IL205A/206A/207/208A SMALL OUTLINE SURFACE MOUNT PHOTOTRANSISTOR OPTOCOUPLER FEATURES • High Current Transfer Ratio, IF=10 mA, VCE=5 V IL205A, 40–80% IL206A, 63–125% IL207A, 100–200% IL208A, 160–320% • High BVCEO, 70 V • Isolation Test Voltage, 2500 VACRMS • Industry Standard SOIC-8 Surface Mountable Package • Standard Lead Spacing, .05" • Available in Tape and Reel Option—Suffix “T” (Conforms to EIA Standard RS481A) • Compatible with Dual Wave, Fapor Phase and IR Reflow Soldering • Underwriters Lab File #E52744 (Code Letter P) Dimensions in inches (mm) .120±.005 (3.05±.13) .240 (6.10) CL .154±.005 (3.91±.13) Anode/ Cathode Cathode/ Anode NC NC 1 8 2 7 3 6 4 5 .016 (.41) Pin One ID .192±.005 (4.88±.13) .004 (.10) .008 (.20) .008 (.20) .050 (1.27) typ. .021 (.53) .020±.004 (.15±.10) 2 plcs. 7° .058±.005 (1.49±.13) 40° .015±.002 (.38±.05) NC Base Collector Emitter .125±.005 (3.18±.13) 5° max. R.010 (.25) max. Lead Coplanarity ±.0015 (.04) max. Characteristics (TA=25°C) Sym DESCRIPTION Emitter The IL205A/206A/207A/208A are optically coupled pairs with a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL205/ 6/7/8 come in a standard SOIC-8 small outline package for surface mounting which makes them ideally suited for high density applications with limited space. In addition to eliminating through-holes requirements, this package conforms to standards for surface mounted devices. Forward Voltage Reverse Current Capacitance Min. Typ. Max. Unit Condition VF 1.3 1.5 V IF=±10 mA IR 0.1 100 µA VR=6.0 V CO 25 pF VR=0 10 V V IC=100 mA IE=100 µA nA VCE=10 V % IF=±10 mA, VCE=5 V % IF=±1 mA, VCE=5 V Detector Breakdown Voltage Collector-Emitter Emitter-Collector Leakage Current, Collector-Emitter BVCEO BVECO 70 7 5 ICEO 50 Package A specified minimum and maximum CTR allows a narrow tolerance in the electrical design of the adjacent circuits. The high BVCEO of 70 volts gives a higher safety margin compared to the industry standard 30 volts. DC Current Transfer IL205A IL206A IL207A IL208A CTRDC Maximum Ratings Emitter Peak Reverse Voltage......................................6.0 V Continuous Forward Current..........................60 mA Power Dissipation at 25°C ............................90 mW Derate Linearly from 25°C ......................1.2 mW/°C Detector Collector-Emitter Breakdown Voltage ...............70 V Emitter-Collector Breakdown Voltage .................7 V Collector-Base Breakdown Voltage ..................70 V Power Dissipation ......................................150 mW Derate Linearly from 25°C ......................2.0 mW/°C Package Total Package Dissipation at 25°C Ambient (LED + Detector).....................................240 mW Derate Linearly from 25°C ......................3.3 mW/°C Storage Temperature ...................–55°C to +150°C Operating Temperature ................–55°C to +100°C Soldering Time at 260°C.............................. 10 sec. DC Current Transfer IL205A IL206A IL207A IL208A CTRDC Saturation Voltage, Collector-Emitter VCEsat Isolation Test Voltage VIO 80 125 200 320 40 63 100 100 13 22 34 56 Equivalent DC Isolation Voltage 25 40 60 95 0.4 IC=2.0 mA, IF=10 mA, 2500 VACRMS 3535 VDC Capacitance, Input to Output CIO 0.5 pF Resistance, Input to Output RIO 100 GΩ Switching Time tON, tOFF 3.0 µs 5–1 IC=2.0 mA, RE=100 Ω, VCE=10 V Figure 1. Forward voltage versus forward current Figure 5. Normalized collector-base photocurrent versus LED current 1.3 10 Ta = -55°C NIcb - Normalized Icb VF - Forward Voltage - V 1.4 1.2 Ta = 25°C 1.1 1.0 0.9 Ta = 85°C 0.8 0.7 .1 1 10 IF - Forward Current - mA 1.0 100 1000 Ta = 25°C Vce = 5 V Vce = 0.4 V 0.0 1 1 10 IF - LED Current - mA Figure 6. Collector-emitter photocurrent versus LED current 0.5 .1 .1 Icb - Collector-base Current - µA NCTRce - Normalized CTRce Normalized to: Vce = 10 V IF = 10 mA Ta = 25 °C 1 .01 .1 100 Figure 2. Normalized non-saturated and saturated CTRce versus LED current 1.5 Normalized to: Vcb = 9.3 V IF = 10 mA Ta = 25 °C 10 Vcb = 9.3 V 100 10 100 1 .1 .1 IF - LED Current - mA 1 10 100 IF - LED Curr ent - mA Figure 3. Collector-emitter current versus LED current Figure 7. Collector-emitter photocurrent versus LED current Ta = 25°C Iceo - Collector-Emitter - nA Ice - Collector-emitter Current - mA 150 Vce = 10 V 100 50 Vce = 0.4 V 0 .1 1 10 IF - LED Current - mA 100 105 10 4 10 3 10 2 TYPICAL 10 -1 10 -2 -20 Figure 4. Normalized collector-base photocurrent versus LED current 0 20 40 60 80 100 Ta - Ambient Temperature - °C Figure 8. Base current versus If and HFE 100 Normalized to: Vcb = 9.3 V 10 IF = 1 mA Ta = 25 °C 2.0 NHFE(sat) - Normalized Saturated HFE NIcb - Normalized Icb Vce = 10V 10 1 10 0 1 .1 .1 1 10 IF - LED Current - mA 70°C 1.5 25°C 50°C Normalized to: Ib = 20µA Vce = 10 V Ta = 25 °C 1.0 Vce = 0.4 V 0.5 0.0 100 1 5–2 10 100 Ib - Base Current - µA 1000 IL205A/206A/207A/208A Figure 9. Typical switching characteristics versus base resistance (saturated operation) Figure 10. Typical switching times versus load resistance Input: IF =10mA 50 Pulse width=100 mS Duty cycle=50% 1000 Switching time (µS) Switching time (µs) 100 F T OF 10 5 TON 1.0 10K 50K 100K Input: 500 IF=10 mA Pulse width=100 mS Duty cycle=50% 100 50 10 Base-emitter resistance, RBE (Ω) TON 5 1 500K 1M FF TO 0.1 0.5 1 5 10 50 100 Load resistance RL (KΩ) 5–3 IL205A/206A/207A/208A