ETC 3SK237

3SK237
Silicon N–Channel Dual Gate MOSFET
Application
CMPAK-4
UHF/VHF RF amplifier
Features
2
• High gain and low niose
• Capable of low voltage operation
3
1
4
1. Source
2. Gate1
3. Gate2
4. Drain
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDS
12
V
———————————————————————————————————————————
Gate1 to source voltage
VG1S
±10
V
———————————————————————————————————————————
Gate2 to source voltage
VG2S
±10
V
———————————————————————————————————————————
Drain current
ID
35
mA
———————————————————————————————————————————
Channel power dissipation
Pch
100
mW
———————————————————————————————————————————
Channel temperature
Tch
125
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +125
°C
———————————————————————————————————————————
Marking is “XY”.
3SK237
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source
breakdown voltage
V(BR)DSX
12
—
—
V
ID = 200 µA, VG1S = –5 V,
VG2S = –5 V
———————————————————————————————————————————
Gate1 to source
breakdown voltage
V(BR)G1SS
±10
—
—
V
IG1 = ±10 µA,
VG2S = VDS = 0
———————————————————————————————————————————
Gate2 to source
breakdown voltage
V(BR)G2SS
±10
—
—
V
IG2 = ±10 µA,
VG1S = VDS = 0
———————————————————————————————————————————
Gate1 leakage
current
IG1SS
—
—
±100
nA
VG1S = ±8 V,
VG2S = VDS = 0
———————————————————————————————————————————
Gate2 leakage
current
IG2SS
—
—
±100
nA
VG2S = ±8 V,
VG1S = VDS = 0
———————————————————————————————————————————
Drain current
IDSS
0
—
1
mA
VDS = 6 V, VG1S = 0,
VG2S = 3 V
———————————————————————————————————————————
Gate1 to source
cutoff voltage
VG1S(off)
–0.1
—
+1.0
V
VDS = 10 V, VG2S = 3V,
ID = 100 µA
———————————————————————————————————————————
Gate2 to source
cutoff voltage
VG2S(off)
–0.1
—
+1.0
V
VDS = 10 V, VG1S = 3V,
ID = 100 µA
———————————————————————————————————————————
Forward transfer
admittance
|yfs|
17
22.6
—
mS
VDS = 6V, VG2S = 3 V,
ID = 10 mA, f = 1 kHz
———————————————————————————————————————————
Input capacitance
Ciss
2.4
3.4
4.4
pF
——————————————————————————————
Output capacitance
Coss
0.7
1.25
2.0
pF
VDS = 6 V,
VG2S = 3 V,ID = 10 mA,
f = 1 MHz
——————————————————————————————
Reverse transfer
capacitance
Crss
—
0.021
0.05
pF
———————————————————————————————————————————
Power gain
PG
24
27.2
—
dB
——————————————————————————————
Noise figure
NF
—
1.54
2.5
VDS = 6 V, VG2S = 3 V,
ID = 10 mA, f = 200 MHz
dB
———————————————————————————————————————————
Power gain
PG
10
14.1
—
dB
——————————————————————————————
Noise figure
NF
—
4.15
6
VDS = 6 V, VG2S = 3 V,
ID = 10 mA, f = 900 MHz
dB
———————————————————————————————————————————
3SK237
Typical output characteristics
20
200
VG2S = 3 V
1.2 V
I D (mA)
16
150
1.0 V
12
100
Drain Current
Channel Power Dissipation
Pch (mW)
Maximum channel power dissipation curve
50
4
0.6 V
0
100
150
200
50
Ambient Temperature Ta (°C)
20
1.5 V
12
1V
8
4
I D (mA)
3V
3V
Drain Current
16
20
VDS = 6 V
2V
3
4
5
1
2
Gate1 to Source Voltage V G1S (V)
V DS = 6 V
16
12
2V
1.5 V
1V
8
4
VG2S = 0.5 V
0
2
4
6
8
10
Drain to Source Voltage V DS (V)
Drain current vs. Gate2 to source voltage
Drain current vs. Gate1 to source voltage
I D (mA)
0.8 V
VG1S = 0.4 V
0
Drain Current
8
VG1S = 0.5 V
0
1
2
3
4
5
Gate2 to Source Voltage VG2S (V)
3SK237
Power gain vs. drain current
40
40
32
VG2S = 3 V
2.5 V
24
2V
16
1.5 V
8
1V
0.4
0.8
1.2
1.6
2
Gate1 to Source Voltage VG1S (V)
Noise figure vs. drain current
5
NF (dB)
32
24
16
8
0.5 V
0
Noise Figure
PG (dB)
VDS = 6 V
f = 1 kHz
Power Gain
Forward Transfer Admittance |y fs | (mS)
Forward transfer admittance
vs. gate1 to source voltage
4
VDS = 6 V
VG2S = 3 V
f = 200 MHz
3
2
1
0
8
12
16
4
Drain Current I D (mA)
20
0
VDS = 6 V
VG2S = 3 V
f = 200 MHz
8
12
16
4
Drain Current I D (mA)
20