VB409 / VB409SP / VB409(022Y) DOUBLE OUTPUT HIGH VOLTAGE REGULATOR POWER I.C. TYPE VB409 VB409(022Y) ICL(in) ICL(out) VOUT 1A 80 mA (*) 5V±5% Reg. 16V Not Reg VB409SP 10 1 (*) Minimum value ■ ■ ■ ■ ■ ■ 5 V DC REGULATED OUTPUT1 VOLTAGE OUTPUT1 CURRENT LIMITED TO 80 mA 16V NOT REGULATED OUTPUT2 VOLTAGE THERMAL SHUT-DOWN PROTECTION INPUT OVERCURRENT PROTECTION POWER DISSIPATION INTERNALLY LIMITED PENTAWATT HV(022Y) PowerSO-10 PENTAWATT HV ORDER CODES: PENTAWATT HV(022Y) VB409(022Y) PowerSO-10 VB409SP PENTAWATT HV VB409 DESCRIPTION The VB409, VB409SP, VB409(022Y) are fully protected positive voltage regulators designed in STMicroelectronics High Voltage VIPower M1-2 technology. The devices can be connected directly to the rectified mains. They are well suited for applications powered from the AC mains and requiring a 5V DC regulated output and/or max 16V not regulated output voltages without galvanic insulation. VB409, VB409SP, VB409(022Y) provide up to 80 mA minimum output current (internally limited) at 5V. The included over current and thermal shutdown provide protections for the device. BLOCK DIAGRAM INPUT Cap (OUTPUT2) VZ Input current limiter Threshold Vref1 Thermal protection Vref2 Output curr ent limiter Vref3 GND OUTPUT1 ND8018 January 2001 1/14 1 VB409 / VB409SP / VB409(022Y) ABSOLUTE MAXIMUM RATING Symbol VIN ∆VIN,OUT IOUT1 PTOT IIN Tj T STG Parameter Maximum input operative voltage (*) Input to output voltage Output current Power dissipation at T C=25°C Input current Junction operating temperature Storage temperature Value 580 - 0.2 to 420 Internally limited Internally limited Internally limited - 40 to 150 - 55 to 150 Unit V V mA W A °C °C THERMAL DATA Symbol Rthj-amb Rthj-case Parameter Thermal resistance junction-ambient Thermal resistance junction-case Value PENTAWATT POWERSO-10 (MAX) 60 50 (MAX) 1 0.9 Unit Unit °C/W °C/W CONNECTION DIAGRAM (TOP VIEW) CAPACITOR THRESHOLD N.C. GROUND OUTPUT 5 4 3 2 1 6 7 8 9 10 OUTPUT GROUND INPUT THRESHOLD CAPACITOR 5 4 3 2 1 N.C. N.C. N.C. N.C. N.C. PC10000 11 PENTAWAT T HV(022Y) INPUT POWERSO-10 PENTAW ATT ELECTRICAL CHARACTERISTICS (C=100µF; -25ºC<Tj<85ºC) (unless otherwise specified) Symbol VIN BVIN-GND VOUT ∆VOUT/∆Vcap ∆VOUT/∆IOUT ICL(out) T jsh ∆Tjsh Id Vd ICL(in) ∆Vcap/∆T Parameter Minimum input voltage Test Conditions IIN-GND=500µA; Vcap=0V; Breakdown voltage input-ground in off state Vth=13V; OUT= open Output voltage Cap regulation Vcap=8 to 12V; Tj=25°C; IOUT1=0A Load regulation IOUT1=1 to 40mA; Vcap=10V; Tj=25°C Output current limit T j=25°C Junction temperature shutdown limit Junction temperature shutdown hysteresis Quiescent current T j=25°C Dropout voltage T j=25°C; IOUT1=20mA (Vcap to VOUT) Input clamp current T j=25°C (See Fig. 1) Drift of capacitor pin voltage in temperature (*) The ratio R1/R2 (see fig. 4) must be: R1/R2 ≤ 11 in order to not exceed the limit of the device. 2/14 1 Min 12 Typ Max 580 4.75 Unit V V 5 80 5.25 9 500 120 V mV/V µV/mA mA °C 140 °C 30 1.5 1 -15 2 mA 2.5 V 2 A mV/°C VB409 / VB409SP / VB409(022Y) ELECTRICAL CHARACTERISTICS (Continued) Symbol Vcap(max) Vref1 Ith Parameter Test Conditions Max clamped voltage Tj=25°C on cap pin Reference threshold Voltage Minimum current on threshold pin to switchoff the device Min Typ Max Unit 15 16 17 V 11 12 13 V µA 30 Figure 1: Input clamp current vs Temperature 1.7 Input Clamp Current (A) 1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 -20 0 25 50 75 100 125 Temperature (°C) Figure 2: EMC test results EN55011_qp EN55014_qp EN55011 industrial, scientific & medical devices EN55014 household appliances 3/14 1 VB409 / VB409SP / VB409(022Y) Figure 3: Electrical schematic used for EMC testing OUTPUT1 D1 STTA106 Cap INPUT VB409 230Vac, 50Hz C2 220nF C3 2.2nF GND Threshold R1 1MΩ R2 860kΩ 4/14 1 + C1 100µF Iload 5-30 mA VB409 / VB409SP / VB409(022Y) OPERATION DESCRIPTION The VB409, VB409(022Y), VB409SP contain two separate stages, as shown in the block diagram. The first stage is a preregulator that translates the high rectified mains voltage to a low voltage and charges an external electrolytic capacitor. The second stage is a simple 5V regulator. The typical operating waveforms are shown in Figure 5. The device may be driven by a half wave or by a full wave using a bridge rectifier. Current flowing through the regulator stage is provided by a bipolar trilinton. It conducts for a limited time (0-t1; t2-T/2), set by external divider (R1-R2). The values of R1 and R2 have to be chosen in order to achieve the internal threshold value at the decided Vmains voltage. When the threshold pin voltage goes over V ref1, the series trilinton is switched off and remains in this state until voltage at the threshold pin again drops below the internal threshold. Using this technique, energy is drawn from the AC mains only during the low voltage portions of each positive half cycle, thus reducing the dissipation in the first stage. During the conduction angle, current provided by the trilinton is used to supply the loads and to charge the capacitor C1. In such a way, when the trilinton switches off, the loads receive the required currents by the capacitor discharge. For this reason it is important to properly set the conduction angle: during this period C1 has to reach a sufficient charge to guarantee that, at the end of discharging, the voltage drop between the capacitor and the OUTPUT1 pin is over 2.5V. Assuming that conduction angle has been set, two different possibilities can occur: 1) C1 value is such to reach Vcap(max) within the conduction angle. As the comparator also senses C1 voltage, when Vcap goes over Vcap(max), the trilinton would switch off. But doing so, the capacitor would discharge through the load so reducing its voltage. As soon as Vcap drops below Vcap(max), the trilinton switches on. As a consequence the trilinton reaches a stable condition limiting the current to a value sufficient to supply the loads and hold the capacitor voltage just below Vcap(max) (see figures 5b and 5c). 2) C1 value is such to reach Vcap(max) outside the conduction angle. In this case the trilinton doesn’t reduce the current, but holds it to a constant value (ICL(in)) during the whole conduction angle (see figures 6a and 6b). Thus for each period the capacitor is charged twice. The ripple on the capacitor (OUTPUT2) depends on the following causes: - value of the capacitor - value of the total current supplied Thus it is possible to reduce it choosing the proper capacitor value according to the formula: ∆Q ∆t C = -------- = I tot ⋅ -------∆V ∆V with ∆t ≅ T/2 The device has integrated current limit and thermal shutdown protections. The thermal shutdown turns the low voltage stage off (OUTPUT1=0V) if the die temperature exceeds a predetermined value. Hysteresis in the thermal sense circuit holds the device off until the die temperature cools down. Be careful that the thermal protection doesn’t act on the OUTPUT2. CONDUCTION ANGLE CHOICE The power stage is a bipolar one; so in order to not exceed its SOA limits the ratio R1/R2 must be ≤ 11. Further choosing R1 and R2 in such a way that the capacitor is charged to its maximum voltage value (Vcap(max)) at the end of the conduction period, the power dissipated will be minimized. 5/14 1 VB409 / VB409SP / VB409(022Y) APPLICATION EXAMPLE FOR THE POWER DISSIPATION OPTIMIZATION In case of IOUT2 =constant the average power dissipated on the device (Pdevice) can be calculated as follow: Pdevice= PIN - (IOUT2 . VOUT2) - (IOUT1 . VOUT1) (1) where PIN= average input power and VOUT2= average OUTPUT2 voltage Assuming that Itot= IOUT1 + IOUT2 (2) it is possible to use the below table data to evaluate through the formula (1) the minimum average power dissipation on the device. Table 1 (with R1=1MΩ) C=220µF C=100µF C=47µF VOUT2(max) (V) VOUT2(min) (V) 14.9 12.8 14.5 12.7 15 15.5 15.4 12.2 15.4 12.9 15.5 13.6 15.8 13.3 15.8 13.4 VOUT2 (V) Itot (mA) R2 (KΩ) PIN (W) 13.8 13.5 14.2 13.7 14.1 14.5 14.5 15.1 40 35 30 25 20 15 10 5 470 560 560 1000 1000 1000 1000 1000 1.7 1.3 1.1 0.8 0.7 0.5 0.3 0.2 APPLICATION EXAMPLE: Assuming that: C=100µF; IOUT1=15mA and IOUT2=10mA, according to the formula (2), then Itot=25mA With these values, the Table 1 reports:R1=R2=1MΩ; VOUT2=13.7V. Using formula (1) the minimum average power dissipation is: Pdevice = 0.8 - (10 · 13.7) · 10-3 - (15 · 5) · 10-3 ≅ 0.6W Figure 4: Application scheme MAIN INPUT Cap (OUTPUT2) C1 Input current limiter VZ + R1 ILOAD2 Threshold Vref1 R2 Thermal protection Vref2 Vref3 Output current limiter OUTPUT1 RL OAD VB049a1 6/14 1 VB409 / VB409SP / VB409(022Y) Figure 5: typical waveforms Rectified Main Figure 5a Vmax V1 t1 t2 T/2 T t Figure 5b Vcap (OUTPUT2) Vcap(max) Vcap(min) t Figure 5c IIN ICL(in) t VOUT1 Figure 5d t 7/14 1 VB409 / VB409SP / VB409(022Y) As before explained, the device also senses the preregulator voltage (Vcap), so that as soon as the capacitor reaches its maximum voltage, the trilinton reduces the current so limiting furtherly power dissipation. On the contrary if the capacitor doesn’t reach the maximum value, the trilinton supplies current at a steady value (Imax) during the whole conduction angle: Figure 6a VIN vmax V1 0 t1 t2 T/2 T t IIN Figure 6b ICL(in) t Vcap Figure 6c t 8/14 1 VB409 / VB409SP / VB409(022Y) PENTAWATT HV MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. A 4.30 4.80 0.169 TYP. 0.189 MAX. C 1.17 1.37 0.046 0.054 D 2.40 2.80 0.094 0.11 E 0.35 0.55 0.014 0.022 F 0.60 0.80 0.024 0.031 G1 4.91 5.21 0.193 0.205 G2 7.49 7.80 0.295 0.307 H1 9.30 9.70 0.366 0.382 H2 10.40 10.05 H3 0.409 10.40 0.396 0.409 L 15.60 17.30 6.14 0.681 L1 14.60 15.22 0.575 0.599 L2 21.20 21.85 0.835 0.860 L3 22.20 22.82 0.874 0.898 L5 2.60 3 0.102 0.118 L6 15.10 15.80 0.594 0.622 L7 6 6.60 0.236 0.260 M 2.50 3.10 0.098 0.122 M1 4.50 5.60 0.177 0.220 R 0.50 0.02 V4 Diam 90° (typ) 3.65 3.85 0.144 0.152 P023H3 9/14 1 VB409 / VB409SP / VB409(022Y) PENTAWATT HV 022Y (VERTICAL HIGH PITCH) MECHANICAL DATA DIM. mm. MIN. inch TYP MAX. MIN. TYP. 4.30 4.80 0.169 0.189 C 1.17 1.37 0.046 0.054 D 2.40 2.80 0.094 0.110 E 0.35 0.55 0.014 0.022 F 0.60 0.80 0.024 0.031 G1 4.91 5.21 0.193 0.205 G2 7.49 7.80 0.295 0.307 H1 9.30 9.70 0.366 0.382 H3 10.05 10.40 0.396 0.409 L 16.42 17.42 0.646 0.686 L1 14.60 15.22 0.575 0.599 L3 20.52 21.52 0.808 0.847 H2 10.40 0.409 L5 2.60 3.00 0.102 0.118 L6 15.10 15.80 0.594 0.622 L7 6.00 6.60 0.236 0.260 M 2.50 3.10 0.098 0.122 M1 5.00 5.70 0.197 0.224 R 0.50 V4 90° Diam. 0.020 90° 3.70 3.90 0.146 0.154 L L1 E A M M1 C D R Resin between leads L6 L7 V4 H2 H3 H1 G1 G2 F DIA L5 L3 10/14 MAX. A VB409 / VB409SP / VB409(022Y) PowerSO-10 MECHANICAL DATA mm. DIM. MIN. A A (*) A1 B B (*) C C (*) D D1 E E2 E2 (*) E4 E4 (*) e F F (*) H H (*) h L L (*) α α (*) inch TYP 3.35 3.4 0.00 0.40 0.37 0.35 0.23 9.40 7.40 9.30 7.20 7.30 5.90 5.90 MAX. MIN. 3.65 3.6 0.10 0.60 0.53 0.55 0.32 9.60 7.60 9.50 7.60 7.50 6.10 6.30 0.132 0.134 0.000 0.016 0.014 0.013 0.009 0.370 0.291 0.366 0.283 0.287 0.232 0.232 1.35 1.40 14.40 14.35 0.049 0.047 0.543 0.545 1.80 1.10 8º 8º 0.047 0.031 0º 2º 1.27 TYP. MAX. 0.144 0.142 0.004 0.024 0.021 0.022 0.0126 0.378 0.300 0.374 300 0.295 0.240 0.248 0.050 1.25 1.20 13.80 13.85 0.50 0.053 0.055 0.567 0.565 0.002 1.20 0.80 0º 2º 0.070 0.043 8º 8º (*) Muar only POA P013P B 0.10 A B 10 H E E E2 1 SEATING PLANE e B DETAIL ”A” A C 0.25 h E4 D = D1 = = = SEATING PLANE A F A1 A1 L DETAIL ”A” α P095A 11/14 1 VB409 / VB409SP / VB409(022Y) PENTAWATT HV TUBE SHIPMENT (no suffix) B C Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) 50 1000 532 18 33.1 1 All dimensions are in mm. A 12/14 1 1 VB409 / VB409SP / VB409(022Y) PowerSO-10 SUGGESTED PAD LAYOUT TUBE SHIPMENT (no suffix) 14.6-14.9 CASABLANCA B 10.8- 11 MUAR C 6.30 C A A 0.67-0.73 1 9.5 10 9 2 3 B 0.54-0.6 All dimensions are in mm. 8 7 6 4 5 1.27 Base Q.ty Bulk Q.ty Tube length (± 0.5) A Casablanca Muar 50 50 1000 1000 532 532 B 10.4 16.4 4.9 17.2 C (± 0.1) 0.8 0.8 TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 600 600 330 1.5 13 20.2 24.4 60 30.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 24 4 24 1.5 1.5 11.5 6.5 2 End Start Top cover tape No components Components No components 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 13/14 1 VB409 / VB409SP / VB409(022Y) Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics 2001 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 14/14 1