INFINEON IL206A

IL205A/206A/207/208A
SMALL OUTLINE SURFACE MOUNT
PHOTOTRANSISTOR OPTOCOUPLER
FEATURES
• High Current Transfer Ratio, IF=10 mA,
VCE=5 V
IL205A, 40–80%
IL206A, 63–125%
IL207A, 100–200%
IL208A, 160–320%
• High BVCEO, 70 V
• Isolation Test Voltage, 2500 VACRMS
• Industry Standard SOIC-8 Surface Mountable
Package
• Standard Lead Spacing, .05"
• Available in Tape and Reel Option—Suffix “T”
(Conforms to EIA Standard RS481A)
• Compatible with Dual Wave, Fapor Phase and
IR Reflow Soldering
• Underwriters Lab File #E52744 (Code
Letter P)
Dimensions in inches (mm)
.120±.005
(3.05±.13)
.240
(6.10)
CL
.154±.005
(3.91±.13)
Anode/
Cathode
Cathode/
Anode
NC
NC
1
8
2
7
3
6
4
5
.016 (.41)
Pin One ID
.192±.005
(4.88±.13)
.004 (.10)
.008 (.20)
.008 (.20)
.050 (1.27)
typ.
.021 (.53)
.020±.004
(.15±.10)
2 plcs.
7°
.058±.005
(1.49±.13)
40°
.015±.002
(.38±.05)
NC
Base
Collector
Emitter
.125±.005
(3.18±.13)
5° max.
R.010
(.25) max.
Lead
Coplanarity
±.0015 (.04)
max.
Characteristics (TA=25°C)
Sym
DESCRIPTION
Emitter
The IL205A/206A/207A/208A are optically coupled
pairs with a Gallium Arsenide infrared LED and a
silicon NPN phototransistor. Signal information,
including a DC level, can be transmitted by the
device while maintaining a high degree of electrical isolation between input and output. The IL205/
6/7/8 come in a standard SOIC-8 small outline
package for surface mounting which makes them
ideally suited for high density applications with limited space. In addition to eliminating through-holes
requirements, this package conforms to standards
for surface mounted devices.
Forward Voltage
Reverse Current
Capacitance
Min.
Typ.
Max.
Unit
Condition
VF
1.3
1.5
V
IF=±10 mA
IR
0.1
100
µA
VR=6.0 V
CO
25
pF
VR=0
10
V
V
IC=100 mA
IE=100 µA
nA
VCE=10 V
%
IF=±10 mA,
VCE=5 V
%
IF=±1 mA,
VCE=5 V
Detector
Breakdown Voltage
Collector-Emitter
Emitter-Collector
Leakage Current,
Collector-Emitter
BVCEO
BVECO
70
7
5
ICEO
50
Package
A specified minimum and maximum CTR allows a
narrow tolerance in the electrical design of the
adjacent circuits. The high BVCEO of 70 volts gives
a higher safety margin compared to the industry
standard 30 volts.
DC Current
Transfer
IL205A
IL206A
IL207A
IL208A
CTRDC
Maximum Ratings
Emitter
Peak Reverse Voltage......................................6.0 V
Continuous Forward Current..........................60 mA
Power Dissipation at 25°C ............................90 mW
Derate Linearly from 25°C ......................1.2 mW/°C
Detector
Collector-Emitter Breakdown Voltage ...............70 V
Emitter-Collector Breakdown Voltage .................7 V
Collector-Base Breakdown Voltage ..................70 V
Power Dissipation ......................................150 mW
Derate Linearly from 25°C ......................2.0 mW/°C
Package
Total Package Dissipation at 25°C Ambient
(LED + Detector).....................................240 mW
Derate Linearly from 25°C ......................3.3 mW/°C
Storage Temperature ...................–55°C to +150°C
Operating Temperature ................–55°C to +100°C
Soldering Time at 260°C.............................. 10 sec.
DC Current
Transfer
IL205A
IL206A
IL207A
IL208A
CTRDC
Saturation Voltage,
Collector-Emitter
VCEsat
Isolation Test
Voltage
VIO
80
125
200
320
40
63
100
100
13
22
34
56
Equivalent DC
Isolation Voltage
25
40
60
95
0.4
IC=2.0 mA,
IF=10 mA,
2500
VACRMS
3535
VDC
Capacitance,
Input to Output
CIO
0.5
pF
Resistance,
Input to Output
RIO
100
GΩ
Switching Time
tON,
tOFF
3.0
µs
5–1
IC=2.0 mA,
RE=100 Ω,
VCE=10 V
Figure 1. Forward voltage versus forward current
Figure 5. Normalized collector-base photocurrent versus LED current
1.3
10
Ta = -55°C
NIcb - Normalized Icb
VF - Forward Voltage - V
1.4
1.2
Ta = 25°C
1.1
1.0
0.9
Ta = 85°C
0.8
0.7
.1
1
10
IF - Forward Current - mA
1.0
100
1000
Ta = 25°C
Vce = 5 V
Vce = 0.4 V
0.0
1
1
10
IF - LED Current - mA
Figure 6. Collector-emitter photocurrent versus LED
current
0.5
.1
.1
Icb - Collector-base
Current - µA
NCTRce - Normalized CTRce
Normalized to:
Vce = 10 V
IF = 10 mA
Ta = 25 °C
1
.01
.1
100
Figure 2. Normalized non-saturated and saturated
CTRce versus LED current
1.5
Normalized to:
Vcb = 9.3 V
IF = 10 mA
Ta = 25 °C
10
Vcb = 9.3 V
100
10
100
1
.1
.1
IF - LED Current - mA
1
10
100
IF - LED Curr ent - mA
Figure 3. Collector-emitter current versus LED current
Figure 7. Collector-emitter photocurrent versus LED
current
Ta = 25°C
Iceo - Collector-Emitter - nA
Ice - Collector-emitter
Current - mA
150
Vce = 10 V
100
50
Vce = 0.4 V
0
.1
1
10
IF - LED Current - mA
100
105
10 4
10
3
10 2
TYPICAL
10 -1
10 -2
-20
Figure 4. Normalized collector-base photocurrent versus LED current
0
20
40
60
80
100
Ta - Ambient Temperature - °C
Figure 8. Base current versus If and HFE
100
Normalized to:
Vcb = 9.3 V
10 IF = 1 mA
Ta = 25 °C
2.0
NHFE(sat) - Normalized
Saturated HFE
NIcb - Normalized Icb
Vce = 10V
10 1
10 0
1
.1
.1
1
10
IF - LED Current - mA
70°C
1.5
25°C
50°C
Normalized to:
Ib = 20µA
Vce = 10 V
Ta = 25 °C
1.0
Vce = 0.4 V
0.5
0.0
100
1
5–2
10
100
Ib - Base Current - µA
1000
IL205A/206A/207A/208A
Figure 9. Typical switching characteristics versus base
resistance (saturated operation)
Figure 10. Typical switching times versus load resistance
Input:
IF =10mA
50 Pulse
width=100 mS
Duty cycle=50%
1000
Switching time (µS)
Switching time (µs)
100
F
T OF
10
5
TON
1.0
10K
50K 100K
Input:
500 IF=10 mA
Pulse width=100 mS
Duty cycle=50%
100
50
10
Base-emitter resistance, RBE (Ω)
TON
5
1
500K 1M
FF
TO
0.1
0.5 1
5
10
50 100
Load resistance RL (KΩ)
5–3
IL205A/206A/207A/208A