ETC VB409(022Y)

VB409
/ VB409SP / VB409(022Y)

DOUBLE OUTPUT
HIGH VOLTAGE REGULATOR POWER I.C.
TYPE
VB409
VB409(022Y)
ICL(in)
ICL(out)
VOUT
1A
80 mA (*)
5V±5% Reg.
16V Not Reg
VB409SP
10
1
(*) Minimum value
■
■
■
■
■
■
5 V DC REGULATED OUTPUT1 VOLTAGE
OUTPUT1 CURRENT LIMITED TO 80 mA
16V NOT REGULATED OUTPUT2 VOLTAGE
THERMAL SHUT-DOWN PROTECTION
INPUT OVERCURRENT PROTECTION
POWER DISSIPATION INTERNALLY LIMITED
PENTAWATT HV(022Y)
PowerSO-10
PENTAWATT HV
ORDER CODES:
PENTAWATT HV(022Y) VB409(022Y)
PowerSO-10
VB409SP
PENTAWATT HV
VB409
DESCRIPTION
The VB409, VB409SP, VB409(022Y) are fully
protected positive voltage regulators designed in
STMicroelectronics High Voltage VIPower M1-2
technology. The devices can be connected
directly to the rectified mains. They are well suited
for applications powered from the AC mains and
requiring a 5V DC regulated output and/or max
16V not regulated output voltages without
galvanic
insulation.
VB409,
VB409SP,
VB409(022Y) provide up to 80 mA minimum
output current (internally limited) at 5V. The
included over current and thermal shutdown
provide protections for the device.
BLOCK DIAGRAM
INPUT
Cap (OUTPUT2)
VZ
Input current
limiter
Threshold
Vref1
Thermal
protection
Vref2
Output curr ent
limiter
Vref3
GND
OUTPUT1
ND8018
January 2001
1/14
1
VB409 / VB409SP / VB409(022Y)
ABSOLUTE MAXIMUM RATING
Symbol
VIN
∆VIN,OUT
IOUT1
PTOT
IIN
Tj
T STG
Parameter
Maximum input operative voltage (*)
Input to output voltage
Output current
Power dissipation at T C=25°C
Input current
Junction operating temperature
Storage temperature
Value
580
- 0.2 to 420
Internally limited
Internally limited
Internally limited
- 40 to 150
- 55 to 150
Unit
V
V
mA
W
A
°C
°C
THERMAL DATA
Symbol
Rthj-amb
Rthj-case
Parameter
Thermal resistance junction-ambient
Thermal resistance junction-case
Value
PENTAWATT POWERSO-10
(MAX)
60
50
(MAX)
1
0.9
Unit
Unit
°C/W
°C/W
CONNECTION DIAGRAM (TOP VIEW)
CAPACITOR
THRESHOLD
N.C.
GROUND
OUTPUT
5
4
3
2
1
6
7
8
9
10
OUTPUT
GROUND
INPUT
THRESHOLD
CAPACITOR
5
4
3
2
1
N.C.
N.C.
N.C.
N.C.
N.C.
PC10000
11
PENTAWAT T HV(022Y)
INPUT
POWERSO-10
PENTAW ATT
ELECTRICAL CHARACTERISTICS (C=100µF; -25ºC<Tj<85ºC) (unless otherwise specified)
Symbol
VIN
BVIN-GND
VOUT
∆VOUT/∆Vcap
∆VOUT/∆IOUT
ICL(out)
T jsh
∆Tjsh
Id
Vd
ICL(in)
∆Vcap/∆T
Parameter
Minimum input voltage
Test Conditions
IIN-GND=500µA; Vcap=0V;
Breakdown voltage
input-ground in off state Vth=13V; OUT= open
Output voltage
Cap regulation
Vcap=8 to 12V; Tj=25°C; IOUT1=0A
Load regulation
IOUT1=1 to 40mA; Vcap=10V; Tj=25°C
Output current limit
T j=25°C
Junction temperature
shutdown limit
Junction temperature
shutdown hysteresis
Quiescent current
T j=25°C
Dropout voltage
T j=25°C; IOUT1=20mA
(Vcap to VOUT)
Input clamp current
T j=25°C
(See Fig. 1)
Drift of capacitor pin
voltage in temperature
(*) The ratio R1/R2 (see fig. 4) must be: R1/R2 ≤ 11 in order to not exceed the limit of the device.
2/14
1
Min
12
Typ
Max
580
4.75
Unit
V
V
5
80
5.25
9
500
120
V
mV/V
µV/mA
mA
°C
140
°C
30
1.5
1
-15
2
mA
2.5
V
2
A
mV/°C
VB409 / VB409SP / VB409(022Y)
ELECTRICAL CHARACTERISTICS (Continued)
Symbol
Vcap(max)
Vref1
Ith
Parameter
Test Conditions
Max clamped voltage
Tj=25°C
on cap pin
Reference threshold
Voltage
Minimum current on
threshold pin to switchoff the device
Min
Typ
Max
Unit
15
16
17
V
11
12
13
V
µA
30
Figure 1: Input clamp current vs Temperature
1.7
Input Clamp Current (A)
1.6
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
-20
0
25
50
75
100
125
Temperature (°C)
Figure 2: EMC test results
EN55011_qp
EN55014_qp
EN55011 industrial, scientific & medical devices
EN55014 household appliances
3/14
1
VB409 / VB409SP / VB409(022Y)
Figure 3: Electrical schematic used for EMC testing
OUTPUT1
D1
STTA106
Cap
INPUT
VB409
230Vac, 50Hz
C2
220nF
C3
2.2nF
GND
Threshold
R1
1MΩ
R2
860kΩ
4/14
1
+
C1
100µF
Iload 5-30 mA
VB409 / VB409SP / VB409(022Y)
OPERATION DESCRIPTION
The VB409, VB409(022Y), VB409SP contain two
separate stages, as shown in the block diagram.
The first stage is a preregulator that translates the
high rectified mains voltage to a low voltage and
charges an external electrolytic capacitor. The
second stage is a simple 5V regulator. The typical
operating waveforms are shown in Figure 5. The
device may be driven by a half wave or by a full
wave using a bridge rectifier. Current flowing
through the regulator stage is provided by a
bipolar trilinton. It conducts for a limited time (0-t1;
t2-T/2), set by external divider (R1-R2). The values
of R1 and R2 have to be chosen in order to
achieve the internal threshold value at the decided
Vmains voltage. When the threshold pin voltage
goes over V ref1, the series trilinton is switched off
and remains in this state until voltage at the
threshold pin again drops below the internal
threshold. Using this technique, energy is drawn
from the AC mains only during the low voltage
portions of each positive half cycle, thus reducing
the dissipation in the first stage. During the
conduction angle, current provided by the trilinton
is used to supply the loads and to charge the
capacitor C1. In such a way, when the trilinton
switches off, the loads receive the required
currents by the capacitor discharge. For this
reason it is important to properly set the
conduction angle: during this period C1 has to
reach a sufficient charge to guarantee that, at the
end of discharging, the voltage drop between the
capacitor and the OUTPUT1 pin is over 2.5V.
Assuming that conduction angle has been set, two
different possibilities can occur:
1) C1 value is such to reach Vcap(max) within the
conduction angle. As the comparator also
senses C1 voltage, when Vcap goes over
Vcap(max), the trilinton would switch off. But
doing so, the capacitor would discharge
through the load so reducing its voltage. As
soon as Vcap drops below Vcap(max), the
trilinton switches on. As a consequence the
trilinton reaches a stable condition limiting the
current to a value sufficient to supply the loads
and hold the capacitor voltage just below
Vcap(max) (see figures 5b and 5c).
2) C1 value is such to reach Vcap(max) outside the
conduction angle. In this case the trilinton
doesn’t reduce the current, but holds it to a
constant value (ICL(in)) during the whole
conduction angle (see figures 6a and 6b).
Thus for each period the capacitor is charged
twice. The ripple on the capacitor (OUTPUT2)
depends on the following causes:
- value of the capacitor
- value of the total current supplied
Thus it is possible to reduce it choosing the proper
capacitor value according to the formula:
∆Q
∆t
C = -------- = I tot ⋅ -------∆V
∆V
with ∆t ≅ T/2
The device has integrated current limit and
thermal shutdown protections. The thermal
shutdown turns the low voltage stage off
(OUTPUT1=0V) if the die temperature exceeds a
predetermined value. Hysteresis in the thermal
sense circuit holds the device off until the die
temperature cools down. Be careful that the
thermal protection doesn’t act on the OUTPUT2.
CONDUCTION ANGLE CHOICE
The power stage is a bipolar one; so in order to not
exceed its SOA limits the ratio R1/R2 must be ≤ 11.
Further choosing R1 and R2 in such a way that the
capacitor is charged to its maximum voltage value
(Vcap(max)) at the end of the conduction period, the
power dissipated will be minimized.
5/14
1
VB409 / VB409SP / VB409(022Y)
APPLICATION EXAMPLE FOR THE POWER DISSIPATION OPTIMIZATION
In case of IOUT2 =constant the average power dissipated on the device (Pdevice) can be calculated as
follow:
Pdevice= PIN - (IOUT2 . VOUT2) - (IOUT1 . VOUT1)
(1)
where PIN= average input power and VOUT2= average OUTPUT2 voltage
Assuming that
Itot= IOUT1 + IOUT2
(2)
it is possible to use the below table data to evaluate through the formula (1) the minimum average power
dissipation on the device.
Table 1 (with R1=1MΩ)
C=220µF
C=100µF
C=47µF
VOUT2(max) (V) VOUT2(min) (V)
14.9
12.8
14.5
12.7
15
15.5
15.4
12.2
15.4
12.9
15.5
13.6
15.8
13.3
15.8
13.4
VOUT2 (V)
Itot (mA)
R2 (KΩ)
PIN (W)
13.8
13.5
14.2
13.7
14.1
14.5
14.5
15.1
40
35
30
25
20
15
10
5
470
560
560
1000
1000
1000
1000
1000
1.7
1.3
1.1
0.8
0.7
0.5
0.3
0.2
APPLICATION EXAMPLE:
Assuming that:
C=100µF; IOUT1=15mA and IOUT2=10mA, according to the formula (2), then Itot=25mA
With these values, the Table 1 reports:R1=R2=1MΩ; VOUT2=13.7V.
Using formula (1) the minimum average power dissipation is:
Pdevice = 0.8 - (10 · 13.7) · 10-3 - (15 · 5) · 10-3 ≅ 0.6W
Figure 4: Application scheme
MAIN
INPUT
Cap (OUTPUT2)
C1
Input
current
limiter
VZ
+
R1
ILOAD2
Threshold
Vref1
R2
Thermal
protection
Vref2
Vref3
Output
current
limiter
OUTPUT1
RL OAD
VB049a1
6/14
1
VB409 / VB409SP / VB409(022Y)
Figure 5: typical waveforms
Rectified
Main
Figure 5a
Vmax
V1
t1
t2
T/2
T
t
Figure 5b
Vcap
(OUTPUT2)
Vcap(max)
Vcap(min)
t
Figure 5c
IIN
ICL(in)
t
VOUT1
Figure 5d
t
7/14
1
VB409 / VB409SP / VB409(022Y)
As before explained, the device also senses the
preregulator voltage (Vcap), so that as soon as the
capacitor reaches its maximum voltage, the
trilinton reduces the current so limiting furtherly
power dissipation. On the contrary if the capacitor
doesn’t reach the maximum value, the trilinton
supplies current at a steady value (Imax) during the
whole conduction angle:
Figure 6a
VIN
vmax
V1
0
t1
t2
T/2
T
t
IIN
Figure 6b
ICL(in)
t
Vcap
Figure 6c
t
8/14
1
VB409 / VB409SP / VB409(022Y)
PENTAWATT HV MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
A
4.30
4.80
0.169
TYP.
0.189
MAX.
C
1.17
1.37
0.046
0.054
D
2.40
2.80
0.094
0.11
E
0.35
0.55
0.014
0.022
F
0.60
0.80
0.024
0.031
G1
4.91
5.21
0.193
0.205
G2
7.49
7.80
0.295
0.307
H1
9.30
9.70
0.366
0.382
H2
10.40
10.05
H3
0.409
10.40
0.396
0.409
L
15.60
17.30
6.14
0.681
L1
14.60
15.22
0.575
0.599
L2
21.20
21.85
0.835
0.860
L3
22.20
22.82
0.874
0.898
L5
2.60
3
0.102
0.118
L6
15.10
15.80
0.594
0.622
L7
6
6.60
0.236
0.260
M
2.50
3.10
0.098
0.122
M1
4.50
5.60
0.177
0.220
R
0.50
0.02
V4
Diam
90° (typ)
3.65
3.85
0.144
0.152
P023H3
9/14
1
VB409 / VB409SP / VB409(022Y)
PENTAWATT HV 022Y (VERTICAL HIGH PITCH) MECHANICAL DATA
DIM.
mm.
MIN.
inch
TYP
MAX.
MIN.
TYP.
4.30
4.80
0.169
0.189
C
1.17
1.37
0.046
0.054
D
2.40
2.80
0.094
0.110
E
0.35
0.55
0.014
0.022
F
0.60
0.80
0.024
0.031
G1
4.91
5.21
0.193
0.205
G2
7.49
7.80
0.295
0.307
H1
9.30
9.70
0.366
0.382
H3
10.05
10.40
0.396
0.409
L
16.42
17.42
0.646
0.686
L1
14.60
15.22
0.575
0.599
L3
20.52
21.52
0.808
0.847
H2
10.40
0.409
L5
2.60
3.00
0.102
0.118
L6
15.10
15.80
0.594
0.622
L7
6.00
6.60
0.236
0.260
M
2.50
3.10
0.098
0.122
M1
5.00
5.70
0.197
0.224
R
0.50
V4
90°
Diam.
0.020
90°
3.70
3.90
0.146
0.154
L
L1
E
A
M
M1
C
D
R
Resin between
leads
L6
L7
V4
H2
H3
H1
G1
G2
F
DIA
L5
L3
10/14
MAX.
A
VB409 / VB409SP / VB409(022Y)
PowerSO-10 MECHANICAL DATA
mm.
DIM.
MIN.
A
A (*)
A1
B
B (*)
C
C (*)
D
D1
E
E2
E2 (*)
E4
E4 (*)
e
F
F (*)
H
H (*)
h
L
L (*)
α
α (*)
inch
TYP
3.35
3.4
0.00
0.40
0.37
0.35
0.23
9.40
7.40
9.30
7.20
7.30
5.90
5.90
MAX.
MIN.
3.65
3.6
0.10
0.60
0.53
0.55
0.32
9.60
7.60
9.50
7.60
7.50
6.10
6.30
0.132
0.134
0.000
0.016
0.014
0.013
0.009
0.370
0.291
0.366
0.283
0.287
0.232
0.232
1.35
1.40
14.40
14.35
0.049
0.047
0.543
0.545
1.80
1.10
8º
8º
0.047
0.031
0º
2º
1.27
TYP.
MAX.
0.144
0.142
0.004
0.024
0.021
0.022
0.0126
0.378
0.300
0.374
300
0.295
0.240
0.248
0.050
1.25
1.20
13.80
13.85
0.50
0.053
0.055
0.567
0.565
0.002
1.20
0.80
0º
2º
0.070
0.043
8º
8º
(*) Muar only POA P013P
B
0.10 A B
10
H
E
E
E2
1
SEATING
PLANE
e
B
DETAIL ”A”
A
C
0.25
h
E4
D
= D1 =
=
=
SEATING
PLANE
A
F
A1
A1
L
DETAIL ”A”
α
P095A
11/14
1
VB409 / VB409SP / VB409(022Y)
PENTAWATT HV TUBE SHIPMENT (no suffix)
B
C
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
50
1000
532
18
33.1
1
All dimensions are in mm.
A
12/14
1
1
VB409 / VB409SP / VB409(022Y)
PowerSO-10 SUGGESTED PAD LAYOUT
TUBE SHIPMENT (no suffix)
14.6-14.9
CASABLANCA
B
10.8- 11
MUAR
C
6.30
C
A
A
0.67-0.73
1
9.5
10
9
2
3
B
0.54-0.6
All dimensions are in mm.
8
7
6
4
5
1.27
Base Q.ty Bulk Q.ty Tube length (± 0.5) A
Casablanca
Muar
50
50
1000
1000
532
532
B
10.4 16.4
4.9 17.2
C (± 0.1)
0.8
0.8
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
600
600
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
24
4
24
1.5
1.5
11.5
6.5
2
End
Start
Top
cover
tape
No components
Components
No components
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
13/14
1
VB409 / VB409SP / VB409(022Y)
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
 2001 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
14/14
1