NJU6824 Preliminary 128-common x (128+2) RGB-Segment, in 4096-Color STN LCD DRIVER ■ GENERAL DESCRIPTION The NJU6824 is a STN LCD driver with 128-common x (128+2) RGB-segment in 4096-color. It consists of 384(128xRGB)-segment + 6(2xRGB)-icon segment, 128common drivers, serial and parallel MPU interface circuits, internal power supply circuits, gradation palettes and 196,608-bit for graphic display data RAM. Each segment driver outputs 16-gradation level out of 32-gradation level of gradation palette. The display rotate function makes easily rotated display without original display data change. Since the NJU6824 provides a low operating voltage of 1.7V and low operating current, it is ideally suited for battery-powered handheld applications. ■ PACKAGE OUTLINE NJU6824CJ ■ FEATURES ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 4096-color STN LCD driver LCD drivers 128-commons, 128RGB-segments, 2RGB-icon segments Display data RAM (DDRAM) 196,608-bit for graphic display Color display mode 16 gradation level out of 32-gradation level of gradation palette Black & white display mode 128 x 384 pixels in 16-gradation level or 128 x 384 pixels in B&W 256-color driving mode 8/16bit Parallel interface directly-connective to 68/80 series MPU Programmable 8- or 16-bit data bus length for display data 3-/4-line serial interface Programmable duty and bias ratios Programmable internal voltage booster (Maximum 6-times) Bias voltage adjustment circuits Programmable contrast control using 128-step EVR Display Rotate Function / Display Mirror Inverse Function Various instructions Display data read/write, Display ON/OFF, Reverse display ON/OFF, All pixels ON/OFF, column address, row address, N-line inversion, Initial display line, Initial COM line, Read-modify-write, Gradation mode control, Increment control, Data bus length, Discharge ON/OFF, Duty cycle ratio, LCD bias ratio, Boost level, EVR control, Power save ON/OFF, etc Low operating current Low logic supply voltage 1.7V to 3.3V LCD driving supply voltage 5.0V to 18.0V C-MOS technology Rectangle out look for COG Package Bumped chip 02/11/22 -1- NJU6824 ■ PAD LOCATION SEGA126 SEGB126 SEGC126 SEGA127 SEGB127 SEGC127 SEGSA1 SEGSB1 SEGSC1 COM64 COM113 DMY41 DMY42 DMY43 DMY44 DMY45 DMY46 COM114 COM127 DMY47 DMY71 1 CLK CLK FR FR FLM FLM CL CL VDD VDD VDD VDD VDD VDD VDD D15 D15 D14 D14 D13 D13 D12 D12 D11 D11 D10 D10 D9 D9 D8 D8 VSSA VSSA D7 D7 D6 D6 D5 D5 D4/SPOL D4/SPOL D3/SMODE D3/SMODE D2 D2 D1/SDA D1/SDA D0/SCL D0/SCL VDDA VDDA RDb RDb DMY6 WRb WRb DMY5 RS RS DMY4 CSb CSb DMY3 RESb RESb VSSA VSSA P/S P/S VDDA VDDA SEL68 SEL68 VSSA VSSA DMY2 DMY1 DMY0 Note1) The same name PADs are shorted mutually in the LSI. Note2) The DMY PADs are electrically open. Chip Center Chip Size Chip Thickness Bump Size Bump Pitch Bump Height Bump Material :X= 0µm, Y= 0µm :22.07mm x 2.55mm :625µm ± 25µm :28µm x 110µm(COM/SEG Output, DMY10 ~ DMY71), 60µm x 100µm(Interface), 28µm x 100µm(DMY0 ~ DMY9) :43µm(Min) :14.0~22.5µm (Typical 18µm) <tolerance : ±3µm > :Au Alignment marks a a: 30µm b: 6µm c: 120µm d: 27µm Alignment mark coordinates d d b a X=-10866µm, Y= 1106µm X= 10866µm, Y=-1106µm b c -2- c NJU6824 Y X VOUT VOUT VOUT VOUT VSSH VSSH VSSH VSSH VSSH VSSH VSSH VBA VBA VBA VBA VBA VBA VREF VREF VREF VREF VREF VREF VREG VREG VREG VREG VREG VREG V4 V4 V4 V4 V4 V4 V3 V3 V3 V3 V3 V3 V2 V2 V2 V2 V2 V2 V1 V1 V1 V1 V1 V1 VLCD VLCD VLCD VLCD VLCD VLCD VSSA VSSA V4A2 V4A2 VDDA VDDA V4A1 V4A1 VSSA VSSA V1A2 V1A2 VDDA VDDA V1A1 V1A1 VSS VSS VSS VSS VSS VSS VSS OSC2 OSC2 OSC1 OSC1 -3- NJU6824 DMY9 DMY8 DMY7 C5C5C5C5C5C5C5+ C5+ C5+ C5+ C5+ C5+ C4C4C4C4C4C4C4+ C4+ C4+ C4+ C4+ C4+ C3C3C3C3C3C3+ C3+ C3+ C3+ C3+ C3+ C2C2C2C2C2C2C2+ C2+ C2+ C2+ C2+ C2+ C1C1C1C1C1C1C1+ C1+ C1+ C1+ C1+ C1+ VEE VEE VEE VEE VEE VEE VEE VOUT VOUT VOUT -4- DMY38 DMY39 DMY40 COM49 COM0 SEGSA0 SEGSB0 SEGSC0 SEGA0 SEGB0 SEGC0 SEGA1 SEGB1 SEGC1 DMY37 DMY36 DMY35 COM50 Y X COM63 DMY34 DMY10 NJU6824 ■ PAD COORDINATES 1 Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm ) PAD Terminal No. 1 DMY0 2 DMY1 3 DMY2 4 VSSA 5 VSSA 6 SEL68 7 SEL68 8 VDDA 9 VDDA 10 P/S 11 P/S 12 VSSA 13 VSSA 14 RESb 15 RESb 16 DMY3 17 CSb 18 CSb 19 DMY4 20 RS 21 RS 22 DMY5 23 WRb 24 WRb 25 DMY6 26 RDb 27 RDb 28 VDDA 29 VDDA 30 D0/SCL 31 D0/SCL 32 D1/SDA 33 D1/SDA 34 D2 35 D2 36 D3/SMODE 37 D3/SMODE 38 D4/SPOL 39 D4/SPOL 40 D5 41 D5 42 D6 43 D6 44 D7 45 D7 46 VSSA 47 VSSA 48 D8 49 D8 50 D9 51 D9 X(µm) Y(µm) -10642.5 -10599.5 -10556.5 -10475.5 -10402.5 -10293.0 -10220.0 -10110.5 -10037.5 -9928.0 -9855.0 -9745.5 -9672.5 -9563.0 -9490.0 -9380.5 -9271.0 -9198.0 -9088.5 -8979.0 -8906.0 -8796.5 -8687.0 -8614.0 -8504.5 -8395.0 -8322.0 -8212.5 -8139.5 -7993.5 -7920.5 -7774.5 -7701.5 -7555.5 -7482.5 -7336.5 -7263.5 -7117.5 -7044.5 -6898.5 -6825.5 -6679.5 -6606.5 -6460.5 -6387.5 -6241.5 -6168.5 -6022.5 -5949.5 -5803.5 -5730.5 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 PAD No. 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 Terminal X(µm) Y(µm) D10 D10 D11 D11 D12 D12 D13 D13 D14 D14 D15 D15 VDD VDD VDD VDD VDD VDD VDD CL CL FLM FLM FR FR CLK CLK OSC1 OSC1 OSC2 OSC2 VSS VSS VSS VSS VSS VSS VSS V1A1 V1A1 VDDA VDDA V1A2 V1A2 VSSA VSSA V4A1 V4A1 VDDA VDDA V4 A 2 -5584.5 -5511.5 -5365.5 -5292.5 -5146.5 -5073.5 -4927.5 -4854.5 -4708.5 -4635.5 -4489.5 -4416.5 -4197.5 -4124.5 -4051.5 -3978.5 -3905.5 -3832.5 -3759.5 -3613.5 -3540.5 -3394.5 -3321.5 -3175.5 -3102.5 -2956.5 -2883.5 -2701.0 -2628.0 -2409.0 -2336.0 -2044.0 -1971.0 -1898.0 -1825.0 -1752.0 -1679.0 -1606.0 -1460.0 -1387.0 -1277.5 -1204.5 -1095.0 -1022.0 -912.5 -839.5 -730.0 -657.0 -547.5 -474.5 -365.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 PAD No. 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 Terminal X(µm) Y(µm) V 4 A2 VSSA VSSA VLCD VLCD VLCD VLCD VLCD VLCD V1 V1 V1 V1 V1 V1 V2 V2 V2 V2 V2 V2 V3 V3 V3 V3 V3 V3 V4 V4 V4 V4 V4 V4 VREG VREG VREG VREG VREG VREG VREF VREF VREF VREF VREF VREF VBA VBA VBA VBA VBA VBA -292.0 -182.5 -109.5 0.0 73.0 146.0 219.0 292.0 365.0 511.0 584.0 657.0 730.0 803.0 876.0 1022.0 1095.0 1168.0 1241.0 1314.0 1387.0 1533.0 1606.0 1679.0 1752.0 1825.0 1898.0 2044.0 2117.0 2190.0 2263.0 2336.0 2409.0 2555.0 2628.0 2701.0 2774.0 2847.0 2920.0 3029.5 3102.5 3175.5 3248.5 3321.5 3394.5 3504.0 3577.0 3650.0 3723.0 3796.0 3869.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -5- NJU6824 ■ PAD COORDINATES 2 Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm ) PAD No. 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 -6- Terminal X(µm) Y(µm) VSSH VSSH VSSH VSSH VSSH VSSH VSSH VOUT VOUT VOUT VOUT VOUT VOUT VOUT VEE VEE VEE VEE VEE VEE VEE C1+ C1+ C1+ C1+ C1+ C1+ C1C1C1C1C1C1C2+ C2+ C2+ C2+ C2+ C2+ C2C2C2C2C2C2C3+ C3+ C3+ C3+ C3+ C3+ 4051.5 4124.5 4197.5 4270.5 4343.5 4416.5 4489.5 4672.0 4745.0 4818.0 4891.0 4964.0 5037.0 5110.0 5292.5 5365.5 5438.5 5511.5 5584.5 5657.5 5730.5 5840.0 5913.0 5986.0 6059.0 6132.0 6205.0 6314.5 6387.5 6460.5 6533.5 6606.5 6679.5 6789.0 6862.0 6935.0 7008.0 7081.0 7154.0 7263.5 7336.5 7409.5 7482.5 7555.5 7628.5 7738.0 7811.0 7884.0 7957.0 8030.0 8103.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 PAD No. 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 Terminal X(µm) Y(µm) C3C3C3C3C3C3C4+ C4+ C4+ C4+ C4+ C4+ C4C4C4C4C4C4C5+ C5+ C5+ C5+ C5+ C5+ C5C5C5C5 C5 C5 DMY7 DMY8 DMY9 DMY10 DMY11 DMY12 DMY13 DMY14 DMY15 DMY16 DMY17 DMY18 DMY19 DMY20 DMY21 DMY22 DMY23 DMY24 DMY25 DMY26 DMY27 8212.5 8285.5 8358.5 8431.5 8504.5 8577.5 8687.0 8760.0 8833.0 8906.0 8979.0 9052.0 9161.5 9234.5 9307.5 9380.5 9453.5 9526.5 9636.0 9709.0 9782.0 9855.0 9928.0 10001.0 10110.5 10183.5 10256.5 10329.5 10402.5 10475.5 10556.5 10599.5 10642.5 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -1090.0 -881.5 -838.5 -795.5 -752.5 -709.5 -666.5 -623.5 -580.5 -537.5 -494.5 -451.5 -408.5 -365.5 -322.5 -279.5 -236.5 -193.5 -150.5 PAD No. 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 Terminal X(µm) Y(µm) DMY28 DMY29 DMY30 DMY31 DMY32 DMY33 DMY34 COM63 COM62 COM61 COM60 COM59 COM58 COM57 COM56 COM55 COM54 COM53 COM52 COM51 COM50 DMY35 DMY36 DMY37 DMY38 DMY39 DMY40 COM49 COM48 COM47 COM46 COM45 COM44 COM43 COM42 COM41 COM40 COM39 COM38 COM37 COM36 COM35 COM34 COM33 COM32 COM31 COM30 COM29 COM28 COM27 COM26 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10845.0 10642.5 10599.5 10556.5 10513.5 10470.5 10427.5 10384.5 10341.5 10298.5 10255.5 10212.5 10169.5 10126.5 10083.5 10040.5 9997.5 9954.5 9911.5 9868.5 9825.5 9782.5 9739.5 9696.5 9653.5 9610.5 9567.5 9524.5 -107.5 -64.5 -21.5 21.5 64.5 107.5 150.5 193.5 236.5 279.5 322.5 365.5 408.5 451.5 494.5 537.5 580.5 623.5 666.5 709.5 752.5 795.5 838.5 881.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 NJU6824 ■ PAD COORDINATES 3 Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm ) PAD No. 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 Terminal X(µm) Y(µm) COM25 COM24 COM23 COM22 COM21 COM20 COM19 COM18 COM17 COM16 COM15 COM14 COM13 COM12 COM11 COM10 COM9 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 COM0 SEGSA0 SEGSB0 SEGSC0 SEGA0 SEGB0 SEGC0 SEGA1 SEGB1 SEGC1 SEGA2 SEGB2 SEGC2 SEGA2 SEGB3 SEGC3 SEGA4 SEGB4 SEGC4 SEGA5 SEGB5 SEGC5 SEGA6 SEGB6 SEGC6 SEGA7 9481.5 9438.5 9395.5 9352.5 9309.5 9266.5 9223.5 9180.5 9137.5 9094.5 9051.5 9008.5 8965.5 8922.5 8879.5 8836.5 8793.5 8750.5 8707.5 8664.5 8621.5 8578.5 8535.5 8492.5 8449.5 8406.5 8363.5 8320.5 8277.5 8234.5 8191.5 8148.5 8105.5 8062.5 8019.5 7976.5 7933.5 7890.5 7847.5 7804.5 7761.5 7718.5 7675.5 7632.5 7589.5 7546.5 7503.5 7460.5 7417.5 7374.5 7331.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 PAD No. 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 Terminal X(µm) Y(µm) SEGB7 SEGC7 SEGA8 SEGB8 SEGC8 SEGA9 SEGB9 SEGC9 SEGA10 SEGB10 SEGC10 SEGA11 SEGB11 SEGC11 SEGA12 SEGB12 SEGC12 SEGA13 SEGB13 SEGC13 SEGA14 SEGB14 SEGC14 SEGA15 SEGB15 SEGC15 SEGA16 SEGB16 SEGC16 SEGA17 SEGB17 SEGC17 SEGA18 SEGB18 SEGC18 SEGA19 SEGB19 SEGC19 SEGA20 SEGB20 SEGC20 SEGA21 SEGB21 SEGC21 SEGA22 SEGB22 SEGC22 SEGA23 SEGB23 SEGC23 SEGA24 7288.5 7245.5 7202.5 7159.5 7116.5 7073.5 7030.5 6987.5 6944.5 6901.5 6858.5 6815.5 6772.5 6729.5 6686.5 6643.5 6600.5 6557.5 6514.5 6471.5 6428.5 6385.5 6342.5 6299.5 6256.5 6213.5 6170.5 6127.5 6084.5 6041.5 5998.5 5955.5 5912.5 5869.5 5826.5 5783.5 5740.5 5697.5 5654.5 5611.5 5568.5 5525.5 5482.5 5439.5 5396.5 5353.5 5310.5 5267.5 5224.5 5181.5 5138.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 PAD No. 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 Terminal X(µm) Y(µm) SEGB24 SEGC24 SEGA25 SEGB25 SEGC25 SEGA26 SEGB26 SEGC26 SEGA27 SEGB27 SEGC27 SEGA28 SEGB28 SEGC28 SEGA29 SEGB29 SEGC29 SEGA30 SEGB30 SEGC30 SEGA31 SEGB31 SEGC31 SEGA32 SEGB32 SEGC32 SEGA33 SEGB33 SEGC33 SEGA34 SEGB34 SEGC34 SEGA35 SEGB35 SEGC35 SEGA36 SEGB36 SEGC36 SEGA37 SEGB37 SEGC37 SEGA38 SEGB38 SEGC38 SEGA39 SEGB39 SEGC39 SEGA40 SEGB40 SEGC40 SEGA41 5095.5 5052.5 5009.5 4966.5 4923.5 4880.5 4837.5 4794.5 4751.5 4708.5 4665.5 4622.5 4579.5 4536.5 4493.5 4450.5 4407.5 4364.5 4321.5 4278.5 4235.5 4192.5 4149.5 4106.5 4063.5 4020.5 3977.5 3934.5 3891.5 3848.5 3805.5 3762.5 3719.5 3676.5 3633.5 3590.5 3547.5 3504.5 3461.5 3418.5 3375.5 3332.5 3289.5 3246.5 3203.5 3160.5 3117.5 3074.5 3031.5 2988.5 2945.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 -7- NJU6824 ■ PAD COORDINATES 4 Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm ) PAD No. 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 -8- Terminal X(µm) Y(µm) SEGB41 SEGC41 SEGA42 SEGB42 SEGC42 SEGA43 SEGB43 SEGC43 SEGA44 SEGB44 SEGC44 SEGA45 SEGB45 SEGC45 SEGA46 SEGB46 SEGC46 SEGA47 SEGB47 SEGC47 SEGA48 SEGB48 SEGC48 SEGA49 SEGB49 SEGC49 SEGA50 SEGB50 SEGC50 SEGA51 SEGB51 SEGC51 SEGA52 SEGB52 SEGC52 SEGA53 SEGB53 SEGC53 SEGA54 SEGB54 SEGC54 SEGA55 SEGB55 SEGC55 SEGA56 SEGB56 SEGC56 SEGA57 SEGB57 SEGC57 SEGA58 2902.5 2859.5 2816.5 2773.5 2730.5 2687.5 2644.5 2601.5 2558.5 2515.5 2472.5 2429.5 2386.5 2343.5 2300.5 2257.5 2214.5 2171.5 2128.5 2085.5 2042.5 1999.5 1956.5 1913.5 1870.5 1827.5 1784.5 1741.5 1698.5 1655.5 1612.5 1569.5 1526.5 1483.5 1440.5 1397.5 1354.5 1311.5 1268.5 1225.5 1182.5 1139.5 1096.5 1053.5 1010.5 967.5 924.5 881.5 838.5 795.5 752.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 PAD No. 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 Terminal X(µm) Y(µm) SEGB58 SEGC58 SEGA59 SEGB59 SEGC59 SEGA60 SEGB60 SEGC60 SEGA61 SEGB61 SEGC61 SEGA62 SEGB62 SEGC62 SEGA63 SEGB63 SEGC63 SEGA64 SEGB64 SEGC64 SEGA65 SEGB65 SEGC65 SEGA66 SEGB66 SEGC66 SEGA67 SEGB67 SEGC67 SEGA68 SEGB68 SEGC68 SEGA69 SEGB69 SEGC69 SEGA70 SEGB70 SEGC70 SEGA71 SEGB71 SEGC71 SEGA72 SEGB72 SEGC72 SEGA73 SEGB73 SEGC73 SEGA74 SEGB74 SEGC74 SEGA75 709.5 666.5 623.5 580.5 537.5 494.5 451.5 408.5 365.5 322.5 279.5 236.5 193.5 150.5 107.5 64.5 21.5 -21.5 -64.5 -107.5 -150.5 -193.5 -236.5 -279.5 -322.5 -365.5 -408.5 -451.5 -494.5 -537.5 -580.5 -623.5 -666.5 -709.5 -752.5 -795.5 -838.5 -881.5 -924.5 -967.5 -1010.5 -1053.5 -1096.5 -1139.5 -1182.5 -1225.5 -1268.5 -1311.5 -1354.5 -1397.5 -1440.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 PAD No. 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 Terminal X(µm) Y(µm) SEGB75 SEGC75 SEGA76 SEGB76 SEGC76 SEGA77 SEGB77 SEGC77 SEGA78 SEGB78 SEGC78 SEGA79 SEGB79 SEGC79 SEGA80 SEGB80 SEGC80 SEGA81 SEGB81 SEGC81 SEGA82 SEGB82 SEGC82 SEGA83 SEGB83 SEGC83 SEGA84 SEGB84 SEGC84 SEGA85 SEGB85 SEGC85 SEGA86 SEGB86 SEGC86 SEGA87 SEGB87 SEGC87 SEGA88 SEGB88 SEGC88 SEGA89 SEGB89 SEGC89 SEGA90 SEGB90 SEGC90 SEGA91 SEGB91 SEGC91 SEGA92 -1483.5 -1526.5 -1569.5 -1612.5 -1655.5 -1698.5 -1741.5 -1784.5 -1827.5 -1870.5 -1913.5 -1956.5 -1999.5 -2042.5 -2085.5 -2128.5 -2171.5 -2214.5 -2257.5 -2300.5 -2343.5 -2386.5 -2429.5 -2472.5 -2515.5 -2558.5 -2601.5 -2644.5 -2687.5 -2730.5 -2773.5 -2816.5 -2859.5 -2902.5 -2945.5 -2988.5 -3031.5 -3074.5 -3117.5 -3160.5 -3203.5 -3246.5 -3289.5 -3332.5 -3375.5 -3418.5 -3461.5 -3504.5 -3547.5 -3590.5 -3633.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 NJU6824 ■ PAD COORDINATES 5 Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm ) PAD No. 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 Terminal X(µm) Y(µm) SEGB92 SEGC92 SEGA93 SEGB93 SEGC93 SEGA94 SEGB94 SEGC94 SEGA95 SEGB95 SEGC95 SEGA96 SEGB96 SEGC96 SEGA97 SEGB97 SEGC97 SEGA98 SEGB98 SEGC98 SEGA99 SEGB99 SEGC99 SEGA100 SEGB100 SEGC100 SEGA101 SEGB101 SEGC101 SEGA102 SEGB102 SEGC102 SEGA103 SEGB103 SEGC103 SEGA104 SEGB104 SEGC104 SEGA105 SEGB105 SEGC105 SEGA106 SEGB106 SEGC106 SEGA107 SEGB107 SEGC107 SEGA108 SEGB108 SEGC108 SEGA109 -3676.5 -3719.5 -3762.5 -3805.5 -3848.5 -3891.5 -3934.5 -3977.5 -4020.5 -4063.5 -4106.5 -4149.5 -4192.5 -4235.5 -4278.5 -4321.5 -4364.5 -4407.5 -4450.5 -4493.5 -4536.5 -4579.5 -4622.5 -4665.5 -4708.5 -4751.5 -4794.5 -4837.5 -4880.5 -4923.5 -4966.5 -5009.5 -5052.5 -5095.5 -5138.5 -5181.5 -5224.5 -5267.5 -5310.5 -5353.5 -5396.5 -5439.5 -5482.5 -5525.5 -5568.5 -5611.5 -5654.5 -5697.5 -5740.5 -5783.5 -5826.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 PAD No. 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 Terminal X(µm) Y(µm) SEGB109 SEGC109 SEGA110 SEGB110 SEGC110 SEGA111 SEGB111 SEGC111 SEGA112 SEGB112 SEGC112 SEGA113 SEGB113 SEGC113 SEGA114 SEGB114 SEGC114 SEGA115 SEGB115 SEGC115 SEGA116 SEGB116 SEGC116 SEGA117 SEGB117 SEGC117 SEGA118 SEGB118 SEGC118 SEGA119 SEGB119 SEGC119 SEGA120 SEGB120 SEGC120 SEGA121 SEGB121 SEGC121 SEGA122 SEGB122 SEGC122 SEGA123 SEGB123 SEGC123 SEGA124 SEGB124 SEGC124 SEGA125 SEGB125 SEGC125 SEGA126 -5869.5 -5912.5 -5955.5 -5998.5 -6041.5 -6084.5 -6127.5 -6170.5 -6213.5 -6256.5 -6299.5 -6342.5 -6385.5 -6428.5 -6471.5 -6514.5 -6557.5 -6600.5 -6643.5 -6686.5 -6729.5 -6772.5 -6815.5 -6858.5 -6901.5 -6944.5 -6987.5 -7030.5 -7073.5 -7116.5 -7159.5 -7202.5 -7245.5 -7288.5 -7331.5 -7374.5 -7417.5 -7460.5 -7503.5 -7546.5 -7589.5 -7632.5 -7675.5 -7718.5 -7761.5 -7804.5 -7847.5 -7890.5 -7933.5 -7976.5 -8019.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 PAD No. 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 Terminal X(µm) Y(µm) SEGB126 SEGC126 SEGA127 SEGB127 SEGC127 SEGSA1 SEGSB1 SEGSC1 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COM80 COM81 COM82 COM83 COM84 COM85 COM86 COM87 COM88 COM89 COM90 COM91 COM92 COM93 COM94 COM95 COM96 COM97 COM98 COM99 COM100 COM101 COM102 COM103 COM104 COM105 COM106 -8062.5 -8105.5 -8148.5 -8191.5 -8234.5 -8277.5 -8320.5 -8363.5 -8406.5 -8449.5 -8492.5 -8535.5 -8578.5 -8621.5 -8664.5 -8707.5 -8750.5 -8793.5 -8836.5 -8879.5 -8922.5 -8965.5 -9008.5 -9051.5 -9094.5 -9137.5 -9180.5 -9223.5 -9266.5 -9309.5 -9352.5 -9395.5 -9438.5 -9481.5 -9524.5 -9567.5 -9610.5 -9653.5 -9696.5 -9739.5 -9782.5 -9825.5 -9868.5 -9911.5 -9954.5 -9997.5 -10040.5 -10083.5 -10126.5 -10169.5 -10212.5 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 -9- NJU6824 ■ PAD COORDINATES 6 Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm ) PAD No. 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 - 10 - Terminal X(µm) Y(µm) COM107 COM108 COM109 COM110 COM111 COM112 COM113 DMY41 DMY42 DMY43 DMY44 DMY45 DMY46 COM114 COM115 COM116 COM117 COM118 COM119 COM120 COM121 COM122 COM123 COM124 COM125 COM126 COM127 DMY47 DMY48 DMY49 DMY50 DMY51 DMY52 DMY53 DMY54 DMY55 DMY56 DMY57 DMY58 DMY59 DMY60 DMY61 DMY62 DMY63 DMY64 DMY65 DMY66 DMY67 DMY68 DMY69 DMY70 -10255.5 -10298.5 -10341.5 -10384.5 -10427.5 -10470.5 -10513.5 -10556.5 -10599.5 -10642.5 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 -10845.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 1085.0 881.5 838.5 795.5 752.5 709.5 666.5 623.5 580.5 537.5 494.5 451.5 408.5 365.5 322.5 279.5 236.5 193.5 150.5 107.5 64.5 21.5 -21.5 -64.5 -107.5 -150.5 -193.5 -236.5 -279.5 -322.5 -365.5 -408.5 -451.5 -494.5 -537.5 -580.5 -623.5 -666.5 -709.5 -752.5 -795.5 -838.5 PAD No. 817 Terminal X(µm) Y(µm) DMY71 -10845.0 -881.5 PAD No. Terminal X(µm) Y(µm) NJU6824 COM127 COM0 VSS SEGA127 SEGB127 SEGC127 SEGSA1 SEGSB1 SEGSC1 VSSH SEGA0 SEGB0 SEGC0 SEGSA0 SEGSB0 SEGSC0 ■ BLOCK DIAGRAM VSSA VVDDA VDD Segment Driver Gradation Circuit 4 Shift Register Data Latch Circuit D15 Initial Display Line Register Display Data RAM (DD RAM) 128x128x(4+4+4)bit Line Counter Row Address Decoder Row Address Counter Voltage regulator Row Address Register Voltage booster Line Address Decoder VLCD, V1 -V4 V1 A1 , V1 A2 , V4 A1 , V4 A2 C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5VOUT VEE VREF VBA VREG Common Driver 5 Column Address Decoder D14 D13 RAM Interface D12 Display Timing Generator Column Address Counter D11 FR FLM CL D10 D8 D7 Column Address Register I/O Buffer D9 CLK Oscillator OSC2 OSC1 D6 D5 D4/SPOL D3/SMODE Pole Control D2 Instruction Decoder Bus Holder Register Read Control Internal Bus D1/SDA D0/SCL MPU Interface CSb RS RDb WRb P/S SEL68 RESb - 11 - NJU6824 ! POWER SUPPLY CIRCUITS BLOCK DIAGRAM VBA Reference Voltage Generator - Voltage regulator VREG VREF + + Gain Control (1x-6x) E.V.R 1/2VREG + - VLCD + - V1 + - V2 + - V3 + - V4 EVR register Boost level register C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5VEE - 12 - V1/V4 Bias Voltage Adjustment V1A1 V1A2 V4A1 V4A2 Voltage Booster VOUT NJU6824 ■ TERMINAL DESCRIPTION 1 No. 64~70 83~89 154~160 8,9, 28,29, 92,93, 100,101 4,5, 12,13, 46,47, 96,97, 104,105 106~111 112~117 118~123 124~129 130~135 Symbol VDD VSS VSSH VDDA I/O Power Power Power Power Function Power supply for logic circuits GND for logic circuits GND for high voltage circuits This terminal is internally connected to the VDD level. •This terminal is used to fix the selection terminals to the VDD level. Note) Do not use this terminal for a main power supply. This terminal is internally connected to the VSS level. •This terminal is used to fix the selection terminals to the VSS level. Note) Do not use this terminal for a main GND. VSSA Power VLCD V1 V2 V3 V4 Power/O 175~180 181~186 187~192 193~198 199~204 205~210 211~216 217~222 223~228 229~234 148~153 142~147 168~174 C 1+ C 1C 2+ C 2C 3+ C 3C 4+ C 4C 5+ C 5VBA VREF VEE O LCD driving voltages •When the internal voltage booster is not used, external LCD driving voltages (V1 to V4 and VLCD) must be supplied on these terminals. The external voltages must be maintained with the following relation. VSS<V4<V3<V2<V1<VLCD • When the internal voltage booster is used, the LCD driving voltages (V1 to V4 and VLCD) are enabled by the “Power control” instruction. The capacitors between the VSS and these terminals are necessary. Capacitor connection terminals for the voltage booster O Capacitor connection terminals for the voltage booster O Capacitor connection terminals for the voltage booster O Capacitor connection terminals for the voltage booster O Capacitor connection terminals for the voltage booster O I Power 161~167 VOUT Power/O 136~141 90,91 94,95 98,99 102,103 14,15 VREG V1A1 V1A2 V4A1 V4A2 RESb O I Output of the reference-voltage generator Input of the voltage regulator Input of the voltage booster •This terminal is normally connected to the VDD level. Output of the voltage booster Input for high voltage circuits in using external power supply Output of the voltage regulator V1 bias voltage adjustment terminal I V4 bias voltage adjustment terminal I 6,7 SEL68 I Reset Active “0” MPU interface type select SEL86 H Status 68 series L 80 series - 13 - NJU6824 ■ TERMINAL DESCRIPTION 2 No. 30,31 Symbol D0/SCL I/O I/O 32,33 D1/SDA I/O 36,37 D3/SMODE I/O 38,39 D4/SPOL I/O 34,35 40,41 42,43 44,45 D2 D5 D6 D7 I/O 48,49 50,51 52,53 54,55 56,57 58,59 60,61 62,63 17,18 D8 D9 D10 D11 D12 D13 D14 D15 I/O 20,21 CSb RS I I Function Parallel interface: D7 to D0 : 8-bit bi-directional bus • In the parallel interface mode (P/S=“1”), these terminals connect to 8-bit bi-directional MPU bus. Serial interface: SDA : serial data SCL : serial clock SMODE : 3-/4-line serial interface mode selection SPOL : RS polarity selection (in the 3-line serial interface mode) •In the 3-/4-line serial interface mode (P/S=“0”), the D0 terminal is assigned to the SCL and the D1 terminal to the SDA. •In the 3-line serial interface mode, the D4 terminal is assigned to the SPOL. •Serial data on the SDA is fetched at the rising edge of the SCL signal in the order of the D7, D6…D0, and the fetched data is converted into 8-bit parallel data at the falling edge of the 8th SCL signal. •The SCL signal must be set to “0” after data transmissions or during non-access. 8-bit bi-directional bus •In the 16-bit data bus mode, these terminals are assigned to the upper 8-bit data bus. •In the serial interface mode or 8-bit data bus mode of the parallel interface, these terminals must be fixed to “1” or “0”. Chip select Active “0” Resister select •This signal distinguishes transferred data as an instruction or display data as follows. RS Distinct. 26,27 23,24 RDb (E) WRb (R/W) I I H Instruction L Display data 80 series MPU interface (P/S=“1”, SEL68=“0”) RDb signal. Active “0”. 68 series MPU interface (P/S=“1”, SEL68=“1”) Enable signal. Active “1”. 80 series MPU interface (P/S=“1”, SEL68=“0”) WRb signal. Active “0”. 68 series MPU interface (P/S=“1”, SEL68=“1”) R/W signal. R/W H L Status Read Write - 14 - NJU6824 ■ TERMINAL DESCRIPTION 3 No. 10,11 Symbol P/S I/O I Function Parallel / serial interface mode selection P/S H L 71,72 CL O 73,74 75,76 77,78 79,80 81,82 FLM FR CLK OSC1 OSC2 O O O I O Chip Select CSb CSb Data/ Instruction RS RS Data Read/Write Serial clock D0 ~ D7 SDA (D1) RDb, WRb Write only SCL (D0) •Since the D15 to D5 and D2 terminals are in the high impedance in the serial inter face mode (P/S=”0”), they must be fixed to “1” or “0”. The RDb and WRb terminals also must be “1” or “0”. This terminal must be opened. This terminal must be opened. This terminal must be opened. This terminal must be opened. OSC • When the internal oscillator clock is used, OSC1 terminal must be fixed to “1” or “0”, and the OSC2 terminal must be opened. When the oscillation frequency from the internal oscillator is adjusted by an external resistor between OSC1 terminal and OSC2. • When an external oscillator is used, external clock is input to the OSC1 terminal or an external resistor is connected between the OSC1 and OSC2 terminals. - 15 - NJU6824 ■ TERMINAL DESCRIPTION 4 No. 336~719 Symbol SEGA0 ~ SEGA127, SEGB0 ~ SEGB127, SEGC0 ~ SEGC127 I/O O Function Segment output REV Mode Normal Reverse Turn-off 0 1 Turn-on 1 0 •These terminals output LCD driving waveforms in accordance with the combination of the FR signal and display data. In the B/W mode FR signal Display data 333,720 334,721 335,722 332~283, 276~263, 723~772, 779~792 SEGSA0, SEGSA1 SEGSB0, SEGSB1 SEGSC0, SEGSC1 COM0 ~ COM127 O O Normal display mode V2 VLCD V3 VSS Reverse display mode VLCD V2 VSS V3 Icon segment output terminal •These terminals are assigned at both edge of normal segment output terminals line for out line frame display. Common output •These terminals output LCD driving waveforms in accordance with the combination of the FR signal and scanning data. Data H L H L FR H H L L (Terminal No. 1~3,16,19,22,25,235~262,277~282,773~778,793~817 are dummy.) - 16 - Output level VSS V1 VLCD V4 NJU6824 ■ Functional Description (1) MPU Interface (1-1) Selection of parallel / serial interface mode The P/S terminal is used to select parallel or serial interface mode as shown in the following table. In the serial interface mode, it is not possible to read out display data from the DDRAM and status from the internal registers. Table1 P/S P/S mode CSb RS H Parallel I/F CSb RS L Serial I/F CSb RS Note 1) “ -” : Fix to “1” or “0”. RDb RDb - WRb WRb - SEL68 SEL68 - SDA SCL SDA SCL Data D7-D0 (D15-D0) - (1-2) Selection of MPU interface type In the parallel interface mode, the SEL68 terminal is used to select 68- or 80-series MPU interface type as shown in the following table. Table2 SEL68 MPU type H 68 series MPU L 80 series MPU CSb CSb CSb RS RS RS RDb E RDb WRb R/W WRb Data D7-D0 (D15-D0) D7-D0 (D15-D0) (1-3) Data distinction In the parallel interface mode, the combination of RS, RDb, and WRb (R/W) signals distinguishes transferred data between the LSI and MPU as instruction or display data, as shown in the following table. Table3 RS H H L L 68 series R/W H L H L 80 series RDb WRb L H H L L H H L Function Read out instruction data Write instruction data Read out display data Write display data (1-4) Selection of serial interface mode In the serial interface mode, the SMODE terminal is used to select the 3- or 4-line serial interface mode as shown in the following table. Table4 SMODE H L Serial interface mode 3-line 4-line - 17 - NJU6824 (1-5) 4-line serial interface mode In the 4-line serial interface mode, when the chip select is active (CSb=“0”), the SDA and the SCL are enabled. When the chip select is not active (CSb=“1”), the SDA and the SCL are disabled and the internal shift register and the counter are being initialized. The 8-bit serial data on the SDA is fetched at the rising edge of the SCL signal (serial clock) in order of the D7, D6…D0, and the fetched data is converted into the 8-bit parallel data at the rising edge of the 8th SCL signal. In the 4-line serial interface mode, the transferred data on the SDA is distinguished as display data or instruction data in accordance with the condition of the RS signal. RS H L Table5 Data distinction Instruction data Display data Since the serial interface operation is sensitive to external noises, the SCL should be set to “0” after data transmissions or during non-access. To release a mal-function caused by the external noises, the chip-selected status should be released (CSb=“1”) after each of the 8-bit data transmissions. The following figure illustrates the interface timing for the 4-line serial interface operation. CSb RS VALID SDA D7 D6 D5 D4 D3 D2 D1 D0 1 2 3 4 5 6 7 8 SCL Fig1 4-line serial interface timing (1-6) 3-line serial interface mode In the 3-line serial interface mode, when the chip select is active (CSb=“0”), the SDA and SCL are enabled. When the chip select is not active (CSb=“1”), the SDA and SCL are disabled and the internal shift register and counter are being initialized. 9-bit serial data on the SDA is fetched at the rising edge of the SCL signal in order of the RS, D7, D6…D0, and the fetched data is converted into the 9-bit parallel data at the rising edge of the 9th SCL signal. In the 3-line serial interface mode, data on the SDA is distinguished as display data or instruction data in accordance with the condition of the RS bit of the SDA data and the status of the SPOL, as follows. Table6 RS L H - 18 - SPOL=L Data distinction Display data Instruction data RS L H SPOL=H Data distinction Instruction data Display data NJU6824 Since the serial interface operation is sensitive to external noises, the SCL must be set to “0” after data transmissions or during non-access. To release a mal-function caused by the external noises, the chipselected status should be released (CSb=“1”) after each of 9-bit data transmissions. The following figure illustrates the interface timing of the 3-line serial interface operation. CSb SDA RS D7 D6 D5 D4 1 2 3 4 5 D3 D2 D1 D0 SCL Fig2 6 7 8 9 3-line serial interface timing - 19 - NJU6824 (2) Access to the DDRAM When the CSb signal is ”0”, the transferred data from MPU is written into the DDRAM or instruction register in accordance with the condition of the RS signal. When the RS signal is “1”, the transferred data is distinguished as display data. After the “column address” and “row address” instructions are executed, the display data can be written into the DDRAM by the “display data write” instruction. The display data is written at the rising edge of the WRb signal in the 80 series MPU mode, or at the falling edge of the E signal in the 68 series MPU mode. Table6 RS Data L Display RAM Data H Internal Command Register In the sequence of the “display data read” operation, the transferred data from MPU is temporarily held in the internal bus-holder, then transferred to the internal data-bus. When the “display data read” operation is executed just after the “column address” and “row address” instructions or “display data write” instruction, unexpected data on the bus-holder is read out at the 1st execution, then the data of designated DDRAM address is read out from the 2nd execution. For this reason, a dummy read cycle must be executed to avoid the unexpected 1st data read. Display data write operation D0 to D15 n n+1 n+2 n+3 n+4 Internal WRb n Bus Holder n+1 n+2 n+3 n+4 WRb Display data read operation WRb D0 to D7(D0 to D15) n Address Set n n Dummy Read Data Read n Address n+1 Data Read n+1 Address n+2 Data Read n+2 Address RDb Fig3 Note) In the16-bit data bus mode, instruction data must be 16-bit as well as the display data. - 20 - NJU6824 (3) Access to the instruction register Each instruction resisters is assigned to each address between 0H and FH, and the content of the instruction register can be read out by the combination of the “Instruction resister address” and ”Instruction resister read”. WRb D0 to D7 M m N n Instruction resister address set Instruction resister contents read Instruction resister address set Instruction resister contents read RDb Fig4 (4) 8-/16-bit data bus length for display data (in the parallel interface mode) The 8- or 16-bit data bus length for display data is determined by the “WLS” of the “Data bus length” instruction. In the 16-bit data bus mode, instruction data must be 16-bit data (D15 to D0) as well as display data. However, for the access to the instruction register, the only lower 8-bit data (D7 to D0) of the 16-bit data is valid. For the access to the DDRAM, all of the 16-bit data (D15 to D0) is valid. Table8 WLS L H Data bus length mode 8-bit 16-bit (5) Initial display line register The initial display line resister specifies the line address, corresponding to the initial COM line, by the “Initial display line” instruction. The initial COM line signifies the common driver, starting scanning the display data in the DDRAM, and specified by the “Initial COM line” instruction. The line address, established in the initial display line resister, is preset into the line counter whenever the FLM signal becomes “1”. At the rising edge of the CL signal, the line counter is counted-up and addressed 384bit display data corresponding to the counted-up line address, is latched into the data latch circuit. At the falling edge of the CL signal, the latched data outputs to the segment drivers. - 21 - NJU6824 (6) DDRAM mapping The DDRAM is capable of 1,536-bit (12-bit x 128-segment) for the column address and 128-bit for the row address. In the gradation mode, each pixel for RGB corresponds to successive 3-segment drivers, and each segment driver has 16-gradation. Therefore, the LSI can drive up to 128x128 pixels in 4096-color display (16-gradation x 16-gradation x 16-gradation). In 8-bit access mode(C256 mode) for DDRAM, sequential twice accesses to DDRAM complete one pixel data access. Therefore, it must be accessed with a couple of operation. # In the 8-bit data bus length mode column-address 7FH 0H 0H 7bit 5bit 7bit 5bit 7FH 7bit 5bit 7bit 5bit row-address column-address 7FH 0H ABS=’1’ 0H 4bit 8bit 4bit 8bit 7FH 4bit 8bit 4bit 8bit 0H 0H 8bit 1H 8bit 7EH 8bit 7FH 8bit 7FH 8bit 8bit 8bit 8bit row-address column-address C256=’1’ row-address Fig5 - 22 - NJU6824 # In the 16-bit data bus length mode column-address 0H 0H 12bit 7FH 12bit 7FH 12bit row-address 12bit Fig6 In the B&W mode, only MSB data from each 4-bit display data group in the DDRAM is used. Therefore, 384 x 128 pixels in the B&W and 128 x 128 pixels in the 8-gradation are available. The range of the column address varies depending on data bus length. The range between 00H and 7FH is used in the 8-bit or 16-bit data bus length. The DDRAM is accessing 8-bit or 16-bit unit addressed by column and row address. In the 8-bit or 16-bit data bus length mode, over 80H address setting is prohibited. The increments for the column address and row address are set to the auto-increment mode by programming the “HV”, “XD” and “YD” registers of the “Increment control” instruction. In this mode, the contents of the column address and row address counters automatically increment whenever the DDRAM is accessed. The column address and row address counters, independent of the line counter. They are used to designate the column and row addresses for the display data transferred from MPU. On the other hand, the line counter is used to generate the line address, and output display data to the segment drivers, being synchronized with the display control timing of the FLM and CL signals. - 23 - NJU6824 X=00H (Lower) B0 SEG127 Palette C C0 Palette B C1 Palette A C2 Palette C C3 SEG126 B1 X=7FH B2 Palette B A1 Palette A A2 Palette C X=7EH C1 SEG1 B3 C3 B0 C0 A3 A0 B3 Palette A X=7EH (Lower) Palette C X=7EH (Lower) SEG126 Palette B X=7FH X=7FH (Upper) X=7FH (Upper) Palette A X=7FH (Lower) Palette C X=7FH (Lower) SEG127 Palette B B3 X=7FH A0 D7 D6 D5 D4 D3 D2 D1 D0 C0 - C1 - C2 - C3 - B0 A1 Palette C D7 D6 D5 D4 D3 D2 D1 D0 B1 A2 SEG1 - B2 A3 Palette B - X=7EH - C1 - C2 Palette A - D7 D6 D5 D4 D3 D2 D1 D0 C3 B3 Palette C - B0 A0 SEG0 - X=01H - B1 A1 Palette B - D7 D6 D5 D4 D3 D2 D1 D0 B2 A2 Palette A - X=00H - Palette C SEGAx SEGCx C0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 X=7EH (Upper) D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X=7EH D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 C2 Palette B X=01H (Lower) B1 Palette A X=01H X=01H (Upper) A0 A3 Note1) In the 256-color mode, the vacant LSB bit is filled with "1". Note2) The function of 256-color mode is different from that of fixed 8-gradation mode (fixed 256-color mode). Note3) The written data in the DD RAM in "C256"=0 is not compatible with the data in "C256"=1. Note4) In the 256-color mode, only 8-bit length mode is available, but 16-bit is not. Note5) In 8-bit access mode(C256 mode) for DDRAM, sequential twice accesses to DDRAM complete one pixel data access. Therefore, it must be accessed with a couple of operation. - SEGBx C1 RAM Map 1 X=00H X=00H (Upper) D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 A3 X=7EH (Upper) X=01H (Lower) B2 Palette C C0 C0 X=00H (Upper) X=01H (Upper) A1 SEG0 A0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 X=00H (Lower) A2 Palette B C1 Palette A X=01H C2 C2 Mode X=00H C3 C3 0 B3 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 B0 B0 0 B1 B1 1 B2 B2 0 B3 B3 A0 1 A1 A1 1 A2 A2 16bit A3 A3 0 C0 C0 0 C1 C1 0 C2 C2 8bit 1 C3 C3 RAM Map 2 (256 Color Mode) Mode X B0 B0 C0 0 B1 B1 C1 8bit A0 Palette B B1 SEGBx B2 Palette A SEGAx SEGCx B2 B2 256 0 A1 A0 C2 1 A2 A1 C3 0 A3 B3 256 A0 SWAP 0 1 A1 A2 Note6) In 8-bit access mode(non C256 mode) for DDRAM, After address set up display data will be written in an order from lower to higher. This order has no relation with address direction of RAM access (Display rotation) - 24 - A2 B3 ABS ABS A3 A3 B0 WLS W LS SWAP NJU6824 Icon Segment Map 1 SEGS0 Palette C Palette A SEGS1 Palette B Palette C C1 Palette B C2 Palette A X=01H C3 C0 X=00H X=00H (Upper) X=00H (Lower) X=01H X=01H (Upper) X=01H (Lower) D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X=00H (Lower) X=01H (Upper) X=01H (Lower) D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 D7 D6 D5 D4 D2 D1 D0 D7 D4 D3 D2 D1 X=00H (Upper) SEGS1 Palette B Palette C - - - D7 D6 D5 D4 D3 D2 D1 D0 X=01H - Palette A D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 SEGS0 Palette C D7 D6 D5 D4 D3 D2 D1 D0 C0 Palette B - C1 Palette A - X=00H - Palette C SEGSCx SEGSAx C2 Note6) In 8-bit access mode(non C256 mode) for DDRAM, After address set up display data will be written in an order from lower to higher. This order has no relation with address direction of RAM access (Display rotation) Note1) In the 256-color mode, the vacant LSB bit is filled with "1". Note2) The function of 256-color mode is different from that of fixed 8-gradation mode (fixed 256-color mode). Note3) The written data in the DD RAM in "C256"=0 is not compatible with the data in "C256"=1. Note4) In the 256-color mode, only 8-bit length mode is available, but 16-bit is not. Note5) In 8-bit access mode(C256 mode) for DDRAM, sequential twice accesses to DDRAM complete one pixel data access. Therefore, it must be accessed with a couple of operation. - Palette B SEGSBx SEGSBx C3 Mode X=00H B0 B0 0 B1 B1 0 B2 B2 1 B2 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 D15 D14 D13 D12 D10 D9 D8 D7 D4 D3 D2 D1 B3 B3 0 A0 A0 1 A1 A1 1 A2 A2 16bit A3 A3 0 C0 C0 0 1 C1 C1 Icon Segment Map 2 (256 Color Mode) Mode X C2 C2 0 B3 C3 0 B0 B0 8bit A0 B3 B1 8bit C3 C3 0 A1 A0 B0 A1 C0 1 A2 B2 Palette A SEGSAx SEGSCx B1 B1 0 A3 B3 SWAP 0 1 A1 B2 256 A0 256 A2 A2 C1 ABS ABS A3 A3 C2 WLS WLS SWAP - 25 - NJU6824 (7) Window addressing mode Window area must be designated before RAM access. In the window addressing mode, the address space of the DDRAM designated by the start and end point is defined. The start point is determined by the “column address” and “row address” instructions, and the end point is determined by the “Window end column address “and ”Window end row address” instructions. The setting for the window addressing is listed in the following. 1. “Increment control” instruction set (HV, XD, YD) 2. Set the start point by the “column address” and “row address” instructions 3. Set the end point by the “Window end column address” and “Window end row address” instructions 4. Enable to access to the DDRAM in the window addressing mode In addition, the read-modify-write operation is available by setting “AIM” register to ”L” in the “Increment control” instruction. For the window area designation, the address directions of RAM (HV, XD, YD) must be set first, and Column address and Row of Start point must be set second, Column address and Row of Stop point must be set third, then RAM should be accessed. Low address must be set first and High address must be set second in all of addresses. The directions of HV, XD, YD should be check to keep the area in RAM. And in the window addressing mode, the following start and end point must be maintained to abide a malfunction. column address row address (X, Y) Start point Window display area End point (X, Y) Whole DDRAM area Fig7 (8) Reverse display ON/OFF The “Reverse display ON/OFF” function is used to reverse the display data without changing the contents of the DDRAM. Table9 REV Display 0 Normal 1 Reverse DDRAM data → Display data 0 0 1 1 0 1 1 0 (9) Address directions of RAM access (Display rotation) The bellow picture shows display image after set of HV, XD and YD for address directions. The display data from CPU can be written into RAM with rotation to 90 degrees or 180 degrees or 270 degrees, and also mirrored. The address directions of RAM access is set by HV, XD and YD. * : The segments of Icon are not rotated. - 26 - NJU6824 No.HVXDYD Data writing direction (Xs, Ys) Display image Valid address Xs < Xe 1 0 0 0 Ys < Ye (Xe, Ye) (Xe, Ye) Xs < Xe 2 0 0 1 Ys > Ye (Xs, Ys) (Xs, Ys) Xs > Xe 3 0 1 0 Ys < Ye (Xe, Ye) (Xe, Ye) Xs > Xe 4 0 1 1 Ys > Ye (Xs, Ys) (Xs, Ys) Xs < Xe 5 1 0 0 Ys < Ye (Xe, Ye) (Xe, Ye) Xs < Xe 6 1 0 1 Ys > Ye (Xs, Ys) (Xs, Ys) Xs > Xe 7 1 1 0 Ys < Ye (Xe, Ye) (Xe, Ye) Xs > Xe 8 1 1 1 Ys > Ye (Xs, Ys) *:The display image shows the display direction when the same data as No.1 are written into RAM for condition change. *: The outside address of RAM must not be set for correct operation. Xs : start address of X , Ys : Start address of Y, Xe : End address of X, Ye : End address of Y - 27 - - 28 - palette C $% SEGA127 $% Column address / bit / segment assign $% D0 D1 D0 D1 D2 palette C D2 SEGC127 D3 D3 D5 D4 X=7FH D4 palette B Column address / bit / segment assign $% D5 SEGB127 SEGA127 SEGB127 palette C palette B palette A SEGC127 D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 D14 D15 Column address / bit / segment assign $% D6 D7 D8 D9 D10 D1 D2 D3 SEGC127 SEGB127 palette C palette B palette A palette C SEGC0 SEGA127 palette B SEGB0 D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 D14 D15 D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 D14 D15 Column address / bit / segment assign $% D6 D7 D8 palette A $% SEGA127 $% D9 $% D11 palette C SEGA0 $% D10 D0 D1 D2 D4 D7 D8 D9 palette A SEGA0 $% D11 palette C SEGC0 palette B SEGB0 D10 D12 D13 D14 $% palette B D0 D1 D2 X=00H $% SEGB127 palette C SEGA0 X=00H D3 D4 D5 D6 palette A $% SEGC0 X=00H D3 ABS SWAP 1 1 D4 palette B SEGB0 ABS SWAP 1 0 D5 D7 D8 D9 D10 ABS SWAP 0 1 D6 palette A $% SEGA0 D15 X=00H palette A palette B SEGB0 D7 D8 D9 D10 D11 ABS SWAP 0 0 SEGC127 palette A $% SEGC0 D11 NJU6824 (10) The relationship among the DDRAM column address, display data and segment drivers In the color mode, and 16-bit data bus mode X=7FH X=7FH X=7FH palette C SEGA127 $% palette B $% D0 D1 D2 SEGC127 palette C D0 D1 D2 D3 D4 SEGA127 palette C palette B SEGB127 D1 D2 D3 D4 D7 D0 D1 D2 D4 D5 D6 D7 Column address / bit / segment assign $% X=00H(Lower) X=7FH(Upper) D3 Column address / bit / segment assign $% X=00H(Lower) X=7FH(Upper) D5 D6 palette A SEGC127 D1 D2 D3 palette C palette B SEGB127 SEGC127 palette A SEGC0 SEGA127 palette C SEGB0 D1 D2 D3 D4 D7 D0 D1 D2 D4 D5 D6 D1 D2 D3 D4 D7 D0 D1 D2 D4 D5 D6 D7 Column address / bit / segment assign $% X=00H(Lower) X=7FH(Upper) D4 palette B SEGB127 D7 D0 D1 D2 Column address / bit / segment assign $% X=00H(Lower) X=7FH(Upper) D5 D6 D7 D0 D1 $% palette A $% SEGA127 $% D3 palette C SEGA0 $% D2 D0 D1 D2 palette B SEGA0 $% D3 palette C SEGC0 D4 D7 D0 D1 palette A $% SEGB127 D0 D1 D2 D3 palette B SEGB0 D2 D4 D5 D6 $% palette A palette C SEGA0 ABS SWAP 1 1 X=00H(Upper) D4 D5 D6 palette A $% SEGC0 X=00H(Upper) D3 palette B SEGB0 D7 D0 D1 D2 ABS SWAP 1 0 X=00H(Upper) D4 D5 D6 palette A $% SEGA0 D7 X=00H(Upper) SEGC127 palette B $% SEGB0 D7 D0 D1 D2 D7 ABS SWAP 0 1 palette A D3 ABS SWAP 0 0 SEGC0 D3 NJU6824 In the color mode, and 8-bit data bus mode X=7FH(Lower) X=7FH(Lower) X=7FH(Lower) X=7FH(Lower) - 29 - - 30 palette C $% SEGA127 $% Column address / bit / segment assign $% D0 palette C D3 D0 D1 SEGC127 palette B D1 SEGB127 D4 D5 D6 D7 D2 X=7FH D2 D3 palette A SEGA127 D0 D1 D2 D3 Column address / bit / segment assign $% D4 D5 D6 D7 palette C SEGC0 $% palette B D0 D1 palette B SEGB0 D4 D5 D6 $% SEGB127 palette C SEGA0 X=00H D2 D3 palette A $% SEGA0 X=00H palette A palette B SEGB0 ABS SWAP * 1 D4 D5 D6 D7 ABS SWAP * 0 SEGC127 palette A $% SEGC0 D7 NJU6824 In the color mode, 8-bit data bus mode, and C256 mode (C256=1) X=7FH $% SEGA127 Column address / bit / segment assign $% SEGC127 D1 D0 D4 D3 D2 D6 D5 Column address / bit / segment assign $% SEGA127 D1 D0 D4 D3 D2 D6 D5 D8 D7 Column address / bit / segment assign $% D8 D7 SEGB127 D11 D10 D9 SEGC127 SEGB127 SEGA127 D2 D1 D0 D4 D3 D8 D7 D6 D5 D12 D11 D10 D9 D15 D14 D13 $% D11 D10 D9 D13 D12 D15 D14 SEGC127 $% SEGB127 SEGA127 D13 D12 D15 D14 SEGC0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Column address / bit / segment assign $% D2 D1 D0 D6 D5 D4 D3 SEGB127 $% D10 D9 D8 D7 X=00H $% SEGC127 ABS SWAP 1 1 $% D14 D13 D12 D11 X=00H D15 ABS SWAP 1 0 SEGA0 X=00H SEGC0 SEGB0 SEGA0 X=00H SEGA0 $% SEGB0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 $% SEGC0 ABS SWAP 0 1 SEGB0 SEGA0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ABS SWAP 0 0 SEGB0 SEGC0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 NJU6824 In the B&W mode, and 16-bit data bus mode X=7FH X=7FH X=7FH X=7FH - 31 - NJU6824 In the B&W mode, and 8-bit data bus mode D1 D2 D3 D4 SEGC127 D7 D1 D2 D3 D4 SEGA127 D7 D1 D0 D1 D0 D2 D3 SEGC127 D4 D5 D6 D2 D3 SEGA127 D4 D5 D6 D7 X=7FH(Lower) SEGB127 D0 D1 D2 D3 $% SEGC127 D0 D1 D2 $% D0 D1 D2 D7 X=7FH(Lower) SEGB127 D0 D1 D2 D3 $% SEGA127 D0 $% X=7FH(Lower) SEGB127 D4 D5 D6 D7 $% SEGC127 D1 D2 D1 D2 D3 SEGC0 D3 D4 D5 D6 D7 D0 D1 D2 SEGB127 D4 D5 D6 D7 SEGA127 D1 D2 D3 D3 $% Column address / bit / segment assign $% X=00H(Lower) X=7FH(Upper) SEGB0 D0 D4 SEGA0 D7 D4 D5 D6 D7 SEGB0 D0 D1 D1 D2 $% Column address / bit / segment assign $% X=00H(Lower) X=7FH(Upper) ABS SWAP 1 1 X=00H(Upper) D3 D0 D1 SEGB0 D2 D4 D5 D6 D7 SEGC0 D2 SEGA0 D3 ABS SWAP 1 0 X=00H(Upper) $% X=7FH(Lower) Column address / bit / segment assign $% X=00H(Lower) X=7FH(Upper) X=00H(Upper) SEGC0 D4 SEGC0 D7 D0 D1 D2 SEGB0 D4 D5 D6 D7 SEGA0 ABS SWAP 0 1 - 32 - Column address / bit / segment assign $% X=00H(Lower) X=7FH(Upper) X=00H(Upper) SEGA0 ABS SWAP 0 0 NJU6824 Bit assignments between write and read data (in the 16-bit data bus mode) ABS=0 Write data D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Read data D15 D14 D13 D12 * D10 D9 D8 D7 * * D4 D3 D2 D1 * Write data D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Read data * * * * D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ABS=1 Examples of write and read data (In the 8 bit bus mode) ABS=0, C256=0 (Address; Upper bit) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data D7 D6 D5 D4 * D2 D1 D0 ABS=0, C256=0 (Address; Lower bit) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data D7 * * D4 D3 D2 D1 * ABS=1, C256=0 (Address; Upper bit) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data * * * * D3 D2 D1 D0 ABS=1, C256=0 (Address; Lower bit) Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data D7 D6 D5 D4 D3 D2 D1 D0 Write data D7 D6 D5 D4 D3 D2 D1 D0 Read data D7 D6 D5 D4 D3 D2 D1 D0 ABS=0, C256=1 *: Invalid Data - 33 - - 34 - palette A palette B palette C palette A palette B palette C SEGSC0 SEGSB0 SEGSA0 SEGSC1 SEGSB1 SEGSA1 D11 D0 D1 D0 D1 D2 palette C D2 SEGSC1 D3 X=01H D3 Column address / bit / segment assign D4 X=00H D5 D6 D7 D8 D9 D10 D11 D0 D1 D2 SEGSA1 palette C palette B palette A SEGSC1 SEGSB1 palette C SEGSA0 palette B palette A D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 D14 D15 D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 X=00H D4 palette B palette A SEGSA1 SEGSB1 palette C SEGSC0 D3 D4 D5 SEGSB0 SEGSC0 SEGSC1 palette C palette B palette A SEGSA1 SEGSB1 palette C palette B palette A SEGSC0 SEGSB0 SEGSA0 D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 D14 D15 D1 D2 D3 D4 D7 D8 D9 D10 D12 D13 D14 D15 X=00H D5 X=00H D6 D7 D8 D9 D10 D11 D0 D1 D2 D3 ABS SWAP 1 1 D6 D7 D8 D9 ABS SWAP 1 0 D4 palette B palette A D14 D15 ABS SWAP 0 1 D5 SEGSB0 SEGSA0 D11 D10 ABS SWAP 0 0 D6 D7 D8 D9 D10 NJU6824 Icon segment register address bit assignment In the color mode, and 16-bit data bus mode Column address / bit / segment assign X=01H Column address / bit / segment assign X=01H Column address / bit / segment assign X=01H palette A palette B palette C palette A palette B palette C SEGSC0 SEGSB0 SEGSA0 SEGSC1 SEGSB1 SEGSA1 D0 D1 Column address / bit / segment assign X=00H(Lower) X=01H(Upper) SEGSC1 palette C palette B SEGSB1 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 palette B SEGSB1 palette C palette A SEGSC1 SEGSA1 palette C SEGSA0 D1 D2 D3 D4 D7 D0 D1 D2 D4 D5 D6 D7 D1 D2 D3 D4 D7 D0 D1 Column address / bit / segment assign X=00H(Lower) X=01H(Upper) D2 palette A SEGSA1 D2 D3 D0 D1 D2 palette B SEGSB0 palette B SEGSB1 palette C palette A SEGSA1 SEGSC1 palette C palette B SEGSB0 SEGSC0 palette A SEGSA0 D1 D2 D3 D4 D7 D0 D1 D2 D4 D5 D6 D7 D1 D2 D3 D4 D7 D0 D1 D2 D4 D5 D6 Column address / bit / segment assign X=00H(Lower) X=01H(Upper) D3 palette C SEGSC0 Column address / bit / segment assign X=00H(Lower) X=01H(Upper) D4 D5 D6 D7 D0 D1 D2 D3 D0 D1 D2 ABS SWAP 1 1 X=00H(Upper) D3 ABS SWAP 1 0 X=00H(Upper) D4 D5 D6 D2 D4 D5 X=00H(Upper) D3 palette B SEGSB0 D7 D0 D1 palette A SEGSC0 D7 X=00H(Upper) D4 D5 D6 D7 D0 D1 palette A SEGSA0 D6 D7 ABS SWAP 0 1 D2 D3 ABS SWAP 0 0 D2 D3 NJU6824 In the color mode, and 8-bit data bus mode X=01H(Lower) X=01H(Lower) X=01H(Lower) X=01H(Lower) - 35 - - 36 SEGSA1 D2 D1 D0 SEGSC1 D3 D2 D1 D0 D5 D4 D7 D6 D10 D9 D8 D12 D11 X=00H D4 D3 X=00H SEGSB1 SEGSA1 SEGSA1 SEGSB1 D2 D1 D0 D5 D4 D3 D7 D6 D9 D8 D12 D11 D10 D14 D13 X=00H D8 D7 D6 D5 D12 D11 D10 D9 SEGSC1 SEGSA0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 SEGSC1 SEGSB1 SEGSA1 SEGSC0 SEGSB0 SEGSA0 D2 D1 D0 D4 D3 D8 D7 D6 D5 D12 D11 D10 D9 D14 D13 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 X=00H SEGSB1 SEGSC1 D14 D13 ABS SWAP 1 1 SEGSC0 ABS SWAP 1 0 SEGSA0 SEGSB0 SEGSC0 ABS SWAP 0 1 SEGSB0 SEGSA0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 ABS SWAP 0 0 SEGSB0 SEGSC0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 NJU6824 In the B/W mode, and 16-bit data bus mode Column address / bit / segment assign X=01H Column address / bit / segment assign X=01H Column address / bit / segment assign X=01H Column address / bit / segment assign X=01H NJU6824 In the B/W mode, and 8-bit data bus mode D1 D2 D3 D1 D2 D3 D4 SEGSA1 D7 D1 D0 D1 D0 D2 D3 SEGSC1 D4 D2 D3 SEGSA1 D4 D5 X=01H(Lower) D6 D0 D7 SEGSB1 D1 D2 D3 SEGSC1 D5 D6 D7 D0 SEGSB1 D1 D2 SEGSA1 D3 D0 D0 D1 D0 D1 SEGSB1 D2 D4 D5 D6 D7 SEGSC1 D1 D2 D1 D2 D2 D4 SEGSC1 D7 D0 D1 D2 SEGSB1 D4 D5 D6 SEGSA1 D7 D1 D2 D3 D3 D4 SEGSA0 D3 SEGSA0 D4 D5 D6 D7 X=01H(Lower) X=01H(Lower) Column address / bit / segment assign X=00H(Lower) X=01H(Upper) SEGSB0 D0 D1 D2 D3 SEGSC0 D4 D5 D6 D7 SEGSB0 D0 D1 Column address / bit / segment assign X=00H(Lower) X=01H(Upper) ABS SWAP 1 1 X=00H(Upper) D3 D0 D1 SEGSB0 D2 D4 D5 D6 D7 SEGSC0 D2 SEGSA0 D3 ABS SWAP 1 0 X=00H(Upper) X=01H(Lower) Column address / bit / segment assign X=00H(Lower) X=01H(Upper) X=00H(Upper) SEGSC0 D4 SEGSC0 D0 D1 D2 D4 SEGSB0 D5 D6 D7 SEGSA0 ABS SWAP 0 1 D7 Column address / bit / segment assign X=00H(Lower) X=01H(Upper) X=00H(Upper) D7 ABS SWAP 0 0 - 37 - NJU6824 (11) Gradation palette In the gradation mode, either variable or fixed gradation mode is selected by programming the “PWM” register of the “Gradation control” instruction. PWM=0: Variable gradation mode (Select 16 gradation levels out of 32-gradation level of the gradation palette) PWM=1: Fixed gradation mode (Fixed 8-gradation levels) In these modes, each of the gradation palettes Aj, Bj and Cj can select 16-gradation level out of 32-gradation level by setting 5-bit data to the “PA” registers in the “Gradation palette j” instructions (j=0 to Fh). For instance, the gradation palettes Aj correspond to the SEGAi, the Bj to SEGBi and the Cj to SEGCi (j=0 to 15, i=0 to 127). - 38 - NJU6824 Correspondence between display data and gradation palettes Table 10 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15)) (MSB) Display data (LSB) 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 Gradation palette Palette 0 Palette 1 Palette 2 Palette 3 Palette 4 Palette 5 Palette 6 Palette 7 Palette 8 Palette 9 Palette10 Palette11 Palette12 Palette13 Palette14 Palette15 Default palette value 00000 00011 00101 00111 01001 01011 01101 01111 10001 10011 10101 10111 11001 11011 11101 11111 Gradation palette table (Variable gradation mode, PWM=”0”, MON=”0”) Table 11 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15)) Palette value Gradation level Gradation palette 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 0 1/31 2/31 3/31 4/31 5/31 6/31 7/31 8/31 9/31 10/31 11/31 12/31 13/31 14/31 15/31 Palette 0(default) Palette 1(default) Palette 2(default) Palette 3(default) Palette 4(default) Palette 5(default) Palette 6(default) Palette 7(default) Palette value 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 Gradation level 16/31 17/31 18/31 19/31 20/31 21/31 22/31 23/31 24/31 25/31 26/31 27/31 28/31 29/31 30/31 31/31 Gradation palette Palette 0(default)8 Palette 9(default) Palette 10(default) Palette 11(default) Palette 12(default) Palette 13(default) Palette 14(default) Palette 15(default) - 39 - NJU6824 Gradation palette table (Fixed gradation mode, PWM=”1”, MON=”0”) Table 12 8-gradation segment drivers (MSB) Display data (LSB) 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 * * * * * * * * Gradation level 0/7 (MSB) Display data (LSB) Gradation level 0 0 * * 1/7 2/7 3/7 4/7 5/7 6/7 7/7 0 0 0 1 1 1 1 0 1 1 0 0 1 1 * * * * * * * * * * * * * * Correspondence between display data and gradation level (B&W mode, MON=”1”) Table 13 (MSB) Display data (LSB) 0 * 1 * *:Don’t care - 40 - * * * * Gradation level 0 1 0/7 3/7 5/7 7/7 NJU6824 (12) Gradation control and display data (12-1) Gradation mode In the graduation mode, each pixel for RGB corresponds to successive 3 segment drivers, and each segment driver provides 16-gradation PWM output by controlling 4 bit display data of the DDRAM. Accordingly, the LSI can drive up to 128x128 pixels in 4096-color (16-gradation x 16-gradation x 16gradation = 4-bit x 4-bit x 4-bit). In addition, the LSI can transfer the display data for the RGB by 16-bit at once or 8-bit two-times. The data assignment between gradation palettes and segment drivers varies in accordance with setting for the “SWAP” registers of the "Display control (2)" instruction. - SWAP = 0 SEGAi SEGBi Palette Aj Palette Bj SEGCi (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit 0 MSB 0 0 0 0 LSB MSB 0 0 0 D7 0 D6 0 D5 0 D4 ABS=1 (D3 D2 D1 C256=1 (D7 D6 D5 1 1 LSB MSB 1 1 0 D2 0 D1 0 D0 1 D7 D0 D7 D6 D5 * D4 D3 D2 1 LSB 1 D4 1 D3 1 D2 1 D1 D4 D3 D2 D1 D 0) * D1 D0 * *) Display data in DDRAM Display data from MPU (Upper bit / Lower bit) - SWAP = 1 SEGAi SEGBi Palette Aj Palette Bj SEGCi (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit 1 LSB 1 1 0 D7 ABS=1 (D3 0 D6 D2 0 D5 D1 0 D4 D0 C256=1 D6 D5 * (D7 1 1 MSB LSB 0 0 0 0 MSB LSB 0 D2 D7 0 D1 D6 0 D0 D5 1 D7 D4 D4 D3 D2 * Display data in DDRAM 0 MSB 0 0 1 D4 D3 1 D3 D2 1 D2 D1 1 D1 D 0) D1 D0 * *) Display data from MPU (Upper bit / Lower bit) - 41 - NJU6824 In the 16-bit data bus mode, the data assignments between the gradation palettes and the segment drivers vary in accordance with setting for the “SWAP” bit of the "Display control (2)" instruction as well as the assignment in the 8-bit data bus mode. - SWAP = 0 SEGAi SEGBi SEGCi (i=0 to 127) Palette Aj Palette Bj Gradation palette j=0 to 15 Palette Cj Gradation control circuit ABS=1 0 MSB 0 0 0 D15 0 D14 0 D13 0 D12 D9 D8 (D11 D10 0 0 LSB MSB 0 0 1 1 LSB MSB 0 D10 0 D9 0 D8 1 D7 D7 D6 D5 D4 1 1 1 LSB 1 D4 1 D3 1 D2 1 D1 D3 D2 D1 D 0) Display data in DDRAM Display data from MPU - SWAP = 1 SEGAi SEGBi Palette Aj Palette Bj SEGCi (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit 1 LSB 1 0 0 D15 D14 ABS=1 (D11 D10 - 42 - 1 0 D13 D9 1 1 MSB LSB 0 D12 D8 0 D10 D7 0 0 0 D9 D6 0 D8 D5 0 0 MSB LSB 1 D7 D4 1 D4 D3 0 0 1 D3 D2 1 D2 D1 Display data in DDRAM 0 MSB 1 D1 D 0) Display data from MPU NJU6824 (12-2) B&W mode (MON=”1”) In the B&W mode, 3 bits of the MSB data are used in both of the 16-bit and 8-bit data bus modes. In the 16-bit data bus mode (Similarly 8-bit data bus access) - SWAP = 0 SEGAi SEGBi SEGCi Palette Aj Palette Bj (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit ABS=1 0 MSB 0 0 0 0 0 0 D15 D14 D13 D9 (D11 D10 0 0 LSB MSB 0 0 1 1 LSB MSB 1 1 0 0 0 1 D12 D10 D9 D8 D8 D7 D6 D5 1 LSB 1 1 1 1 D7 D4 D3 D2 D1 D4 D3 D2 D1 D 0) Display data in DDRAM Display data in DDRAM - SWAP = 1 SEGAi SEGBi Palette Aj Palette Bj SEGCi (i=0 to 127) Gradation palette j=0 to 15 Palette Cj Gradation control circuit ABS=1 1 LSB 1 1 0 0 0 0 D15 D14 D13 D9 (D11 D10 1 1 MSB LSB 0 0 0 0 MSB LSB 0 0 0 1 D12 D10 D9 D8 D8 D7 D6 D5 Display data in DDRAM 0 MSB 0 0 1 1 1 1 D7 D4 D3 D2 D1 D4 D3 D2 D1 D 0) Display data in DDRAM Column address; nH The correlation of display data with gradation control is also applied to Icon segment. - 43 - NJU6824 (13) Display timing generator The display-timing generator creates the timing pulses such as the CL, the FLM, the FR and the CLK by dividing the oscillation frequency oscillate an external or internal resister mode. The each of timing pulses is outputted through the each output terminals by “SON”=1. (14) LCD line clock (CL) The LCD line clock (CL) is used as a count-up signal for the line counter and a latch signal for the data latch circuit. At the rising edge of the CL signal, the line counter is counted-up and the 384-bit display data, corresponding to this line address, is latched into the data latch circuit. And at the falling edge of the CL signal, this latched data output on the segment drivers. Read out timing of the display data, from DDRAM to the latch circuits is completely independent of the access timing to the MPU. For this reason, the MPU can access to the LSI regardless of an internal operation. (15) LCD alternate signal (FR) and LCD synchronous signal (FLM) The FR and FLM signals are created from the CL signal. The FR signal is used to alternate the crystal polarization on a LCD panel. It is programmed that the FR signal is toggle on every frame in the default setting or once every N lines in the N-line inversion mode. The FLM signal is used to indicate a start line of a new display frame. It presets an initial display line address of the line counter when the FLM signal becomes ”1”. (16) Data latch circuit The data latch circuit is used temporarily store the display data that will output to the segment drivers. The display data in this circuit is updated in synchronization of the CL signal. The “All pixels ON/OFF”, “Display ON/OFF” and “Reverse display ON/OFF” instructions change the display data in this circuit but do not change the display data of the DDRAM. (17) Common and segment drivers The LSI includes 384+6-segment drivers and 128-common drivers. The common drivers generate the LCD driving waveforms composed of the VLCD, V1, V4 and VSS in accordance with the FR signal and scanning data. The segment drivers generate waveforms composed of the VLCD, V2, V3 and VSS in accordance with the FR signal and display data. - 44 - NJU6824 LCD Driving waveforms (In the B&W mode, Reverse display OFF, 1/129 duty) COM0 129 1 2 3 4 5 129 1 2 3 4 5 129 1 COM1 SEG2 SEG1 SEG0 CL FLM FR COM0 VLCD V1 V2 V3 V4 VSS COM1 VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS SEG0 VLCD V1 V2 V3 V4 VSS SEG1 Fig 8 - 45 - NJU6824 (18) Icon Segment Driver Circuit Each 3 outputs (SEGSA0 to SEGSA1, SEGSB0 to SEGSB1, SEGSC0 to SEGSC1) placed at both edges of normal segment output terminals line are Segment outputs for Icon. Although normal Segment output generates the LCD driving voltage corresponding with the data in Display Data RAM, Icon segment driver provides the register instead of the display data RAM. The data corresponding to SEGSA0, SEGSB0 and SEGSC0 are in 12bit register and output the same driving voltage on the row direction. (The data corresponding to SEGSA1, SEGSB1 and SEGSC1 are same as SEGSA0, SEGSB0 and SEGSC0.) The outputs of SEGSA0 to SEGSA1 assign the same gradation pallet as SEGA0 to SEGA127, SEGSB0 to SEGSB1 are SEGB0 to SEGB127 and SEGSC0 to SEGSC1 are SEGC0 to SEGC127. Icon Segment Driver Circuit operates for the outline frame display or background. These displays are changed in accordance with attribute of ALLON or REV command, but no change by LREV command. The capacity of register corresponding with Icon segment driver (SEGSA0 to SEGSA1, SEGSB0 to SEGSB1, SEGSC0 to SEGSC1) is 24 bits. The access to from this register performed at DMY="1".. Table14 S DMY L L L L 0 0 1 1 68type R/W H L H L 80 type RDb WRb L H H L L H H L Function Display data read Display data write Icon segment register read Icon segment register read Read out function from the Icon segment register is restricted as same as the display data read out function from Display Data RAM. After address set, the addressed data does not come out by the first read instruction immediately but comes out by the second read instruction. Therefore, one dummy read out function is required for data read from Icon segment register after the address set or the data write operation. When the Icon segment registers are accessed in DMY="1", the valid addressing is just a column address. Because of 24 bits Icon register, the valid addresses are "00h" and "01h" in 8-bit or 16-bit mode. When the Icon segment registers are accessed in DMY="1", the data write operation into Icon register is enabled with the increment / decrement operation. The column address increment operates as shown below. But the auto carry up operation like as the maximum address to "00h" does not operate of the display data RAM access. 00h -> Max. • 8-bit or 16-bit data bus mode (DMY=”1”) SEGSA0, SEGSB0, SEGSC0 Column address 00H: SEGSA1, SEGSB1, SEGSC1 01H: Note) Refer the “Icon segment register address bit assignment” in (10) The relationship among the DDRAM column address, display data and segment drivers. Both of Icon segment register and Display data RAM operate a same address counter so that the address is set again in the status transition of DMY = "0" to "1" or "1" to "0". The access to Icon register must be operated in the condition of HV=0. - 46 - NJU6824 Examples for the dummy segment registers (DMY=”1”) (In the 16-bit data bus mode, gradation mode, (REF,SWAP)=(0,0)) Column address: 00H SEGSA0 SEGSB0 Palette Aj SEGSC0 Palette Bj Gradation palette j=0 to 15 Palette Cj Gradation control circuit ABS=1 0 MSB 0 0 0 D15 0 D14 0 D13 0 D12 D9 D8 (D11 D10 0 0 LSB MSB 0 0 1 1 LSB MSB 0 D10 0 D9 0 D8 1 D7 D7 D6 D5 D4 1 1 1 LSB 1 D4 1 D3 1 D2 1 D1 D3 D2 D1 D 0) Display data in DDRAM Display data in DDRAM Column address: 01H SEGSA1 SEGSB1 Palette Aj SEGSC1 Palette Bj Gradation palette j=0 to 15 Palette Cj Gradation control circuit ABS=1 0 MSB 0 0 0 D15 0 D14 0 D13 0 D12 D9 D8 (D11 D10 0 0 LSB MSB 0 0 1 1 LSB MSB 0 D10 0 D9 0 D8 1 D7 D7 D6 D5 D4 1 1 1 LSB 1 D4 1 D3 1 D2 1 D1 D3 D2 D1 D 0) Display data in DDRAM Display data in DDRAM - 47 - NJU6824 (19) Oscillator The oscillator generates internal clocks for the display timing and the voltage booster. Since the LSI has internal capacitor (C) and resistor (R) for the oscillation, external capacitor and resistor are not usually required. However, in case that an external resistor is used, the resister is connected between the OSC1 and OSC2 terminals. The external resistor becomes enabled by setting “1” to the “CKS” register of “Data bus length” instruction. When the internal oscillator is not used, the external clocks with 50% duty cycle ratio must be input to the OSC1 terminal. In addition, the feed back resister for the oscillation is varied by programming the “Rf” register of the “Frequency control” instruction, so that it is possible to optimize the frame frequency for a LCD panel. Setting examples of the MON (B&W /Gradation) and the PWM (Variable gradation /Fixed gradation) are described, as follows. Internal oscillation mode (CKS=0) Symbol f1 f2 f3 MON 0 0 1 PWM 0 1 * Display mode Variable gradation mode Fixed gradation mode B&W mode *: Don’t care External resistor oscillation mode(CKS=1) The internal clocks must be adjusted to the same frequency as the one in using the internal oscillation mode, and the “MON” and “PWM” registers must be set as well. External clock input mode(CKS=1) The external clocks must be adjusted to the same frequency as the one in using the internal oscillation mode, and the “MON” and “PWM” registers must be set as well. (20) Power supply circuits The internal power supply circuits are composed of the voltage booster, the electrical variable resister (EVR), the voltage regulator, reference voltage generator and the voltage followers. The condition of the power supply circuits is arranged by programming the “DCON” and “AMPON” registers on the “Power control” instruction. For this arrangement, some parts of the internal power supply circuits are activated in using an external power supply, as shown in the following table. Table 15 DCON AMPON Voltage booster 0 0 1 0 1 1 Disable Disable Enable Voltage followers Voltage regulator EVR Disable Enable Enable External voltage Note VOUT, VLCD, V1, V2, V3, V4 VOUT − 1, 3 2, 3 − Note1) The internal power circuits are not used. The external VOUT is required and the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, VREF, VREG and VEE terminals must be open. Note2) The internal power circuits except the voltage booster are used. The external VOUT is required and the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5- and VEE terminals must be open. The reference voltage is required to VREF terminal. Note3) The relation among the voltages should be maintained as follows. VOUT ≥ VLCD ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS - 48 - NJU6824 (21) Voltage booster The voltage booster generates maximum 6x voltage of the VEE level. It is programmed so that the boost level is selected out of 1x, 2x, 3x, 4x, 5x and 6x by the “Boost level select” instruction. The boosted voltage VOUT must not exceed beyond the value of 18.0V, otherwise the voltage stress may cause a permanent damage to the LSI. Boosted voltages VOUT=18V VOUT=9V VEE=3V VEE=3V VSS=0V VSS=0V 6-time boost 3-time boost Capacitor connections for the voltage Booster 6-time boost C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5VOUT VSS 4-time boost C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5VOUT VSS 5-time boost C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5VOUT VSS + + + + + + 3-time boost + + + + C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5VOUT VSS + + + + + 2-time boost + + + C1+ C1C2+ C2C3+ C3C4+ C4C5+ C5VOUT VSS + + Fig 9 - 49 - NJU6824 (22) Reference voltage generator The reference voltage generator is used to produce the reference voltage (VBA), which is output from the VBA terminal and should be input to the VREF terminal. VBA = VEE x 0.9 (23) Voltage regulator The voltage regulator, composed of the gain control circuit and an operational amplifier, and is used to gain the reference voltage (VREF) and to create the regulated voltage (VREG). The VREG is used as an input voltage to the EVR circuits, which is programmed by the “VU” register of the “Boost level” instruction. VREG = VREF x N (N: register value for the boost level) (24) Electrical variable resister (EVR) The EVR is variable within 128-step, and is used to fine-tune the LCD driving voltage (VLCD) by programming the “DV” register in the “EVR control” instruction, so that it is possible to optimize the contrast level for a LCD panels. VLCD = 0.5 x VREG + M (VREG - 0.5 x VREG) / 127 (M: register value for the EVR) (25) LCD driving voltage generation circuit LCD driving voltage generation circuit generates the VLCD voltage levels as VLCD, V1, V2, V3 and V4 with internal E.V.R and the Bleeder resistors. The bias ratio of the LCD driving voltage is selected out of 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11 and 1/12. In using the internal power supply, the capacitors CA2 must be connected to the VLCD, V1, V2, V3 and V4 terminals, and the CA2 value must be determined by the evaluation with actual LCD modules. In using the external power supply, the external LCD driving voltages such as the VLCD, V1, V2, V3 and V4 are supplied and the internal power supply circuits must be set to “OFF” by DCON = AMPON = "0". In this mode, voltage booster terminals such as C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, VEE, VREF and VREG must be opened. In case that the voltage booster is not used but only some parts of internal power supply circuits (Voltage followers, Voltage regulator and EVR) are used, the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+ and C5terminals must be opened. And, the external power supply is input to the VOUT terminal, and the reference voltage to the VREF terminal. The capacitor CA3 must connect to the VREG terminal for voltage stabilization. < Bias adjustment function > NJU6824 prepares bias adjustment terminals V1A1, V1A2, V4A1 and V4A2 for fine adjustment of V1 and V4 out of voltages. The status combination of V1A1 terminal and V1A2 can adjust V1 voltage in below table and V4A1 and V4A2 can adjust V4 voltage. These adjustment performs by the connection change between the Bleeder resistors and the output buffer operational amplifier as voltage follower circuit. V1A1 terminal 0 0 1 1 V1A2 terminal 0 1 0 1 Fluctuation voltage [mV] *1 0 +5 -5 +10 V4A1 terminal 0 0 1 1 V4A2 terminal 0 1 0 1 Fluctuation voltage [mV] *1 0 +5 -5 -10 Note 1) The fluctuation voltage is a adjusted voltage against the default voltage at (V1A1, V1A2 = "0, 0" and V4A1, V4A2 = "0, 0"). The "+" mark means a direction of voltage fluctuation to VLCD and the "-" is to VSS. Note 2) The fluctuation voltage is an ideal value. Note 3) The fluctuation voltage is at VLCD=13.5V. Note 4) "0" of V1A1, V1A2, V4A1 and V4A2 means VSS and "1" means VDD. - 50 - NJU6824 Connections of the capacitors for voltage boost Using all of the internal power supply circuits (6-time boost) VDD Using only external power supply circuits VDD VDD VEE CA1 CA1 VBA VBA VS VREF VREF CA3 C 1- C 1- CA1 C 1+ C 1+ C 2- C 2- CA1 C 2+ C 2+ C 3- C 3- CA1 C 3+ C 3+ C 4- CA1 C 4+ C 4C 4+ NJU6824 NJU6824 C 5- C 5- CA1 C 5+ C 5+ VOUT CA1 VSS CA2 CA2 CA2 CA2 VSS VREG VREG CA3 VSS VDD VEE CA2 CA1 VLCD VLCD V1 V2 V3 V4 Fig 10 Reference values CA1 1.0 to 4.7uF CA2 1.0 to 2.2uF CA3 0.1uF VOUT VLCD V1 External Power V2 circuit V3 V2 V4 V4 V1 V3 CA2 CA2 CA2 Fig11 CA2 Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is recommended to decide an optimum value of these capacitors. Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4) reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. To minimize this impact, use the shortest possible wires and place the capacitors to be as close as possible to the LSI. - 51 - NJU6824 Using internal power supply circuits Without the reference voltage generator(1) (6-time boost) VDD VDD VDD VEE CA1 VBA VREF VREF Thermistor VBA C 1- CA1 CA3 VSS CA1 C 1+ C 2- CA1 CA1 C 2+ C 3- CA1 CA1 C 3+ C 4- CA1 C 4+ CA1 NJU6824 C 5- CA1 CA1 C 5+ VOUT CA1 VSS CA2 CA2 CA2 CA2 CA2 VDD VEE CA1 VREG CA3 VSS VSS Using internal power supply circuit Without the reference voltage generator(2) (6-time boost) CA1 VSS VREG C 1C 1+ C 2C 2+ C 3C 3+ C 4C 4+ C 5C 5+ VOUT VLCD CA2 VLCD V1 CA2 V1 V2 CA2 V2 V3 CA2 V3 V4 VSS Fig 12 NJU6824 CA2 V4 Fig 13 Reference value CA1 1.0 to 4.7µF CA2 1.0 to 2.2µF CA3 0.1µF Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is recommended to decide an optimum value of these capacitors. Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4) reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. To minimize this impact, use the shortest possible wires and place the capacitors to be as close as possible to the LSI. - 52 - NJU6824 Using internal power supply circuits Without the voltage booster VDD VDD VEE CA1 VBA CA3 VSS VREF VREG CA3 C 1- VSS C 1+ C 2C 2+ C 3C 3+ C 4C 4+ NJU6824 C 5C 5+ External power circuit CA1 VOUT CA2 CA2 CA2 VLCD V1 V2 CA2 V3 VSS CA2 V4 Fig 14 Reference value CA1 1.0 to 4.7µF CA2 1.0 to 2.2µF CA3 0.1µF Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is recommended to decide an optimum value of these capacitors. Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4) reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. To minimize this impact, use the shortest possible wires and place the capacitors to be as close as possible to the LSI. - 53 - NJU6824 (26) Partial display function The partial display function is used to partially specify some parts of display area on LCD panels. By using this function, LCD modules can work in lower duty cycle ratio, lower LCD bias ratio, lower boost level and lower LCD driving voltage. It is usually used to display a time and calendar, and is also used to optimize the LSI condition in accordance with the display size. It can be programmed to select the duty cycle ratio (1/17, 1/25, 1/33, 1/41, 1/49, 1/57, 1/65, 1/73, 1/81, 1/89, 1/97, 1/105, 1/113, 1/121, 1/129, in DSE=0), the LCD bias ratio, the boost level and the EVR value by the instructions. Partial display image NJRC LCD DRIVER Low Power and Low Voltage LCD DRIVER Normal display Partial display Partial display sequence Optional status Display OFF (ON/OFF=”0”) Internal Power supply OFF (DCON=”0”, AMPON=”0”) WAIT Setting for LCD driving voltage-related functions - Boost level - EVR value - LCD bias ratio Internal Power supply ON (DCON=”1”, AMPON=”1”) WAIT Setting for display-related functions Display ON (ON/OFF =”1”) Partial display Status - 54 - - Duty cycle ratio - Initial display line - Initial COM line - Other instructions NJU6824 (27) Discharge circuit Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and VLCD terminals. This circuit is activated by setting “0” to the “DIS” register of the “Discharge” instruction or by setting “RESb” terminal to ”0” level. The “Discharge ON/OFF” instruction is usually required just after the internal power supply is turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is turned off. During the discharge operation, the internal or external power supply must not be turned on. (28) Reset circuit The reset circuit initializes the LSI into the following default status. It is activated by setting the RESb terminal to “0”. The RESb terminal is usually required to connect to MPU reset terminal in order that the LSI can be initialized at the same timing of the MPU. ● Default status 1. DDRAM display data 2. column address 3. row address 4. Initial display line 5. Display ON/OFF 6. Reverse display ON/OFF 7. Duty cycle ratio 8. N-line Inversion ON/OFF 9. COM scan direction 10. Address direction of RAM 11. Read modify write 12. SWAP mode 13. EVR value 14. Internal power supply 15. Display mode 16. LCD bias ratio 17. Gradation Palette 0 18. Gradation Palette 1 19. Gradation Palette 2 20. Gradation Palette 3 21. Gradation Palette 4 22. Gradation Palette 5 23. Gradation Palette 6 24. Gradation Palette 7 25. Gradation Palette 8 26. Gradation Palette 9 27. Gradation Palette 10 28. Gradation Palette 11 29. Gradation Palette 12 30. Gradation Palette 13 31. Gradation Palette 14 32. Gradation Palette 15 33. Gradation mode control 34. Data bus length 35. Discharge circuit :Undefined :(00)H :(00)H :(0)H (1st line) :OFF :OFF (normal) :1/129 duty(DSE=0) :OFF :COM0 → COM127 :(HV, XD, YD) = (0, 0, 0) :OFF (AIM=0) :OFF (normal) :(0, 0, 0, 0, 0, 0, 0) :OFF :Gradation display mode :1/9 bias :(0, 0, 0, 0, 0) :(0, 0, 0, 1, 1) :(0, 0, 1, 0, 1) :(0, 0, 1, 1, 1) :(0, 1, 0, 0, 1) :(0, 1, 0, 1, 1) :(0, 1, 1, 0, 1) :(0, 1, 1, 1, 1) :(1, 0, 0, 0, 1) :(1, 0, 0, 1, 1) :(1, 0, 1, 0, 1) :(1, 0, 1, 1, 1) :(1, 1, 0, 0, 1) :(1, 1, 0, 1, 1) :(1, 1, 1, 0, 1) :(1, 1, 1, 1, 1) :Variable gradation mode :8-bit data bus length :(DIS, DIS2)=(0,0) - 55 - NJU6824 (29) Power supply ON/OFF sequences The following paragraphs describe power supply ON/OFF sequences, which are to protect the LSI from over current. (29-1) Using an external power supply # Power supply ON sequence Logic voltage (VDD) must be always input first, and next the LCD driving voltages (V1 to V4 and VLCD) are turned on. In using the external VOUT, the VDD must be input first, next the reset operation must be performed, and finally the VOUT can be input. # Power supply OFF sequence Either the reset operation, cutting off the V1 to V4 and VLCD from the LSI by the RESb terminal or the “Power control” instruction must be performed first, and next the VDD is turned off. It is recommended that a series-resister between 50Ω and 100Ω is added on the VLCD line (or VOUT line in using only the external VOUT voltage) in order to protect the LSI from the over current. (29-2) Using the internal power supply circuits # Power supply ON sequence The VDD must be input first, next the reset operation must be performed, and finally the V1 to V4 and VLCD can be turned on by setting “1” to the “DCON” and “AMPON” registers of the “Power control” instruction. # Power supply OFF sequence Either the reset operation by the RESb terminal or the “Power control” instruction must be performed first, and next the input voltage for the voltage booster (VEE) and the VDD can be turned off. If the VEE is supplied from different power sources for VDD, the VEE is turned off first, and next the VDD is turned off. - 56 - NJU6824 (30) Referential instruction sequences (30-1) Initialization in using the internal power supply circuits VDD, VEE power ON Wait for power-ON stabilization RESET Input WAIT Setting for LCD driving voltage-related functions - EVR value - LCD bias ratio - Power control (DCON=”1”, AMPON=”1”) End of initialization (30-2) Display data writing End of Initialization Setting for display-related functions - Initial display line - Address direction of RAM (HV, XD, YD) - Column address / -Row address (Start) - Column address / -Row address (End) Display data write Display ON (ON/OFF =”1”) *: Before display data write / read operation, the address directions should be set first , then Column address set / Row address set of start point and end are set in order. (Display data write / read for whole display area or a portion requires the same procedure as above.) To avoid incorrect data writing into registers by noise and so forth, the written data from registers should be checked after write operation. - 57 - NJU6824 (30-3) Power OFF Optional status Power save or reset operation Discharge ON WAIT VEE, VDD power OFF - 58 - - All COM/SEG output VSS level. NJU6824 (31) Instruction table Instruction Table (1) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 Functions D3 D2 D1 D0 Display data write 0 0 1 0 0/1 0/1 0/1 Write Data Write display data to DDRAM Display data read 0 0 0 1 0/1 0/1 0/1 Read Data Read display data from DDRAM column address (Lower) [0H] 0 1 1 0 0 0 0 0 0 0 0 AX3 AX2 AX1 AX0 DDRAM column address column address (Upper) [1H] 0 1 1 0 0 0 0 0 0 0 1 AX7 AX6 AX5 AX4 DDRAM column address row address (Lower) [2H] 0 1 1 0 0 0 0 0 0 1 0 AY3 AY2 AY1 AY0 DDRAM row address row address (Upper) [3H] 0 1 1 0 0 0 0 0 0 1 1 * AY6 AY5 AY4 DDRAM row address Initial display line (Lower) [4H] 0 1 1 0 0 0 0 0 1 0 0 LA3 LA2 LA1 LA0 Row address for an initial COM line (Scan start line) Initial display line (Upper) [5H] 0 1 1 0 0 0 0 0 1 0 1 * LA6 LA5 LA4 Row address for an initial COM line (Scan start line) N-line inversion (Lower) [6H] 0 1 1 0 0 0 0 0 1 1 0 N3 N2 N1 N0 The number of N-line inversion N-line inversion (Upper) [7H] 0 1 1 0 0 0 0 0 1 1 1 * N6 N5 N4 The number of N-line inversion 0 1 1 0 0 0 0 1 0 0 0 SHIFT: Common direction Display control (1) [8H] Display control (2) [9H] Increment control [AH] Power control [BH] Duty cycle ratio [CH] Boost level [DH] LCD bias ratio [EH] RE register [FH] Note 1) Note 2) Note 3) SHIFT MON ALL ON ON/ MON: Gradation or B/W display mode OFF ALLON: All pixels ON/OFF ON/OFF: Display ON/OFF REV: Reverse display ON/OFF NLIN: N-line inversion ON/OFF, SWAP: SWAP mode ON/OFF 0 1 1 0 0 0 0 1 0 0 1 REV 0 1 1 0 0 0 0 1 0 1 0 AIM HV XD 0 1 1 0 0 0 0 1 0 1 1 AMP ON HALT DC ON 0 1 1 0 0 0 0 1 1 0 0 DS3 DS2 DS1 DS0 Sets LCD duty cycle ratio 0 1 1 0 0 0 0 1 1 0 1 * VU2 VU1 VU0 Sets boost level 0 1 1 0 0 0 0 1 1 1 0 * B2 B1 B0 0 1 1 0 1 1 1 1 TST0 RE2 RE1 0/1 0/1 0/1 NLIN SWAP * AIM: Read-modify-write ON/OFF HV: Increment / Decrement direction XD: Column Increment / Decrement set YD: Row Increment / Decrement set AMPON: Voltage followers ON/OFF HALT: Power save ON/OFF ACL DCON: Voltage booster ON/OFF ACL: Reset YD Sets LCD bias ratio RE0 RE flag set * : Don’t care. [ NH ] : Address of instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. - 59 - NJU6824 Instruction Table (2) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 Gradation palette A0/A8 (Lower) [0H] 0 1 1 0 0 0 1 0 0 0 0 Gradation palette A0/A8 (Upper) [1H] 0 1 1 0 0 0 1 0 0 0 1 Gradation palette A1/A9 (Lower) [2H] 0 1 1 0 0 0 1 0 0 1 0 Gradation palette A1/A9 (Upper) [3H] 0 1 1 0 0 0 1 0 0 1 1 Gradation palette A2/A10 (Lower) [4H] 0 1 1 0 0 0 1 0 1 0 0 Gradation palette A2/A10 (Upper) [5H] 0 1 1 0 0 0 1 0 1 0 1 Gradation palette A3/A11 (Lower) [6H] 0 1 1 0 0 0 1 0 1 1 0 Gradation palette A3/A11 (Upper) [7H] 0 1 1 0 0 0 1 0 1 1 1 Gradation palette A4/A12 (Lower) [8H] 0 1 1 0 0 0 1 1 0 0 0 Gradation palette A4/A12 (Upper) [9H] 0 1 1 0 0 0 1 1 0 0 1 Gradation palette A5/A13 (Lower) [AH] 0 1 1 0 0 0 1 1 0 1 0 Gradation palette A5/A13 (Upper) [BH] 0 1 1 0 0 0 1 1 0 1 1 Gradation palette A6/A14 (Lower) [CH] 0 1 1 0 0 0 1 1 1 0 0 Gradation palette A6/A14 (Upper) [DH] 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 RE register [FH] Note 1) Note 2) Note 3) - 60 - 0/1 0/1 0/1 D3 D2 D1 Functions D0 PA03/ PA02/ PA01/ PA00/ PA83 PA82 PA81 PA80 Sets palette values to gradation palette A0(PS=0)/A8(PS=1) * PA04/ PA84 Sets palette values to gradation palette A0(PS=0)/A8(PS=1) PA11/ PA91 PA10/ PA90 Sets palette values to gradation palette A1(PS=0)/A9(PS=1) * PA14/ PA94 Sets palette values to gradation palette A1(PS=0)/A9(PS=1) PA23/ PA22/ PA21/ PA20/ PA103 PA102 PA101 PA100 Sets palette values to gradation palette A2(PS=0)/A10(PS=1) PA24/ PA104 Sets palette values to gradation palette A2(PS=0)/A10(PS=1) PA33/ PA32/ PA31/ PA30/ PA113 PA112 PA111 PA110 Sets palette values to gradation palette A3(PS=0)/A11(PS=1) PA34/ PA114 Sets palette values to gradation palette A3(PS=0)/A11(PS=1) PA43/ PA42/ PA41/ PA40/ PA123 PA122 PA121 PA120 Sets palette values to gradation palette A4(PS=0)/A12(PS=1) PA44/ PA124 Sets palette values to gradation palette A4(PS=0)/A12(PS=1) PA53/ PA52/ PA51/ PA50/ PA133 PA132 PA131 PA130 Sets palette values to gradation palette A5(PS=0)/A13(PS=1) PA54/ PA134 Sets palette values to gradation palette A5(PS=0)/A13(PS=1) PA63/ PA62/ PA61/ PA60/ PA143 PA142 PA141 PA140 Sets palette values to gradation palette A6(PS=0)/A14(PS=1) PA64/ PA144 Sets palette values to gradation palette A6(PS=0)/A14(PS=1) * * PA13/ PA12/ PA93 PA92 * * * * * * * * * * * * TST0 RE2 * * * * * RE1 RE0 RE flag set * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. NJU6824 Instruction Table (3) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 Gradation palette A7/A15 (Lower) [0H] 0 1 1 0 0 1 0 0 0 0 0 Gradation palette A7/A15 (Upper) [1H] 0 1 1 0 0 1 0 0 0 0 1 Gradation palette B0/B8 (Lower) [2H] 0 1 1 0 0 1 0 0 0 1 0 Gradation palette B0/B8 (Upper) [3H] 0 1 1 0 0 1 0 0 0 1 1 Gradation palette B1/B9 (Lower) [4H] 0 1 1 0 0 1 0 0 1 0 0 Gradation palette B1/B9 (Upper) [5H] 0 1 1 0 0 1 0 0 1 0 1 Gradation palette B2/B10 (Lower) [6H] 0 1 1 0 0 1 0 0 1 1 0 Gradation palette B2/B10 (Upper) [7H] 0 1 1 0 0 1 0 0 1 1 1 Gradation palette B3/B11 (Lower) [8H] 0 1 1 0 0 1 0 1 0 0 0 Gradation palette B3/B11 (Upper) [9H] 0 1 1 0 0 1 0 1 0 0 1 Gradation palette B4/B12 (Lower) [AH] 0 1 1 0 0 1 0 1 0 1 0 Gradation palette B4/B12 (Upper) [BH] 0 1 1 0 0 1 0 1 0 1 1 Gradation palette B5/B13 (Lower) [CH] 0 1 1 0 0 1 0 1 1 0 0 Gradation palette B5/B13 (Upper) [DH] 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 RE register [FH] Note 1) Note 2) Note 3) 0/1 0/1 0/1 D3 D2 D1 Functions D0 PA73/ PA72/ PA71/ PA70/ PA153 PA152 PA151 PA150 Sets palette values to gradation palette A7(PS=0)/A15(PS=1) PA74/ PA154 Sets palette values to gradation palette A7(PS=0)/A15(PS=1) PB03/ PB02/ PB01/ PB00/ PB83 PB82 PB81 PB80 Sets palette values to gradation palette B0(PS=0)/B8(PS=1) PB04/ PB84 Sets palette values to gradation palette B0(PS=0)/B8(PS=1) PB13/ PB12/ PB11/ PB10/ PB93 PB92 PB91 PB90 Sets palette values to gradation palette B1(PS=0)/B9(PS=1) PB14/ PB94 Sets palette values to gradation palette B1(PS=0)/B9(PS=1) PB23/ PB22/ PB21/ PB20/ PB103 PB102 PB101 PB100 Sets palette values to gradation palette B2(PS=0)/B10(PS=1) PB24/ PB104 Sets palette values to gradation palette B2(PS=0)/B10(PS=1) PB33/ PB32/ PB31/ PB30/ PB113 PB112 PB111 PB110 Sets palette values to gradation palette B3(PS=0)/B11(PS=1) PB34/ PB114 Sets palette values to gradation palette B3(PS=0)/B11(PS=1) PB43/ PB42/ PB41/ PB40/ PB123 PB122 PB121 PB120 Sets palette values to gradation palette B4(PS=0)/B12(PS=1) PB44/ PB124 Sets palette values to gradation palette B4(PS=0)/B12(PS=1) PB53/ PB52/ PB51/ PB50/ PB133 PB132 PB131 PB130 Sets palette values to gradation palette B5(PS=0)/B13(PS=1) PB54/ PB134 Sets palette values to gradation palette B5(PS=0)/B13(PS=1) * * * * * * * * * * * * * * TST0 RE2 * * * * * * * RE1 RE0 RE flag set * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. - 61 - NJU6824 Instruction Table (4) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 Gradation palette B6/B14 (Lower) [0H] 0 1 1 0 0 1 1 0 0 0 0 Gradation palette B6/B14 (Upper) [1H] 0 1 1 0 0 1 1 0 0 0 1 Gradation palette B7/B15 (Lower) [2H] 0 1 1 0 0 1 1 0 0 1 0 Gradation palette B7/B15 (Upper) [3H] 0 1 1 0 0 1 1 0 0 1 1 * * Gradation palette C0/C8 (Lower) [4H] 0 1 1 0 0 1 1 0 1 0 0 PC03/ PC83 Gradation palette C0/C8 (Upper) [5H] 0 1 1 0 0 1 1 0 1 0 1 Gradation palette C1/C9 (Lower) [6H] 0 1 1 0 0 1 1 0 1 1 Gradation palette C1/C9 (Upper) [7H] 0 1 1 0 0 1 1 0 1 Gradation palette C2/C10 (Lower) [8H] 0 1 1 0 0 1 1 1 Gradation palette C2/C10 (Upper) [9H] 0 1 1 0 0 1 1 Gradation palette C3/C11 (Lower) [AH] 0 1 1 0 0 1 Gradation palette C3/C11 (Upper) [BH] 0 1 1 0 0 Gradation palette C4/C12 (Lower) [CH] 0 1 1 0 Gradation palette C4/C12 (Upper) [DH] 0 1 1 0 0 1 1 0 RE register [FH] Note 1) Note 2) Note 3) - 62 - D1 Functions D0 PB63/ PB62/ PB61/ PB60/ PB143 PB142 PB141 PB140 Sets palette values to gradation palette B6(PS=0)/B14(PS=1) PB64/ PB144 Sets palette values to gradation palette B6(PS=0)/B14(PS=1) PB73/ PB72/ PB71/ PB70/ PB153 PB152 PB151 PB150 Sets palette values to gradation palette B7(PS=0)/B15(PS=1) * PB74/ PB154 Sets palette values to gradation palette B7(PS=0)/B15(PS=1) PC02/ PC82 PC01/ PC81 PC00/ PC80 Sets palette values to gradation palette C0(PS=0)/C8(PS=1) * * * PC04/ PC84 Sets palette values to gradation palette C0(PS=0)/C8(PS=1) 0 PC13/ PC93 PC12/ PC92 PC11/ PC91 PC10/ PC90 Sets palette values to gradation palette C1(PS=0)/C9(PS=1) 1 1 * * * PC14/ PC94 Sets palette values to gradation palette C1(PS=0)/C9(PS=1) 0 0 0 PC23/ PC22/ PC21/ PC20/ PC103 PC102 PC101 PC100 Sets palette values to gradation palette C2(PS=0)/C10(PS=1) 1 0 0 1 PC24/ PC104 Sets palette values to gradation palette C2(PS=0)/C10(PS=1) 1 1 0 1 0 PC33/ PC32/ PC31/ PC30/ PC113 PC112 PC111 PC110 Sets palette values to gradation palette C3(PS=0)/C11(PS=1) 1 1 1 0 1 1 PC34/ PC114 Sets palette values to gradation palette C3(PS=0)/C11(PS=1) 0 1 1 1 1 0 0 PC43/ PC42/ PC41/ PC40/ PC123 PC122 PC121 PC120 Sets palette values to gradation palette C4(PS=0)/C12(PS=1) 0 1 1 1 1 0 1 PC44/ PC124 Sets palette values to gradation palette C4(PS=0)/C12(PS=1) 1 1 1 1 0/1 0/1 0/1 * * * * * * * * TST0 RE2 * * * * RE1 RE0 RE flag set * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. NJU6824 Instruction Table (5) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 Functions D0 Gradation palette C5/C13 (Lower) [0H] 0 1 1 0 1 0 0 0 0 0 0 Gradation palette C5/C13 (Upper) [1H] 0 1 1 0 1 0 0 0 0 0 1 Gradation palette C6/C14 (Lower) [2H] 0 1 1 0 1 0 0 0 0 1 0 Gradation palette C6/C14 (Upper) [3H] 0 1 1 0 1 0 0 0 0 1 1 Gradation palette C7/C15 (Lower) [4H] 0 1 1 0 1 0 0 0 1 0 0 Gradation palette C7/C15 (Upper) [5H] 0 1 1 0 1 0 0 0 1 0 1 * * 0 1 1 0 1 0 0 0 1 1 0 SC3 SC2 Display control Signal/ Duty Select [7H] 0 1 1 0 1 0 0 0 1 1 1 * * Gradation mode control [8H] 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 * EVR control (Lower) [AH] 0 1 1 0 1 0 0 1 0 1 0 DV3 DV2 DV1 DV0 Sets EVR level (Lower bit) EVR control (Upper) [BH] 0 1 1 0 1 0 0 1 0 1 1 * DV6 DV5 DV4 Sets EVR level (Upper bit) 0 1 1 0 1 0 0 1 1 0 1 * RF2 RF1 RF0 Oscillation frequency 0 1 1 0 1 0 0 1 1 1 0 * * 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 Reading address Sets instruction register address 0 1 0 1 * * * * Read Data Read out instruction register data Initial COM line [6H] Data bus length [9H] Frequency control [DH] Discharge ON/OFF [EH] RE register [FH] Instruction register address [CH] Instruction register read 0/1 0/1 0/1 1 0 0 0/1 0/1 0/1 PC53/ PC52/ PC51/ PC50/ PC133 PC132 PC131 PC130 Sets palette values to gradation palette C5(PS=0)/C13(PS=1) PC54/ PC134 Sets palette values to gradation palette C5(PS=0)/C13(PS=1) PC63/P PC62/ PC61/ PC60/ C143 PC142 PC141 PC140 Sets palette values to gradation palette C6(PS=0)/C14(PS=1) PC64/ PC154 Sets palette values to gradation palette C6(PS=0)/C14(PS=1) PC73/ PC72/ PC71/ PC70/ PC153 PC152 PC151 PC150 Sets palette values to gradation palette C7(PS=0)/C15(PS=1) * PC74/ PC154 Sets palette values to gradation palette C7(PS=0)/C15(PS=1) SC1 SC0 * * * * * * DSE SON Sets scan-starting common driver SON : Display clock ON/OFF DSE : Duty-1 ON/OFF PWM : Variable/Fixed gradation mode PWM C256 FDC1 FDC2 C256 : 256-Color Mode ON/OFF FDC : Boost Clock ABS : ABS mode ON/OFF ABS CKS WLS CKS : Internal/external oscilation WLS : Display data Length TST0 RE2 DIS2 DIS RE1 Discharge the electric charge in capacitors on V1 to V4 and VLCD RE0 RE flag Note 1) Note 2) Note 3) * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. Note 4) CKS=0: Internal oscillation mode (default) CKS=1: External oscillation mode - 63 - NJU6824 Instruction Table (6) Code (80 series MPU I/F) Instructions Code CSb RS RDb WRb RE2 RE1 RE0 D7 Window end column address (Lower) [0H] Window end column address (Upper) [1H] D6 D5 D4 D3 D2 D1 D0 Functions 0 1 1 0 1 0 1 0 0 0 0 EX3 EX2 EX1 EX0 Sets column address for end point 0 1 1 0 1 0 1 0 0 0 1 EX7 EX6 EX5 EX4 Sets column address for end point Window end row address (Lower) [2H] 0 1 1 0 1 0 1 0 0 1 0 EY3 EY2 EY1 EY0 Sets row address for end point Window end row address (Upper) [3H] 0 1 1 0 1 0 1 0 0 1 1 * EY6 EY5 EY4 Sets row address for end point Initial reverse line (Lower) [4H] 0 1 1 0 1 0 1 0 1 0 0 LS3 LS2 LS1 LS0 Sets address for reverse line Initial reverse line (Upper) [5H] 0 1 1 0 1 0 1 0 1 0 1 * LS6 LS5 LS4 Sets address for reverse line Last reverse line (Lower) [6H] 0 1 1 0 1 0 1 0 1 1 0 LE3 LE2 LE1 LE0 Sets address for reverse line Last reverse line (Upper) [7H] 0 1 1 0 1 0 1 0 1 1 1 * LE6 LE5 LE4 Sets address for reverse line 0 1 1 0 1 0 1 1 0 0 0 * * BT LREV 0 1 1 0 1 0 1 1 0 0 1 * * 0 1 1 0 1 0 1 1 0 1 0 PWM PWM PWM PWM S A B C 0 1 1 0 1 1 1 1 TST0 RE2 Reverse line display ON/OFF [8H] Gradation palette setting control / Icon SEG address set [9H] PWM control [AH] RE register [FH] Note 1) Note 2) Note 3) - 64 - 0/1 0/1 0/1 DMY PS RE1 BT : Blink type setting LREV : Reverse line display ON/OFF PS : gradation setting DMY : Icon SEG address set Sets PWM mode RE0 RE flag * : Don’t care. [ NH ] : Address of Instruction register The dual instructions including upper and lower bytes is enabled after either upper or lower bytes are set into the register. The only “EVR control” instruction is enabled after both of the upper and lower bytes are set. NJU6824 (32) Instruction descriptions This chapter provides detail descriptions and instruction registers. Nonexistent instruction codes must not be set into the LSI. (32-1) Display data write The “Display data write” instruction is used to write 8-bit display data into the DDRAM. CSb RS 0 0 RDb WRb 1 0 RE2 RE1 RE0 0/1 0/1 0/1 D7 D6 D5 D4 D3 D2 D1 D0 Display data (32-2) Display data read The “Display data read” instruction is used to read out 8-bit display data from the DDRAM, where the column address and row address must be specified beforehand by the “column address” and “row address” instructions. The dummy read is required just after the “column address” and “row address” instructions. CSb RS 0 0 RDb WRb 0 1 RE2 RE1 RE0 0/1 0/1 0/1 D7 D6 D5 D4 D3 D2 D1 D0 Display data (32-3) Column address The “column address” instruction is used to specify the column address for the display data’s reading and writing operations. It requires dual bytes for lower 4-bit and upper 4-bit data. The instruction for the lower 4-bit data must be executed first, next the instruction for the upper 4-bit. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 AX3 AX2 AX1 AX0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 1 AX7 AX6 AX5 AX4 (32-4) Row address The “row address” instruction is used to specify the row address for the display data read and write operations. It requires dual bytes for lower 4-bit and upper 3-bit data. The instruction for the lower 4-bit data must be executed first, next the instruction for upper 3-bit. The row address is specified in between 00H and 7FH. The setting for nonexistent row address between 80H and FFH is prohibited. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 1 0 AY3 AY2 AY1 AY0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 1 1 * AY6 AY5 AY4 - 65 - NJU6824 (32-5) Initial display line The “Initial display line” instruction is used to specify the line address corresponding to the initial COM line. The initial COM line specified by the “Initial COM line” instruction and indicates the common driver that starts scanning data. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 0 0 LA3 LA2 LA1 LA0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 0 1 * LA6 LA5 LA4 LA6 LA5 LA4 LA3 LA2 LA1 LA0 Line address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 : : 1 1 1 : : 1 1 1 127 (32-6) N-line inversion The “N-line inversion” instruction is used to control the alternate rates of the liquid crystal direction. It is programmed to select the N value between 2 and 128, and the FR signal toggles once every N lines by setting “1” into the “NLIN” register of the “Display control (2)” instruction. When the N-line inversion is disabled by setting “0” into the “NLIN” register, the FR signal toggles by the frame. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 RDb WRb 1 0 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 1 0 N3 N2 N1 N0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 1 1 * N6 N5 N4 N6 N5 N4 N3 N2 N1 N0 N value 0 0 0 0 0 0 0 Inhibited 0 0 0 0 0 0 1 2 0 : : 0 0 - 66 - 0 RE2 1 : : 0 0 0 128 NJU6824 # N-line Inversion Timing (1/129 duty cycle ratio) N-line inversion OFF 1st line 2nd line 3rd line 128th line 1st line 129th line CL FLM FR N-line inversion ON N-line control 1st line 2nd line 3rd line N line 1st line 2nd line CL FR (32-7) Display control (1) The “Display control (1)” instruction is used to control display conditions by setting the “Display ON/OFF”, “All pixels ON/OFF”, “Display mode” and “Common direction” registers. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 0 0 0 1 0 0 0 SHIFT MON D1 D0 ALLON ON/OFF # ON/OFF register ON/OFF=0 ON/OFF=1 : Display OFF (All COM/SEG output Vss level.) : Display ON # All ON register The “All pixels ON/OFF” register is used to turn on all pixels without changing display data of the DDRAM. The setting for the “All pixels ON/OFF” register has a priority over the “Reverse display ON/OFF” register. ALLON=0 ALLON=1 : Normal : All pixels turn on. # MON register MON=0 MON=1 : Gradation mode : B&W mode # SHIFT register SHIFT=0 SHIFT=1 : COM0 → COM127 : COM127 → COM0 - 67 - NJU6824 (32-8) Display control (2) The “Display control (2)” instruction is used to control display conditions by setting the “SWAP mode ON/OFF”, “N-line inversion ON/OFF” and “Reverse display ON/OFF” registers. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 1 REV NLIN SWAP * # SWAP register The “SWAP” register is used to reverse the arrangement of display data in the DDRAM. SWAP=0 SWAP=1 : SWAP mode OFF : SWAP mode ON (Normal) SWAP=”0” SWAP=”1” Write data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 RAM data D7 d6 d5 d4 d3 d2 d1 d0 d0 d1 d2 d3 d4 d5 d6 d7 Read data D 7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 # NLIN register The “NLIN” is used to enable or disable the N-line inversion. NLIN=0 NLIN=1 : N-line inversion OFF : N-line inversion ON (The FR signal toggles by the flame.) (The FR signal toggles once every N frames.) # REV register The “REV” register is used to enable or disable the reverse display mode that reverses the polarity of display data without changing display data of the DDRAM. REV=0 REV=1 - 68 - : Reverse display mode OFF : Reverse display mode ON REV Display 0 Normal 1 Reverse DDRAM data → Display data 0 0 1 1 0 1 1 0 NJU6824 (32-9) Increment control The “Increment control” instruction is used for the increment mode. In using the auto-increment mode, DDRAM address automatically increments (+1) whenever the DDRAM is accessed by the “Display data write” or “Display data read” instruction. Therefore, once “Display data write” or “Display data read” instruction is established, it is possible to continuously access to the DDRAM without the “column address” and “row address” instructions. The settings for the “AIM”, “HV”, “XD” and “YD” registers are listed in the following tables. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 1 0 AIM HV XD YD # AIM, HV, XD and YD registers AIM 0 1 Increment mode Auto-increment for both of the display data read and write operations Auto-increment for the display write operation (Read modify write) Note 1 2 Note 1) It is effective for usual operations accessing successive addresses. Note 2) It is effective for the read-modify-write operation. HV 0 0 0 0 1 1 1 1 XD 0 0 1 1 0 0 1 1 YD 0 1 0 1 0 1 0 1 Increment / Decrement mode / Scanning Direction Column increment / Row increment / Horizontal direction Column increment / Row decrement / Horizontal direction Column decrement / Row increment / Horizontal direction Column decrement / Row decrement / Horizontal direction Column increment / Row increment / Vertical direction Column increment / Row decrement / Vertical direction Column decrement / Row increment / Vertical direction Column decrement / Row decrement / Vertical direction For the window area designation, the address directions of RAM (HV, XD, YD) must be set first, and Column address and Row of Start point must be set second, Column address and Row of Stop point must be set third, then RAM should be accessed. Low address must be set first and High address must be set second in all of addresses. The directions of HV, XD, YD should be check to keep the area in RAM. - 69 - NJU6824 (32-10) Power control CSb RS 0 1 RDb WRb RE2 1 0 0 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 1 AMPON HALT DCON ACL # ACL register The “ACL” register is used to initialize the internal power supply circuits. ACL=0 ACL=1 : Initialization OFF (Normal) : Initialization ON When the data of the “ACL register” is read out by the “Instruction register read” instruction, the read-out data is “1” during the initialization and “0” after the initialization. This initialization is performed by using the signal produced by 2 clocks on the OSC1. For this reason, the wait time for 2 clocks of the OSC1 is necessary until next instruction. # DCON register The “DCON” register is used to enable or disable the voltage booster. DCON=0 DCON=1 : Voltage booster OFF : Voltage booster ON # HALT register The “HALT” register is used to enable or disable the power save mode. It is possible to reduce operating current down to stand-by level. The internal status in the power save mode is listed below. HALT=0 HALT=1 : Power save OFF (Normal) : Power save ON Internal status in the power save mode • The oscillation circuits and internal power supply circuits are halted. • All segment and common drivers output VSS level. • The clock input into the OSC1 is inhibited. • The display data in the DDRAM is maintained. • The operational modes before the power save mode are maintained. • The V1 to V4 and VLCD are in the high impedance. As a power save ON sequence, the “Display OFF” must be executed first, next the “Power save ON” instruction, and then all common and segment drivers output the VSS level. And as power save OFF sequence, the “Power save OFF” instruction is executed first, next the “Display ON” instruction. If the “Power save OFF” instruction is executed in the display ON status, unexpected pixels may instantly turn on. # AMPON register The “AMPON” register is used to enable or disable the voltage followers, voltage regulator and EVR. AMPON=0 AMPON=1 - 70 - : The voltage followers, voltage regulator and the EVR OFF : The voltage followers, voltage regulator and the EVR ON NJU6824 (32-11) Duty cycle ratio The “Duty cycle ratio” instruction is used to select LCD duty cycle ratio for the partial display function. The partial display function specifies some parts of display area on a LCD panel in the condition of lower duty cycle ratio, lower LCD bias ratio, lower boost level and lower LCD driving voltage. Therefore, it is possible to optimize the LSI’s conditions with extremely low power consumption. CSb RS 0 1 RDb WRb RE2 1 0 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 0 DS3 DS2 DS1 DS0 0 DS3 DS2 DS1 DS0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Row way displays 128 commons 120 commons 112 commons 104 commons 96 commons 88 commons 80 commons 72 commons 64 commons 56 commons 48 commons 40 commons 32 commons 24 commons 16 commons Duty cycle ratio DSE=0 DSE=1 1/129 1/128 1/121 1/120 1/113 1/112 1/105 1/104 1/97 1/96 1/89 1/88 1/81 1/80 1/73 1/72 1/65 1/64 1/56 1/57 1/48 1/49 1/41 1/40 1/33 1/32 1/25 1/24 1/17 1/16 Inhibited The duty cycle ratio is controlled by the “DS3 to DS0” registers of the “Duty cycle ratio” instruction and the “DSE” register of the “Display Clock / Duty-1” instruction. DSE=”0” DSE=”1” : The number of commons + 1 (Duty cycle ratio in the default setting) : The number of commons (Duty-1) When the “DSE” is “0”, all common drivers output non-selective levels in period of last common. And the segment drivers output the same data for the last line as the data for previous line: For th th instance they output the same data for the 128 and 129 lines when the duty cycle ratio is set to 1/129. For the setting of the “DSE” register, see (32-17) “Display clock / Duty-1”. (32-12) Boost level The “Boost level” is used to select the multiple of the voltage booster for the partial display function. CSb RS 0 1 RDb WRb 1 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 0 1 * VU2 VU1 VU0 0 VU2 0 0 0 0 1 1 1 1 VU1 0 0 1 1 0 0 1 1 VU0 0 1 0 1 0 1 0 1 Boost level 1-time (No boost) 2-time 3-time 4-time 5-time 6-time Inhibited Inhibited - 71 - NJU6824 (32-13) LCD bias ratio The “LCD bias ratio” is used to select the LCD bias ratio for the partial display function. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 1 1 0 * B2 B1 B0 B1 0 0 1 1 0 0 1 1 B2 0 0 0 0 1 1 1 1 B0 0 1 0 1 0 1 0 1 LCD bias ratio 1/9 1/8 1/7 1/6 1/5 1/10 1/11 1/12 (32-14) RE flag The “RE flag” registers are used to determine the contents for the RE registers (RE2, RE1 and RE0) and it is possible to access to the instruction registers. The data in the “TST0” register must be “0”, and it is used maker tests only. CSb RS 0 1 - 72 - RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0/1 0/1 0/1 1 1 1 1 TST0 RE2 RE1 RE0 NJU6824 (32-15) Gradation palette A, B and C CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 0 0 PA03/ PA83 PA02/ PA82 PA01/ PA81 PA00/ PA80 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 0 1 * * * PA04/ PA84 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 1 0 PA13/ PA93 PA12/ PA92 PA11/ PA91 PA10/ PA90 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 0 1 1 * * * PA14/ PA94 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 0 0 PA23/ PA103 PA22/ PA102 PA21/ PA101 PA20/ PA100 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 0 1 * * * PA24/ PA104 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 1 0 PA33/ PA113 PA32/ PA112 PA31/ PA111 PA30/ PA110 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 0 1 1 1 * * * PA34/ PA114 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 0 0 PA43/ PA123 PA42/ PA122 PA41/ PA121 PA40/ PA120 - 73 - NJU6824 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 - 74 - RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 0 1 * * * PA44/ PA124 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 1 0 PA53/ PA133 PA52/ PA132 PA51/ PA131 PA50/ PA130 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 0 1 1 * * * PA54/ PA134 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 0 0 PA63/ PA143 PA62/ PA142 PA61/ PA141 PA60/ PA140 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 0 1 * * * PA64/ PA144 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 0 0 PA73/ PA153 PA72/ PA152 PA71/ PA151 PA70/ PA150 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 0 1 * * * PA74/ PA154 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 0 PB03/ PB83 PB02/ PB82 PB01/ PB81 PB00/ PB80 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 * * * PB04/ PB84 NJU6824 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 0 0 PB13/ PB93 PB12/ PB92 PB11/ PB91 PB10/ PB90 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 0 1 * * * PB14/ PB94 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 0 PB23/ PB103 PB22/ PB102 PB21/ PB101 PB20/ PB100 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 1 1 1 * * * PB24/ PB104 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 0 PB33/ PB113 PB32/ PB112 PB31/ PB111 PB30/ PB110 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 0 1 * * * PB34/ PB114 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 0 PB43/ PB123 PB42/ PB122 PB41/ PB121 PB40/ PB120 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 0 1 1 * * * PB44/ PB124 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 0 PB53/ PB133 PB52/ PB132 PB51/ PB131 PB50/ PB130 - 75 - NJU6824 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 - 76 - RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 0 1 * * * PB54/ PB134 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 0 0 PB63/ PB143 PB62/ PB142 PB61/ PB141 PB60/ PB140 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 0 1 * * * PB64/ PB144 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 1 0 PB73/ PB153 PB72/ PB152 PB71/ PB151 PB70/ PB150 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 0 1 1 * * * PB74/ PB154 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 0 0 PC03/ PC83 PC02/ PC82 PC01/ PC81 PC00/ PC80 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 0 1 * * * PC04/ PC84 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 1 0 PC13/ PC93 PC12/ PC92 PC11/ PC91 PC10/ PC90 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 1 1 * * * PC14/ PC94 NJU6824 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 0 0 0 PC23/ PC103 PC22/ PC102 PC21/ PC101 PC20/ PC100 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 0 0 1 * * * PC24/ PC104 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 0 1 0 PC33/ PC113 PC32/ PC112 PC31/ PC111 PC30/ PC110 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 0 1 1 * * * PC34/ PC114 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 1 0 0 PC43/ PC123 PC42/ PC122 PC41/ PC121 PC40/ PC120 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 1 0 1 * * * PC44/ PC124 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 0 PC53/ PC133 PC52/ PC132 PC51/ PC131 PC50/ PC130 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 1 * * * PC54/ PC134 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 1 0 PC63/ PC143 PC62/ PC142 PC61/ PC141 PC60/ PC140 - 77 - NJU6824 CSb RS 0 1 CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 1 1 * * * PC64/ PC144 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 0 0 PC73/ PC153 PC72/ PC152 PC71/ PC151 PC70/ PC150 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 0 1 * * * PC74/ PC154 Gradation Palette Table (Variable gradation mode, PWM=”0” and MON=”0”) (Palette Aj, Palette Bj, Palette Cj, (j=0 to 15)) Palette Value Gradation Level Note 0 0 0 0 0 0/31 Gradation Palette 0 Initial Value 0 0 0 0 1 Gradation Level Palette Value 1 0 0 0 0 16/31 1/31 1 0 0 0 1 17/31 0 0 0 1 0 2/31 1 0 0 1 0 18/31 0 0 0 1 1 3/31 1 0 0 1 1 19/31 0 0 1 0 0 4/31 1 0 1 0 0 20/31 0 0 1 0 1 5/31 1 0 1 0 1 21/31 0 0 1 1 0 6/31 1 0 1 1 0 22/31 0 0 1 1 1 7/31 1 0 1 1 1 23/31 0 1 0 0 0 8/31 1 1 0 0 0 24/31 0 1 0 0 1 9/31 1 1 0 0 1 25/31 0 1 0 1 0 10/31 1 1 0 1 0 26/31 0 1 0 1 1 11/31 1 1 0 1 1 27/31 0 1 1 0 0 12/31 1 1 1 0 0 28/31 0 1 1 0 1 13/31 1 1 1 0 1 29/31 0 1 1 1 0 14/31 1 1 1 1 0 30/31 0 1 1 1 1 15/31 1 1 1 1 1 31/31 - 78 - Gradation Palette 1 Initial Value Gradation Palette2 Initial Value Gradation Palette 3 Initial Value Gradation Palette 4 Initial Value Gradation Palette 5 Initial Value Gradation Palette 6 Initial Value Gradation Palette 7 Initial Value Note Gradation Palette 8 Initial Value Gradation Palette 9 Initial Value Gradation Palette 10 Initial Value Gradation Palette 11 Initial Value Gradation Palette 12 Initial Value Gradation Palette 13 Initial Value Gradation Palette 14 Initial Value Gradation Palette 15 Initial Value NJU6824 (32-16) Initial COM line The “Initial COM line” instruction is used to specify the common driver that starts scanning the display data. The line address, corresponding to the initial COM line, is specified by the “Initial display line” instruction. CSb RS 0 1 1 SC3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 SC2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 1 0 SC3 SC2 SC1 SC0 SC1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 SC0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 RDb WRb Initial COM line (SHIFT=0) COM0 COM4 COM8 COM16 COM24 COM32 COM40 COM48 COM56 COM64 COM72 COM80 COM88 COM96 COM104 COM112 SHIFT=0: Positive scan direction SHIFT=1: Negative scan direction Initial COM line (SHIFT=1) COM127 COM123 COM119 COM111 COM103 COM95 COM87 COM79 COM71 COM63 COM55 COM47 COM39 COM31 COM23 COM15 (for instance, COM0 → COM127) (for instance, COM127 → COM0) (32-17) Display clock / Duty-1 The “Display clock / Duty-1” instruction is used to enable or disable the display clocks (CL, FLM, FR, and CLK), and to control ON/OFF of the “Duty-1”. For more detail about the “Duty-1”, see (32-11) “Duty cycle ratio”. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 1 1 1 * * DSE SON SON=0: SON=1: CL, FLM, FR, and CLK outputs level “0”. CL, FLM, FR, and CLK outputs are active. DSE=0: DSE=1: Duty -1 OFF Duty -1 ON - 79 - NJU6824 (32-18) Gradation mode control The “Gradation mode control” is used to select display mode as follows. CSb RS 0 1 RDb WRb 1 RE2 RE1 RE0 D7 D6 D5 D4 1 0 0 1 0 0 0 0 D3 D2 D1 PWM C256 FDC1 FDC2 # PWM register PWM=0: PWM=1: Variable gradation mode (Variable 16-gradation levels out of 32-gradation level of the gradation palette) Fixed gradation mode (Fixed 8-gradation levels) # C256 register C256=0 C256=1 256-color mode OFF (4,096-color in the default setting) 256-color mode ON # FDC1 and FDC2 register FDC1 0 0 1 1 - 80 - FDC2 0 1 0 1 Boost Clock ×1 ×2 ×4 ×1/2 D0 NJU6824 (32-19) Data bus length The “Data bus length” instruction is used to select the 8- or 16- bit data bus length and determine the internal or external oscillation. In the 16-bit data bus mode, instruction data must be 16-bit (D15 to D0) as well as display data. However, for the access to the instruction registers, the lower 8-bit data (D7 to D0) of the 16-bit data is valid. For the access to the DDRAM, all of the 16-bit data (D15 to D0) is valid. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 1 0 0 1 0 0 1 * ABS D1 D0 CKS WLS # ABS register ABS=0: ABS=1: ABS mode OFF (normal) ABS mode ON # WLS register WLS=0: WLS =1: 8-bit data bus length 16-bit data bus length # CKS register CKS =0: CKS =1: Internal oscillation (The OSC1 terminal must be fixed “1” or “0”.) External oscillation (By the external clock into the OSC1 or external resister between the OSC1 and OSC2. OSC2 should be open when clock is inputted from OSC1.) - 81 - NJU6824 (32-20) EVR control The “EVR control” instruction is used to fine-tune the LCD driving voltage (VLCD) so that it is possible to optimize the contrast level for a LCD panel. This instruction must be programmed by upper 3-bit data first, next lower 4-bit data. And it becomes enabled when the lower 4-bit data is programmed, so that it can prevent unexpected high voltage for the VLCD from being generated. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 0 1 0 DV3 DV2 DV1 DV0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 0 1 1 * DV6 DV5 DV4 DV2 0 0 DV1 0 0 DV0 0 1 1 1 1 DV6 0 0 DV5 0 0 DV4 0 0 1 1 1 DV3 0 0 : : 1 VLCD Low : : : High The formula of the VLCD is shown below. VLCD [V] = 0.5 x VREG + M (VREG – 0.5 x VREG) / 127 VBA = VEE x 0.9 VREG = VREF x N - 82 - VBA VREF VREG N M : Output voltage of the reference voltage generator : Input voltage of the voltage regulator : Output voltage of the voltage regulator : Register value for the voltage booster : Register value for the EVR NJU6824 (32-21) Frequency control The “Frequency control” instruction is used to control the frame frequency for a LCD panel. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 0 1 * Rf2 Rf1 Rf0 # Rfx register (x=0, 1, 2) The “Rfx” register is used to determine the feed back resister value for the internal oscillator and it is possible to adjust the frame frequency for the LCD modules. Rf 2 0 0 0 0 1 1 1 1 Rf 1 0 0 1 1 0 0 1 1 Rf 0 0 1 0 1 0 1 0 1 Feedback resistor value Reference value 0.8 x reference value 0.9 x reference value 1.1 x reference value 1.2 x reference value 0.7 x reference value 1.3 x reference value Inhibited (32-22) Discharge ON/OFF Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and the VLCD terminals. The “Discharge ON/OFF” instruction is usually required just after the internal power supply is turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is turned off. During the discharge operation, the internal or external power supply must not be turned on. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 1 0 * * DIS2 DIS DIS=0: DIS=1: Discharge OFF Discharge ON (Capacitors on the VLCD, V1, V2, V3 and V4) (Capacitors on the VLCD, V1, V2, V3 and V4) DIS2=0: DIS2=1: Discharge OFF Discharge ON (Resistance between VOUT and VEE) (Resistance between VOUT and VEE) Note ) VOUT and VEE are internally connected with the resistor (100kΩ typical) in the power-ON. - 83 - NJU6824 (32-23) Instruction register address The “Instruction register address” is used to specify the instruction register address, so that it is possible to read out the contents of the instruction registers in combination with the “Instruction register read” instruction. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 1 1 0 0 RA3 RA2 RA1 RA0 (32-24) Instruction register read The “Instruction register read” instruction is used to read out the contents of the instruction register in combination with the “Instruction register address” instruction. CSb RS 0 1 RDb WRb 0 1 RE2 RE1 RE0 D7 D6 D5 D4 0/1 0/1 0/1 * * * * D3 D2 D1 D0 Internal register data read (32-25) Window end column address The “Window end column address” is used to specify the column address for the window end point. The lower 4-bit data is required to be programmed first and then the upper 4-bit data can be programmed. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 0 0 0 EX3 EX2 EX1 EX0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 0 0 1 EX7 EX6 EX5 EX4 (32-26) Window end row address set The “Window end row address” is used to specify the row address for the window end point. The lower 4-bit data is required to be programmed first and then the upper 4-bit data can be programmed. CSb RS 0 1 CSb RS 0 1 - 84 - RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 0 1 0 EY3 EY2 EY1 EY0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 0 1 1 * EY6 EY5 EY4 NJU6824 (32-27) Initial reverse line The “Initial reverse line” instruction is used to specify the initial reverse line address for the reverse line display. Lower 4-bit data must be programmed first, next upper 3-bit data. It is programmed in between 00H and 7FH and the line address beyond 7FH is inhibited. The address relation: LSi < LEi (i=7 to 0) must be maintained in the reverse line display. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 0 0 LS3 LS2 LS1 LS0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 0 1 * LS6 LS5 LS4 (32-28) Last reverse line The “Last reverse line” instruction is used to specify the last reverse line address for the reverse line display. Lower 4-bit must be programmed first, next upper 3-bit data. It is programmed in between 00H and 7FH and the line address beyond 7FH is inhibited. The address relation: LSi < LEi (i=7 to 0) must be maintained in the reverse line display. CSb RS 0 1 CSb RS 0 1 RDb WRb 1 0 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 1 0 LE3 LE2 LE1 LE0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 1 1 * LE6 LE5 LE4 (32-29) Reverse line display ON/OFF The “Reverse line display ON/OFF” is used to enable or disable the reverse line display for the blink operation and determine the reverse line display mode. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 1 0 0 0 * * BT LREV # LREV register The “LREV” register is used to enable or disable the reverse line display. LREV =0: LREV =1: Reverse line display OFF (Normal) Reverse line display ON - 85 - NJU6824 # BT register The “BT” register is used to determine the reverse line display mode in the reverse line display ON (LREV=1) status. BT =0: BT =1: Normal reverse line display Blink once every 32 frames Display examples in the LREV=”1” and BT=”1” !"""! "!!!" "!!!! !"""! !!!!" "!!!" !"""! !!!!! "!!!" !"""! !"""" "!!!" """"! !"""! "!!!" """"" Blink once every 32 frames NJRC LCD DRIVER Low Power and Low Voltage Blink once every 32 frames NJRC LCD DRIVER Low Power and Low Voltage - 86 - ←Initial reverse line address ←Last reverse line address NJU6824 (32-30) Gradation palette setting control / Icon SEG address set CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 1 0 0 1 * * DMY PS # PS register PS=0: Lower 8 Gradation setting PS=1: Upper 8 Gradation setting # DMY register Although segment drivers in normal condition output LCD driving voltage corresponding to data in Display data RAM, Icon segment driver output LCD driving voltage corresponding to registers. The 24 bits register corresponds to SEGSA0 ~ SEGSA1, SEGSB0 ~ SEGSB1, SEGSC0 ~ SEGSC1. DMY=0: DMY=1: Normal RAM access Icon segment driver RAM access - 87 - NJU6824 (32-31) PWM control The “PWM control” is used to determine the PWM type for the segment waveforms, where the type can be specified for each of the SEGAi, SEGBi and SEGCi (i=0-127) drivers. CSb RS 0 1 RDb WRb 1 0 RE2 RE1 RE0 D7 D6 D5 D4 1 0 1 1 0 1 0 D3 D2 D1 PWMS PWMA PWMB PWMC # PWMS register PWMS=0: Type 1 PWMS=1: Type 2 # PWMA, B and C registers The “PWMA, PWMB and PWMC” registers are used to select the type 1-O or type 1-E. PWMZ=0 (Z=A, B and C): Type 1-O PWMZ=1 (Z=A, B and C): Type 1-E PWM type1 (PWMS=”0”) “H” CL Odd line Even line “L” VLCD Type-O → ← V2 SEG VLCD Type-E → V2 PWM type2 (PWMS=”1”) CL “H” “L” SEG VLCD → V2 - 88 - → ← D0 NJU6824 (33) The relationship between Common drivers and row addresses Row address assignment of common drivers is programmed by the “ SHIFT ” register of the “ Display control (1) ” , “ Duty cycle ratio ”, “ Internal display line ” and “ Initial COM line ” instructions. # When initial display line is “0” If the “ SHIFT “ is “ 0 “, the scan direction is normal. When the “ LA0 to LA6 ” registers of the “ Initial display line “instruction is “ 0 “, the “ MY “ corresponding to the initial COM line is “ 0 “ and is increasing during display. # When initial display line is not “0” If the “ SHIFT “ is “ 1 “, the scan direction is inversed. When the “ LA0 to LA6 ” registers of the “ Initial display line “instruction is not “ 0 “, the “ MY “ corresponding to the initial COM line is this setting value and is increasing during display. The following are examples of setting the start-line 0 or 5 at 1/129, 1/128, or 1/17 duty. - 89 - NJU6824 (33-1) Initial display line “0”, 1/129 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 SC1 SC0 0000 0 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0000”, LA6….LA0=”00000000”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 124 120 112 104 96 88 72 64 56 1100 1101 1110 1111 48 40 32 24 16 127 123 119 111 103 95 87 79 71 63 55 47 39 31 23 15 (129th COM period) *1 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 129th COM period is not selected. - 90 - 80 1011 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COM80 COM81 COM82 COM83 COM84 COM85 COM86 COM87 COM88 COM89 COM90 COM91 COM92 COM93 COM94 COM95 COM96 : COM103 COM104 : COM111 COM112 : COM125 COM126 COM127 NJU6824 (33-2) Initial display line “0”, 1/17 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COM80 COM81 COM82 COM83 COM84 COM85 COM86 COM87 COM88 : COM95 COM96 : COM103 COM104 : COM111 COM112 : COM119 : COM127 SC1 SC0 0000 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”1110”, LA6….LA0=”00000000”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0 0 0 15 0 15 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 15 (17th COM period) *1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 17th COM period is not selected. - 91 - NJU6824 (33-3) Initial display line “0”, 1/129 duty cycle (Common backward scan, DSE=”0”) SC3 SC2 SC1 SC0 0000 SHIFT=”1”(Common backward scan), DS3, 2, 1, 0=”0000”, LA6….LA0=”00000000”(Initial display line 0) 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 123 119 111 103 95 87 71 63 55 1100 1101 1110 1111 47 39 31 23 15 127 0 124 120 112 104 96 88 80 72 64 56 48 40 32 24 16 (129th COM period) *1 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 129th COM period is not selected. - 92 - 79 1011 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 : COM15 COM16 : COM23 COM24 : COM31 COM32 : COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COM80 COM81 COM82 COM83 COM84 COM85 COM86 COM87 COM88 COM89 COM90 COM91 COM92 COM93 COM94 COM95 COM96 COM97 COM98 COM99 COM100 COM101 COM102 COM103 COM104 COM105 COM106 COM107 COM108 COM109 COM110 COM111 COM112 COM113 COM114 COM115 COM116 COM117 COM118 COM119 COM120 COM121 COM122 COM123 COM124 COM125 COM126 COM127 NJU6824 (33-4) Initial display line “5”, 1/129 duty cycle (Common forward scan, DSE=”0”) SC3 SC2 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 : COM80 COM81 COM82 COM83 : COM88 COM89 COM90 COM91 : COM96 COM97 COM98 COM99 : COM104 COM105 COM106 COM107 : COM112 : COM122 COM123 COM124: COM125 COM126 COM127 th (129 COM period) *1 SC1 SC0 0000 5 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0000”, LA6….LA0=”00000101”(Initial display line 5) 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1 125 126 127 0 117 109 101 93 85 77 69 61 1011 1100 1101 1110 1111 53 45 37 29 21 5 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 5 127 0 4 127 0 124 116 108 100 92 84 76 68 60 52 44 38 28 20 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line *1 : 129th COM period is not selected. - 93 - NJU6824 (33-5) Initial display line “0”, 1/128 duty cycle (Common forward scan, DSE=”1”) SC3 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COM80 COM81 COM82 COM83 COM84 COM85 COM86 COM87 COM88 COM89 COM90 COM91 COM92 COM93 COM94 COM95 COM96 : COM103 COM104 : COM111 COM112 : COM125 COM126 COM127 SC2 SC1 SC0 0000 0 SHIFT=”0”(Common forward scan), DS3, 2, 1, 0=”0000”, LA6….LA0=”00000000”(Initial display line 0) DSE=”1” 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 124 120 112 104 96 88 72 64 56 48 1100 1101 1110 1111 40 32 24 16 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 0 127 123 119 111 103 95 87 DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line - 94 - 80 79 71 63 55 47 39 31 23 15 NJU6824 ■ ABSOLUTE MAXIMUM RATINGS PARAMETER Supply Voltage (1) Supply Voltage (2) Supply Voltage (3) Supply Voltage (4) Supply Voltage (5) Supply Voltage (6) Input Voltage Storage Temperature SYMBOL VDD VEE VOUT VREG VLCD V1, V2, V3, V4 VI Tstg CONDITION VSS=0V Ta = +25°C TERMINAL VDD VEE VOUT VREG VLCD V1, V2, V3, V4 *1 RATING -0.3 to +4.0 -0.3 to +4.0 -0.3 to +20.0 -0.3 to +20.0 -0.3 to +20.0 -0.3 to VLCD + 0.3 -0.3 to VDD + 0.3 -45 to +125 UNIT V V V V V V V °C Note 1) D0 to D15, CSb, RS, RDb, WRb, OSC1, RESb terminals. Note 2) To stabilize the voltage booster operation, decoupling capacitors must be connected between the VDD and VSS pins and between the VEE and VSSH pins. ! RECOMMENDED OPERATING CONDITIONS PARAMETER Supply Voltage Operating Voltage Operating Temperature SYMBOL VDD1 VDD2 VEE VLCD VOUT VREG VREF Topr TERMINAL VDD VEE VLCD VOUT VREG VREF MIN 1.7 2.4 2.4 5 TYP 2.1 MAX 3.3 3.3 3.3 18.0 18.0 VOUT × 0.9 3.3 UNIT V V V V V V V -30 85 °C NOTE *1 *2 *3 *4 *5 Note1) Note2) Note3) Note4) Applies to the condition when the reference voltage generator is not used. Applies to the condition when the reference voltage generator is used. Applies to the condition when the voltage booster is used. The following relationship among the supply voltages must be maintained. VSS<V4<V3<V2<V1<VLCD<VOUT Note5) The relationship: VREF<VEE must be maintained. - 95 - NJU6824 ■ DC CHARACTERISTICS 1 VSS = 0V, VDD = +1.7 to +3.3V, Ta = -30 to +85°C High level input voltage Low level input voltage High level output voltage Low level output voltage High level output voltage Low level output voltage Input leakage current Output leakage current SYM BOL VIH VIL VOH1 VOL1 VOH2 VOL2 ILI ILO IOH = -0.4mA IOL = 0.4mA IOH = -0.1mA IOL = 0.1mA VI = VSS or VDD VI = VSS or VDD Driver ON-resistance RON1 |∆VON| = 0.5V ISTB CSb=VDD, Ta=25°C VDD = 3V PARAMETER Stand-by current Internal oscillation Frequency External oscillation Frequency fOSC1 fOSC2 fOSC3 fr1 fr2 fr3 CONDITION TYP 0.8 VDD 0 VDD - 0.4 MAX VDD 0.2VDD 0.4 VDD - 0.4 -10 -10 1 2 VLCD = 10V VLCD = 6V VDD = 3V Ta = 25°C Rf=15kΩ Rf=68kΩ Rf=510kΩ N-time booster (N=2 to 6) RL = 500kΩ (VOUT - VSS) VDD = 3V, 6-time booster Whole ON pattern VDD = 3V, 6-time booster Checker pattern VDD = 3V, 5-time booster Whole ON pattern VDD = 3V, 5-time booster Checker pattern VDD = 3V, 4-time booster Whole ON pattern VDD = 3V, 4-time booster Checker pattern Voltage converter output voltage VOUT Supply current (1) IDD1 Supply current (2) IDD2 Supply current (3) IDD3 Supply current (4) IDD4 Supply current (5) IDD5 Supply current (6) IDD6 VBA Operating voltage VBA VEE = 2.4 to 3.3V VREG Operating voltage VREG VEE = 2.4 to 3.3V VREF = 0.9 x VEE N-time booster (N=2 to 6) Output Voltage V2 V3 VD12 VD34 VD24 - 96 - MIN 490 110 15.9 600 135.5 19.4 575 135 19.6 0.4 10 10 2 4 15 710 160 22.9 (N x VEE) x 0.95 (0.9 VEE) x 0.98 (VREF x N) x 0.97 -100 -100 -30 -30 -30 760 1140 930 1400 520 780 650 980 360 540 450 680 0.9 VEE (0.9 VEE) x 1.02 (VREF x N) 0 0 0 0 0 (VREF x N) x 1.03 +100 +100 +30 +30 +30 UNIT NOTE V V V V V V µA µA *1 *1 *2 *2 *3 *3 *4 *5 kΩ *6 µA *7 *8 *9 *10 kHz kHz *11 V *12 µA *13 V *14 V *15 mV *16 NJU6824 ■ CLOCK and FRAME FREQUENCY PARAMETER SYMBOL Internal clock fOSC Display mode Display duty cycle ratio (1/D) <DSE=0> 1/129 to 1/81 1/73 to 1/41 1/33 to 1/25 1/17 16 Gradation mode fOSC / (62xD) fOSC / (62xDx2) fOSC / (62xDx4) fOSC / (62xDx8) Simplified 8 gradation mode fOSC / (14xD) fOSC / (14xDx2) fOSC / (14xDx4) fOSC / (14xDx8) B&W mode fOSC / (2xD) fOSC / (2xDx2) fOSC / (2xDx4) fOSC / (2xDx8) 16 Gradation mode fCK / (62xD) fCK / (62xDx2) fCK / (62xDx4) fCK / (62xDx8) Simplified 8 gradation mode fCK / (14xD) fCK / (14xDx2) fCK / (14xDx4) fCK / (14xDx8) B&W mode fCK / (2xD) fCK / (2xDx2) fCK / (2xDx4) fCK / (2xDx8) NOTE FLM External clock fCK - 97 - NJU6824 APPLIED TERMINALS and CONDITIONS Note 1) Note 2) Note 3) Note 4) Note 5) D0-D15, CSb, RS, RDb, WRb, P/S, SEL68, RESb D0-D15 CL, FLM, FR, CLK CSb, RS, SEL68, RDb, WRb, P/S, RESb, OSC1 D0-D15 in the high impedance Note 6) - SEGA0-SEGA127, SEGB0-SEGB127, SEGC0-SEGC127, COM0-COM127 and SEGSA0-SEGSA1, SEGSB0-SEGSB1, SEGSC0-SEGSC1 - Defines the resistance between the COM/SEG terminals and the power supply terminals (VLCD, V1, V2, V3 and V4) at the condition of 0.5V deference and 1/9 LCD bias ratio. Note 7) VDD - The oscillator is halted, CSb=”1” (disabled), No-load on the COM/SEG drivers Note 8) OSC - Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the variable gradation mode. Note 9) OSC - Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the fixed gradation mode. Note 10) OSC - Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the Black & White mode. Note 11) VDD=3V, Ta=25°C Note 12) VOUT - Applies to the condition when the internal voltage booster, the internal oscillator and the internal power circuits are used. - VEE=2.4V to 3.3V, EVR= (1,1,1,1,1,1,1), 1/5 to 1/12 LCD bias, 1/129 duty cycle, No-load on COM/SEG drivers. - RL=500KΩ between the VOUT and the VSS, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1” Note 13) VDD - Applies to the condition using the internal oscillator and internal power circuits, no access between the LSI and MPU. - EVR= (1,1,1,1,1,1,1), All pixels turned-on or checkerboard display in gradation mode. No-load on the COM/SEG drivers. - VDD=VEE, VREF=0.9VEE, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”, NLIN=”0”, 1/129 Duty cycle, Ta=25°C Note 14) VBA - Applies to the condition that VBA=VREF and voltage booster N= 1. DCON=”0”, VOUT=13.5V input. Note 15) VREG - VEE=2.4V to 3.3V, VREF=0.9VEE, VOUT=18V, 1/5 to 1/12 LCD bias ratio, 1/129 duty cycle, EVR=(1,1,1,1,1,1,1) - Checkerboard display, No-load on the COM/SEG drivers, the voltage booster N=2 to 6, V1A1, V1A2, V4A1, V4A2 = “0”. CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1”, NLIN=”0” Note 16) VLCD, V1, V2, V3, V4 - VEE=3.0V, VREF=0.9VEE, VOUT=15V, 1/5 to 1/12 LCD Bias, EVR= (1,1,1,1,1,1,1), Display OFF, Noload on the COM/SEG drivers, voltage booster N=5, V1A1, V1A2, V4A1, V4A2 = “0”. CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1” (1) (2) (3) (4) - 98 - VLCD V1 V2 V3 V4 VSS VD12: (1)-(2) VD34: (3)-(4) VD24: (2)-(4) NJU6824 ■ AC CHARACTERISTICS # Write operation (80-type MPU) tAS8 tAH8 CSb RS WRb tWRLW8 tWRHW8 tDS8 tDH8 D0 to D15 tCYC8 PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Data setup time Data hold time PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Data setup time Data hold time SYMBOL tAH8 tAS8 CONDITION MIN. 0 0 (VDD=2.5 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS tCYC8 tWRLW8 tWRHW8 90 35 35 ns ns ns WRb tDS8 tDH8 30 5 ns ns D0 to D15 SYMBOL tAH8 tAS8 CONDITION MIN. 0 0 (VDD=2.2 to 2.5V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS tCYC8 tWRLW8 tWRHW8 160 70 70 ns ns ns WRb tDS8 tDH8 40 5 ns ns D0 to D15 (VDD=1.7 to 2.2V, Ta=-30 to +85°C) PARAMETER Address hold time Address setup time SYMBOL tAH8 tAS8 CONDITION MIN. 0 0 MAX. UNIT ns ns TERMINAL CSb RS 180 80 80 ns ns ns WRb Data setup time tDS8 70 Data hold time tDH8 10 Note) Each timing is specified based on 20% and 80% of VDD. ns ns D0 to D15 System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC8 tWRLW8 tWRHW8 - 99 - NJU6824 # Read operation (80-type MPU) tAH8 tAS8 CSb RS tWRLR8 RDb tWRHR8 tRDH8 D0 to D15 tRDD8 tCYC8 PARAMETER Address hold time Address setup time SYMBOL tAH8 tAS8 System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC8 tWRLR8 tWRHR8 Read Data delay time Read Data hold time TRDD8 TRDH8 PARAMETER Address hold time Address setup time SYMBOL tAH8 tAS8 System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC8 tWRLR8 tWRHR8 Read Data delay time Read Data hold time TRDD8 TRDH8 CONDITION MIN. 0 0 (VDD=2.5 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS 180 80 80 CL=15pF CONDITION 0 MIN. 0 0 60 0 RDb ns ns D0 to D15 (VDD=2.2 to 2.5V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS 180 80 80 CL=15pF ns ns ns 60 ns ns ns RDb ns ns D0 to D15 (VDD=1.7 to 2.2V, Ta=-30 to +85°C) PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width SYMBOL tAH8 tAS8 tCYC8 tWRLR8 tWRHR8 CONDITION MIN. 0 0 250 120 120 Read Data delay time tRDD8 CL=15pF Read Data hold time tRDH8 0 Note) Each timing is specified based on 20% and 80% of VDD. - 100 - MAX. 110 UNIT ns ns TERMINAL CSb RS ns ns ns RDb ns ns D0 to D15 NJU6824 # Write operation (68-type MPU) tAS6 tAH6 CSb RS R/W (WRb) tELW6 tEHW6 E (RDb) tDS6 tDH6 D0 to D15 tCYC6 PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Data setup time Data hold time PARAMETER Address hold time Address setup time System cycle time Enable ”L” level pulse width Enable ”H” level pulse width Data setup time Data hold time SYMBOL tAH6 tAS6 CONDITION MIN. 0 0 (VDD=2.5 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS tCYC6 tELW6 tEHW6 90 35 35 ns ns ns E tDS6 tDH6 40 5 ns ns D0 to D15 SYMBOL tAH6 tAS6 CONDITION MIN. 0 0 (VDD=2.2 to 2.5V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS tCYC6 tELW6 tEHW6 160 70 70 ns ns ns E tDS6 tDH6 50 5 ns ns D0 to D15 (VDD=1.7 to 2.2V, Ta=-30 to +85°C) PARAMETER Address hold time Address setup time SYMBOL tAH6 tAS6 CONDITION MIN. 0 0 MAX. UNIT ns ns TERMINAL CSb RS 180 80 80 ns ns ns E Data setup time tDS6 70 Data hold time tDH6 10 Note) Each timing is specified based on 20% and 80% of VDD. ns ns D0 to D15 System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC6 tELW6 tEHW6 - 101 NJU6824 # Read operation (68-type MPU) tAS6 tAH6 CSb RS R/W (WRb) tELR6 tEHR6 E (RDb) tRDH6 D0 to D15 tRDD6 tCYC6 PARAMETER Address hold time Address setup time SYMBOL tAH6 tAS6 System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC6 tELR6 tEHR6 Read Data delay time Read Data hold time tRDD6 tRDH6 PARAMETER Address hold time Address setup time SYMBOL tAH6 tAS6 System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC6 tELR6 tEHR6 Read Data delay time Read Data hold time tRDD6 tRDH6 PARAMETER Address hold time Address setup time SYMBOL tAH6 tAS6 System cycle time Enable ”L” level pulse width Enable ”H” level pulse width tCYC6 tELR6 tEHR6 Read Data delay time Read Data hold time tRDD6 tRDH6 CONDITION (VDD=2.5 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS 180 80 80 CL=15pF 0 CONDITION MIN. 0 0 70 CL=15pF 0 CONDITION MIN. 0 0 70 0 E ns ns D0 to D15 ns ns ns E ns ns D0 to D15 (VDD=1.7 to 2.2V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS 250 120 120 CL=15pF ns ns ns (VDD=2.2 to 2.5V, Ta=-30 to +85°C) MAX. UNIT TERMINAL ns CSb ns RS 180 80 80 Note) Each timing is specified based on 20% and 80% of VDD. - 102 - MIN. 0 0 110 ns ns ns E ns ns D0 to D15 NJU6824 # Serial interface CSb tCSH tCSS RS tASS SCL tAHS tSLW tSHW tCYCS tDSS tDHS SDA PARAMETER Serial clock cycle SCL ”H” level pulse width SCL ”L” level pulse width Address setup time Address hold time Data setup time Data hold time CSb – SCL time CSb hold time PARAMETER Serial clock cycle SCL ”H” level pulse width SCL ”L” level pulse width Address setup time Address hold time Data setup time Data hold time CSb – SCL time CSb hold time SYMBOL CONDITION tCYCS tSHW tSLW tASS tAHS tDSS tDHS tCSS tCSH SYMBOL CONDITION tCYCS tSHW tSLW tASS tAHS tDSS tDHS tCSS tCSH MIN. 100 45 45 20 20 20 20 20 20 (VDD=2.5 to 3.3V, Ta=-30 to +85°C) UNIT MAX. TERMINAL ns ns SCL ns ns RS ns ns SDA ns ns CSb ns MIN. 100 45 45 20 20 20 20 20 20 (VDD=2.2 to 2.5V, Ta=-30 to +85°C) UNIT MAX. TERMINAL ns ns SCL ns ns RS ns ns SDA ns ns CSb ns PARAMETER SYMBOL CONDITION MIN. 160 Serial clock cycle tCYCS 75 SCL ”H” level pulse width tSHW 75 tSLW SCL ”L” level pulse width 35 Address setup time tASS 35 Address hold time tAHS 35 Data setup time tDSS 35 Data hold time tDHS 35 CSb – SCL time tCSS 35 t CSH CSb hold time Note) Each timing is specified based on 20% and 80% of VDD. (VDD=1.7 to 2.2V, Ta=-30 to +85°C) UNIT MAX. TERMINAL ns ns SCL ns ns RS ns ns SDA ns ns CSb ns - 103 NJU6824 # Display control timing CLK tDCL CL tDFLM tDFLM FLM tFR FR Output timing PARAMETER FLM delay time FR delay time CL delay time SYMBOL CONDITION tDFLM CL=15pF tFR tDCL MIN. 0 0 0 Output timing PARAMETER SYMBOL CONDITION MIN. FLM delay time tDFLM CL=15pF 0 FR delay time tFR 0 CL delay time tDCL 0 Note) Each timing is specified based on 20% and 80% of VDD. - 104 - (VDD=2.4 to 3.3V, Ta=-30 to +85°C) MAX. UNIT TERMINAL 500 ns FLM 500 ns FR 200 ns CL (VDD=1.7 to 2.4V, Ta=-30 to +85°C) MAX. UNIT TERMINAL 1000 ns FLM 1000 ns FR 200 ns CL NJU6824 # Input clock timing tCKLW OSC1 PARAMETER OSC1 “H” level pulse width (1) OSC1 “L” level pulse width (1) OSC1 “H” level pulse width (2) OSC1 “L” level pulse width (2) OSC1 “H” level pulse width (3) OSC1 “L” level pulse width (3) tCKHW SYMBOL tCKHW1 tCKLW1 tCKHW2 tCKLW2 tCKHW3 tCKLW3 CONDITION MIN. 0.70 0.70 3.13 3.13 21.8 21.8 (VDD=1.7 to 3.3V, Ta=-30 to +85°C) UNIT MAX. TERMINAL OSC1 1.02 µs ∗1 1.02 µs OSC1 4.55 µs ∗2 4.55 µs OSC1 31.4 µs ∗3 31.4 µs Note) Each timing is specified based on 20% and 80% of VDD. Note 1) Applied to the variable gradation mode / MON=”0”,PWM=”0” Note 2) Applied to the fixed gradation mode / MON=”0”,PWM=”1” Note 3) Applied to the B&W mode / MON=”1” - 105 NJU6824 # Reset input timing tRW RESb tR Internal circuit status PARAMETER Reset time RESb “L” level pulse width PARAMETER Reset time RESb “L” level pulse width SYMBOL CONDITION MIN. tR tRW SYMBOL CONDITION MIN. RESb (VDD=1.7 to 2.4V, Ta=-30 to +85°C) UNIT MAX. Terminal 1.5 10.0 µs µs 10.0 tR tRW (VDD=2.4 to 3.3V, Ta=-30 to +85°C) UNIT MAX. Terminal 1.0 Note) Each timing is specified based on 20% and 80% of VDD. - 106 - End of reset During reset µs µs RESb NJU6824 # Typical characteristic PARAMETER Basic delay time of gate # SYMBOL Ta=+25°C, VSS=0V, VDD=3.0V MIN TYP 10 MAX UNIT ns Input output terminal type (a) Input circuit VDD Terminals: I CSb, RS, RDb, WRb, SEL68, P/S, RESb Input signal VSS(0V) (b) Output circuit Terminals: VDD FLM, CL, FR, CLK Output control signal O Output signal VSS(0V) (c) Input/Output circuit VDD Terminals: I/O D0 to D15 Input signal VSS(0V) VSS(0V) Input control signal VDD Output control signal Output signal VSS(0V) - 107 NJU6824 (d) Display output circuit VLCD VLCD VLCD V1/V2 Output control signal 1 Output control signal 2 Output control signal 3 Output control signal 4 O VSS(0V) Terminals: - 108 - V3/V4 SEGA0 to SEGA127 SEGB0 to SEGB127 SEGC0 to SEGC127 COM0 to COM127 SEGSA0 to SEGSA1 SEGSB0 to SEGSB1 SEGSC0 to SEGSC1 VSS(0V) VSS(0V) NJU6824 ■ APPLICATION CIRCUIT EXAMPLES (1) MPU Connections 80-type MPU interface 1.7V to 3.3V VCC A0 RS A1 to A7 (80-type MPU) IORQb 7 D0 to D7 8 RDb WRb GND Decoder RESb VDD CSb D0 to D7 RDb WRb RESb V SS RESET 68-type MPU interface 1.7V to 3.3V VCC A0 A1 to A15 (68-type MPU) VMA RS 15 D0 to D7 8 E R/W GND Decoder RESb VDD CSb D0 to D7 RDb(E) WRb(R/W) RESb VSS RESET Serial interface 1.7V to 3.3V VCC (MPU) A0 A1 to A7 GND RS 7 Decoder VDD CSb PORT1 PORT2 SDA SCL RESb RESb VSS RESET - 109 NJU6824 [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 110 -