pF C = 1000 pF C= 1000 pF L = 68 nH RPS = 1 kΩ C = 3 pF Ib C = 10 nF C = 100 pF C = 10 nF VCC C = 10 nF VPS VAGC RAGC = 10 kΩ C = 10 nF C = 2 pF C = 100 pF C = 100 pF C = 10 nF Qb fLO2in = 1.65 GHz fRFout = 1.9 GHz + fI/Qin fLO1in = 500 MHz (fMODout = 250 MHz + fI/Qin) EXAMPLE OF TEST CIRCUIT 2 ASSEMBLED ON EVALUATION BOARD Notes 1. Double-sided patterning with 35 µm thick copper on polyimide board. 2. GND pattern on backside. 3. Solder coating over patterns. 4. , indicate through-holes. NOTICE The test circuits and board pattern on data sheet are for performance evaluation use only. In the case of actual design-in, matching circuit should be determined using S-parameter of desired frequency in accordance to actual mounting pattern. Data Sheet P12781EJ2V0DS00 25 µPC8129GR PACKAGE DIMENSIONS 20 PIN PLASTIC SSOP (225 mil) (UNIT: mm) 20 11 detail of lead end +7˚ 3˚–3˚ 1 10 6.7 ± 0.3 6.4 ± 0.2 1.8 MAX. 4.4 ± 0.1 1.5 ± 0.1 1.0 ± 0.2 0.5 ± 0.2 0.15 0.65 +0.10 0.22 –0.05 0.15 +0.10 –0.05 0.575 MAX. 0.10 M 0.1 ± 0.1 NOTE 26 Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition. Data Sheet P12781EJ2V0DS00 µPC8129GR NOTE ON CORRECT USE (1) Observe precautions for handling because of electrostatic sensitive devices. (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). (3) Keep the track length of the ground pins as short as possible. (4) Connect a bypass capacitor (e.x. 1000 pF) to the VCC pin. RECOMMENDED SOLDERING CONDITIONS This product should be soldered in the following recommended conditions. Other soldering method and conditions than the recommended conditions are to be consulted with sales representatives. µPC8129GR Soldering process Soldering conditions Symbol Infrared ray reflow Peak package’s surface temperature: 235 °C or below, Reflow time: 30 seconds or below (210 °C or higher) Note Number of reflow process: 2, Exposure limit : None IR35-00-2 VPS Peak package’s surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher) Note Number of reflow process: 2, Exposure limit : None VP15-00-2 Wave soldering Solder temperature: 260 °C or below, Flow time: 10 seconds or below, Note Number of flow process: 1, Exposure limit : None WS60-00-1 Partial heating method Terminal temperature: 300 °C or below, Flow time: 3 seconds/pin or below, Note Exposure limit : None Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less. Caution Apply only a single process at once, except for “Partial heating method”. For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). Data Sheet P12781EJ2V0DS00 27 µPC8129GR • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8