3SK237 Silicon N–Channel Dual Gate MOSFET Application CMPAK-4 UHF/VHF RF amplifier Features 2 • High gain and low niose • Capable of low voltage operation 3 1 4 1. Source 2. Gate1 3. Gate2 4. Drain Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Drain to source voltage VDS 12 V ——————————————————————————————————————————— Gate1 to source voltage VG1S ±10 V ——————————————————————————————————————————— Gate2 to source voltage VG2S ±10 V ——————————————————————————————————————————— Drain current ID 35 mA ——————————————————————————————————————————— Channel power dissipation Pch 100 mW ——————————————————————————————————————————— Channel temperature Tch 125 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +125 °C ——————————————————————————————————————————— Marking is “XY”. 3SK237 Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Drain to source breakdown voltage V(BR)DSX 12 — — V ID = 200 µA, VG1S = –5 V, VG2S = –5 V ——————————————————————————————————————————— Gate1 to source breakdown voltage V(BR)G1SS ±10 — — V IG1 = ±10 µA, VG2S = VDS = 0 ——————————————————————————————————————————— Gate2 to source breakdown voltage V(BR)G2SS ±10 — — V IG2 = ±10 µA, VG1S = VDS = 0 ——————————————————————————————————————————— Gate1 leakage current IG1SS — — ±100 nA VG1S = ±8 V, VG2S = VDS = 0 ——————————————————————————————————————————— Gate2 leakage current IG2SS — — ±100 nA VG2S = ±8 V, VG1S = VDS = 0 ——————————————————————————————————————————— Drain current IDSS 0 — 1 mA VDS = 6 V, VG1S = 0, VG2S = 3 V ——————————————————————————————————————————— Gate1 to source cutoff voltage VG1S(off) –0.1 — +1.0 V VDS = 10 V, VG2S = 3V, ID = 100 µA ——————————————————————————————————————————— Gate2 to source cutoff voltage VG2S(off) –0.1 — +1.0 V VDS = 10 V, VG1S = 3V, ID = 100 µA ——————————————————————————————————————————— Forward transfer admittance |yfs| 17 22.6 — mS VDS = 6V, VG2S = 3 V, ID = 10 mA, f = 1 kHz ——————————————————————————————————————————— Input capacitance Ciss 2.4 3.4 4.4 pF —————————————————————————————— Output capacitance Coss 0.7 1.25 2.0 pF VDS = 6 V, VG2S = 3 V,ID = 10 mA, f = 1 MHz —————————————————————————————— Reverse transfer capacitance Crss — 0.021 0.05 pF ——————————————————————————————————————————— Power gain PG 24 27.2 — dB —————————————————————————————— Noise figure NF — 1.54 2.5 VDS = 6 V, VG2S = 3 V, ID = 10 mA, f = 200 MHz dB ——————————————————————————————————————————— Power gain PG 10 14.1 — dB —————————————————————————————— Noise figure NF — 4.15 6 VDS = 6 V, VG2S = 3 V, ID = 10 mA, f = 900 MHz dB ——————————————————————————————————————————— 3SK237 Typical output characteristics 20 200 VG2S = 3 V 1.2 V I D (mA) 16 150 1.0 V 12 100 Drain Current Channel Power Dissipation Pch (mW) Maximum channel power dissipation curve 50 4 0.6 V 0 100 150 200 50 Ambient Temperature Ta (°C) 20 1.5 V 12 1V 8 4 I D (mA) 3V 3V Drain Current 16 20 VDS = 6 V 2V 3 4 5 1 2 Gate1 to Source Voltage V G1S (V) V DS = 6 V 16 12 2V 1.5 V 1V 8 4 VG2S = 0.5 V 0 2 4 6 8 10 Drain to Source Voltage V DS (V) Drain current vs. Gate2 to source voltage Drain current vs. Gate1 to source voltage I D (mA) 0.8 V VG1S = 0.4 V 0 Drain Current 8 VG1S = 0.5 V 0 1 2 3 4 5 Gate2 to Source Voltage VG2S (V) 3SK237 Power gain vs. drain current 40 40 32 VG2S = 3 V 2.5 V 24 2V 16 1.5 V 8 1V 0.4 0.8 1.2 1.6 2 Gate1 to Source Voltage VG1S (V) Noise figure vs. drain current 5 NF (dB) 32 24 16 8 0.5 V 0 Noise Figure PG (dB) VDS = 6 V f = 1 kHz Power Gain Forward Transfer Admittance |y fs | (mS) Forward transfer admittance vs. gate1 to source voltage 4 VDS = 6 V VG2S = 3 V f = 200 MHz 3 2 1 0 8 12 16 4 Drain Current I D (mA) 20 0 VDS = 6 V VG2S = 3 V f = 200 MHz 8 12 16 4 Drain Current I D (mA) 20