24 MHz Rail-to-Rail Amplifiers with Shutdown Option AD8646/AD8647/AD8648 PIN CONFIGURATIONS Offset voltage: 2.5 mV maximum Single-supply operation: 2.7 V to 5.5 V Low noise: 8 nV/√Hz Wide bandwidth: 24 MHz Slew rate: 11 V/μs Short-circuit output current: 120 mA No phase reversal Low input bias current: 1 pA Low supply current per amplifier: 2 mA maximum Unity gain stable OUTA 1 Battery-powered instruments Multipole filters ADC front ends Sensors Barcode scanners ASIC input or output amplifiers Audio amplifiers Photodiode amplifiers Datapath/mux/switch control AD8646 8 V+ 7 OUTB TOP VIEW 6 –INB (Not to Scale) V– 4 5 +INB +INA 3 Figure 1. 8-Lead SOIC and MSOP –INA 2 +INA 3 V– 4 10 V+ AD8647 9 OUTB TOP VIEW (Not to Scale) 8 –INB 7 +INB 6 SDB SDA 5 06527-002 OUTA 1 Figure 2. 10-Lead MSOP OUTA 1 14 OUTD –INA 2 13 –IND AD8648 12 +IND TOP VIEW (Not to Scale) 11 V– +INB 5 10 +INC –INB 6 9 –INC OUTB 7 8 OUTC +INA 3 V+ 4 06527-003 APPLICATIONS –INA 2 06527-001 FEATURES Figure 3. 14-Lead SOIC and TSSOP GENERAL DESCRIPTION The AD8646 and the AD8647 are the dual, and the AD8648 is the quad, rail-to-rail, input and output, single-supply amplifiers featuring low offset voltage, wide signal bandwidth, low input voltage, and low current noise. The AD8647 also has a low power shutdown function. The combination of 24 MHz bandwidth, low offset, low noise, and very low input bias current makes these amplifiers useful in a wide variety of applications. Filters, integrators, photodiode amplifiers, and high impedance sensors all benefit from the combination of performance features. AC applications benefit from the wide bandwidth and low distortion. TheAD8646/ AD8647/AD8648 offer high output drive capability, which is excellent for audio line drivers and other low impedance applications. Applications include portable and low powered instrumentation, audio amplification for portable devices, portable phone headsets, barcode scanners, and multipole filters. The ability to swing rail to rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs, and other wide output swing devices in single-supply systems. Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006–2007 Analog Devices, Inc. All rights reserved. AD8646/AD8647/AD8648 TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................6 Applications....................................................................................... 1 Typical Performance Characteristics ..............................................7 Pin Configurations ........................................................................... 1 Theory of Operation ...................................................................... 15 General Description ......................................................................... 1 Power-Down Operation ............................................................ 15 Revision History ............................................................................... 2 Multiplexing Operation............................................................. 15 Specifications..................................................................................... 3 Outline Dimensions ....................................................................... 16 Absolute Maximum Ratings............................................................ 6 Ordering Guide .......................................................................... 18 Thermal Resistance ...................................................................... 6 REVISION HISTORY Revision History: AD8646/AD8647/AD8648 10/07—Revision B: Initial Combined Version Deleted Figure 7.................................................................................6 Deleted Figure 11...............................................................................7 Deleted Figure 16 and Figure 17 .....................................................8 Deleted Figure 24...............................................................................9 Deleted Figure 27, Figure 28, Figure 31, and Figure 32 ............ 10 Revision History: AD8646 10/07—Rev. 0 to Rev. B Combined with AD8648....................................................Universal Added AD8647 ...................................................................Universal Deleted Figure 4 and Figure 7......................................................... 7 Deleted Figure 33............................................................................ 11 6/07—Rev. 0 to Rev. A 8/07—Revision 0: Initial Version 1/06—Revision 0: Initial Version Changes to General Description .....................................................1 Updated Outline Dimensions....................................................... 12 Changes to Ordering Guide .......................................................... 12 Revision History: AD8648 10/07—Rev. A to Rev. B Combined with AD8646....................................................Universal Added AD8647 ...................................................................Universal Rev. B | Page 2 of 20 AD8646/AD8647/AD8648 SPECIFICATIONS VSY = 5 V, VCM = VSY/2, TA = +25oC, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB VCM = 0 V to 5V −40°C < TA < +125°C −40°C < TA < +125°C Min Typ Max Unit 0.6 2.5 3.2 7.5 1 50 550 0.5 50 250 5 84 116 mV mV μV/°C pA pA pA pA pA pA V dB dB 2.5 6.7 pF pF 4.99 V V V V mV mV mV mV mA Ω 1.8 0.3 −40°C < TA < +85°C −40°C < TA < +125°C Input Offset Current IOS 0.1 −40°C < TA < +85°C −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance Differential Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier Supply Current Shutdown Mode (AD8647) SHUTDOWN INPUTS (AD8647) Logic High Voltage (Enabled) Logic Low Voltage (Power-Down) Logic Input Current (Per Pin) Output Pin Leakage Current DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin Settling Time Amplifier Turn-On Time (AD8647) Amplifier Turn-Off Time (AD8647) VCM CMRR AVO VCM = 0 V to 5 V RL = 2 kΩ, VO = 0.5 V to 4.5 V 0 67 104 CDIFF CCM VOH VOL Isc ZOUT PSRR ISY ISD VINH VINL IIN SR GBP Øm ts ton toff IOUT = 1 mA −40°C < TA < +125°C IOUT = 10 mA −40°C < TA < +125°C IOUT = 1 mA −40°C < TA < +125°C IOUT = 10 mA −40°C < TA < +125°C Short circuit At 1 MHz, AV = 1 4.98 4.90 4.85 4.70 VSY = 2.7 V to 5.5 V 63 8.4 78 RL = 2 kΩ To 0.1% 25°C, AV = 1, RL = 1 kΩ (see Figure 44) 25°C, AV = 1, RL = 1 kΩ (see Figure 45) Rev. B | Page 3 of 20 20 40 145 200 ±120 5 −40°C < TA < +125°C Shutdown of both amplifiers (AD8647 only) −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C (shutdown active) 4.92 80 1.5 2.0 2.5 10 1 +2.0 +0.8 1 1 11 24 74 0.5 1 1 dB mA mA nA μA V V μA nA V/μs MHz Degrees μs μs μs AD8646/AD8647/AD8648 Parameter NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density Symbol en p-p en Channel Separation CS Total Harmonic Distortion Plus Noise THD + N Conditions 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 10 kHz f = 100 kHz V p-p = 0.1 V, RL = 600 Ω, f = 25 kHz, TA = 25°C AV = +1 AV = −10 Rev. B | Page 4 of 20 Min Typ Max Unit 2.3 8 6 −115 −110 μV nV/√Hz nV/√Hz dB dB 0.010 0.021 % % AD8646/AD8647/AD8648 VSY = 2.7 V, VCM = VSY/2, TA = +25oC, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB VCM = 0 V to 2.7 V −40°C < TA < +125°C −40°C < TA < +125°C Min Typ Max Unit 0.6 2.5 3.2 7.0 1 50 550 0.5 50 250 2.7 79 102 mV mV μV/°C pA pA pA pA pA pA V dB dB 2.5 7.8 pF pF 2.68 V V mV mV mA Ω 1.8 0.2 −40°C < TA < +85°C −40°C < TA < +125°C Input Offset Current IOS 0.1 −40°C < TA < +85°C −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance Differential Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier Supply Current Shutdown Mode (AD8647) VCM CMRR AVO 0 62 95 CDIFF CCM VOH VOL IOUT ZOUT PSRR ISY ISD SHUTDOWN INPUTS (AD8647) Logic High Voltage (Enabled) Logic Low Voltage (Power-Down) Logic Input Current (Per Pin) Output Pin Leakage Current DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin Settling Time Amplifier Turn-On Time (AD8647) Amplifier Turn-Off Time (AD8647) SR GBP Øm ts ton toff NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density en p-p en Channel Separation VCM = 0 V to 2.7 V RL = 2 kΩ, VO = 0.5 V to 2.2 V VINH VINL VIN CS IOUT = 1 mA −40°C < TA < +125°C IOUT = 1 mA −40°C < TA < +125°C Short circuit At 1 MHz, AV = 1 2.65 2.60 VSY = 2.7 V to 5.5 V 63 11 ±63 5 −40°C < TA < +125°C Shutdown of both amplifiers (AD8647 only) −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C −40°C < TA < +125°C (shutdown active) 25 30 80 1.6 2.0 2.5 10 1 1 V V μA nA 25°C, AV = 1, RL = 1 kΩ (see Figure 41) 25°C, AV = 1, RL = 1 kΩ (see Figure 42) 11 24 53 0.3 1.2 1 V/μs MHz Degrees μs μs μs 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 10 kHz f = 100 kHz 2.3 8 6 −115 −110 μV nV/√Hz nV/√Hz dB dB RL = 2 kΩ To 0.1% Rev. B | Page 5 of 20 +2.0 dB mA mA nA μA +0.8 1 AD8646/AD8647/AD8648 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short Circuit to GND Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering 60 sec) Junction Temperature θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Rating 6V GND to VSY ±3 V Indefinite −65°C to +150°C −40°C to +125°C 300°C 150°C Table 4. Thermal Resistance Package Type 8-Lead SOIC_N 8-Lead MSOP 10-Lead MSOP 14-Lead SOIC_N 14-Lead TSSOP Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION Rev. B | Page 6 of 20 θJA 125 210 200 120 180 θJC 43 45 44 36 35 Unit °C/W °C/W °C/W °C/W °C/W AD8646/AD8647/AD8648 TYPICAL PERFORMANCE CHARACTERISTICS 300 VSY = 5V VCM = 2.5V TA = 25°C 2244 AMPLIFIERS 180 160 NUMBER OF AMPLIFIERS 250 NUMBER OF AMPLIFIERS 200 VSY = 2.7V VCM = 1.35V TA = 25°C 2244 AMPLIFIERS 200 150 100 140 120 100 80 60 40 50 –1.0 –0.5 0 0.5 1.0 1.5 2.0 VOS (mV) 0 –2.0 06527-004 –1.5 20 15 10 5 0.5 1.0 1.5 2.0 25 20 15 10 5 1 2 3 4 5 6 7 0 TCVOS (µV/°C) 0 3 4 5 6 7 8 Figure 8. VOS Drift (TCVOS) Distribution 2500 VSY = 2.7V TA = 25°C 2000 2 TCVOS (µV/°C) Figure 5. VOS Drift (TCVOS) Distribution 2500 1 06527-008 0 06527-005 0 VSY = 5V TA = 25°C 2000 INPUT OFFSET VOLTAGE (µV) 1500 1000 500 0 –500 –1000 –1500 1500 1000 500 0 –500 –1000 –1500 0 0.5 1.0 1.5 2.0 2.5 3.0 INPUT COMMON-MODE VOLTAGE (V) –2500 0 1 2 3 4 INPUT COMMON-MODE VOLTAGE (V) 5 Figure 9. Input Offset Voltage vs. Input Common-Mode Voltage Figure 6. Input Offset Voltage vs. Input Common-Mode Voltage Rev. B | Page 7 of 20 06527-009 –2000 –2000 06527-006 INPUT OFFSET VOLTAGE (µV) 0 VSY = 5V –40°C < TA < +125°C 30 NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS 35 25 –2500 –0.5 Figure 7. Input Offset Voltage Distribution VSY = 2.7V –40°C < TA < +125°C 30 –1.0 VOS (mV) Figure 4. Input Offset Voltage Distribution 35 –1.5 06527-007 20 0 –2.0 AD8646/AD8647/AD8648 10000 100 10 VOL 1 0.01 0.1 1 10 100 LOAD CURRENT (mA) 100 10 VSY – VOH 1 OUTPUT SATURATION VOLTAGE (mV) VSY – VOH 15 VOL 5 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 1000 80 VOL = 10mA 60 40 20 VSY – VOH = 1mA VOL = 1mA –25 –10 5 20 35 50 65 80 95 110 125 Figure 14. Output Saturation Voltage vs. Temperature 300 VSY = 5V TA = 125°C 250 INPUT BIAS CURRENT (pA) 250 200 150 100 50 200 150 100 50 0.75 1.00 1.25 1.50 1.75 COMMON-MODE VOLTAGE (V) 2.00 06527-012 INPUT BIAS CURRENT (pA) 100 TEMPERATURE (°C) VSY = 2.7V TA = 125°C 0 0.50 10 VSY – VOH = 10mA 100 Figure 11. Output Saturation Voltage vs. Temperature 300 1 VSY = 5V 0 –40 06527-011 OUTPUT SATURATION VOLTAGE (mV) 120 20 0 –40 0.1 Figure 13. Output Saturation Voltage vs. Load Current VSY = 2.7V IL = 1mA 10 0.01 LOAD CURRENT (mA) Figure 10. Output Saturation Voltage vs. Load Current 25 VOL 0.1 0.001 Figure 12. Input Bias Current vs. Common-Mode Voltage 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 COMMON-MODE VOLTAGE (V) Figure 15. Input Bias Current vs. Common-Mode Voltage Rev. B | Page 8 of 20 4.5 06527-015 0.1 0.001 1000 06527-013 VSY – VOH VSY = 5V TA = 25°C 06527-014 1000 OUTPUT SATURATION VOLTAGE (mV) VSY = 2.7V TA = 25°C 06527-010 OUTPUT SATURATION VOLTAGE (mV) 10000 AD8646/AD8647/AD8648 ФM = 52° 20 135 0 180 –20 225 –40 10k 100k 1M 270 100M 10M 60 FREQUENCY (Hz) 90 20 GAIN 180 –20 225 –40 10k 270 100M 10M FREQUENCY (Hz) –20 AV = 10 20 AV = 1 0 –20 –40 10k 100k 1M 10M 100M FREQUENCY (Hz) –60 1k 06527-017 –60 1k 100k 1M 10M 100M FREQUENCY (Hz) Figure 17. Closed-Loop Gain vs. Frequency 250 10k 06527-020 –40 VSY = 5V TA = 25°C AV = 100 40 AV = 1 0 1M 60 AV = 10 20 100k Figure 19. Open-Loop Gain and Phase vs. Frequency CLOSED-LOOP GAIN (dB) CLOSED-LOOP GAIN (dB) 40 135 ФM = 74° 0 VSY = 2.7V TA = 25°C AV = 100 45 PHASE 40 Figure 16. Open-Loop Gain and Phase vs. Frequency 60 0 OPEN-LOOP PHASE SHIFT (Degrees) 90 40 VSY = 5V RL = 1kΩ CL = 10pF 06527-019 45 80 OPEN-LOOP GAIN (dB) OPEN-LOOP GAIN (dB) 60 0 OPEN-LOOP PHASE SHIFT (Degrees) VSY = 2.7V RL = 1kΩ CL = 10pF 06527-016 80 Figure 20. Closed-Loop Gain vs. Frequency 120 VSY = 2.7V TA = 25°C VSY = 5V TA = 25°C 100 200 AV = 1 80 ZOUT (Ω) 150 100 AV = 10 AV = 10 60 AV = 100 40 AV = 100 50 0 1 10 100 1k 10k FREQUENCY (kHz) 100k 1M Figure 18. ZOUT vs. Frequency 0 1 10 100 1k 10k FREQUENCY (kHz) Figure 21. ZOUT vs. Frequency Rev. B | Page 9 of 20 100k 1M 06527-021 20 06527-018 ZOUT (Ω) AV = 1 AD8646/AD8647/AD8648 100 VSY = 2.7V TA = 25°C 80 80 60 60 CMRR (dB) 40 20 VSY = 5V TA = 25°C 40 20 10k 100k 1M 10M 100M FREQUENCY (Hz) 0 1k 06527-022 0 1k 10k Figure 22. CMRR vs. Frequency 100 1M 10M 100M Figure 25. CMRR vs. Frequency 100 VSY = 2.7V TA = 25°C PSRR+ 100k FREQUENCY (Hz) 06527-025 CMRR (dB) 100 80 VSY = 5V TA = 25°C PSRR+ 80 PSRR– PSRR (dB) 40 20 60 40 20 10k 100k 1M 10M FREQUENCY (Hz) 0 1k 06527-023 0 1k 10k Figure 23. PSRR vs. Frequency 60 100k 1M 10M FREQUENCY (Hz) 06527-026 PSRR (dB) PSRR– 60 Figure 26. PSRR vs. Frequency 70 VSY = ±1.35V TA = 25°C 60 50 VSY = 5V RL = 10kΩ TA = 25°C 50 OVERSHOOT (%) +OS 40 30 20 40 OS+ 30 OS– 20 10 0 1 10 100 CLOAD (pF) 1000 0 10 100 CLOAD (pF) Figure 27. Overshoot vs. Load Capacitance Figure 24. Overshoot vs. Load Capacitance Rev. B | Page 10 of 20 1000 06527-027 10 06527-024 OVERSHOOT (%) –OS AD8646/AD8647/AD8648 VSY = 2.7V, VCM = 1.35V, VIN = 100mV p-p, TA = 25°C, RL = 10kΩ, CL = 100pF (200ns/DIV) (200ns/DIV) Figure 28. Small-Signal Transient Response Figure 31. Small-Signal Transient Response VSY = 2.7V, VIN = 2V p-p, TA = 25°C, RL = 10kΩ, CL = 100pF (200ns/DIV) Figure 32. Large-Signal Transient Response 0.08 0.08 VSY = ±2.5V RL = 600Ω 0.07 AV = 1 TA = 25°C 0.06 0.07 0.06 THD + N (%) 0.05 0.04 0.03 0.05 0.04 0.03 0.02 0.01 0.01 100 1k 10k FREQUENCY (Hz) 100k 06527-030 0.02 0 10 Figure 30. THD + Noise vs. Frequency VSY = ±2.5V RL = 600Ω AV = –10 TA = 25°C 0 10 100 1k 10k FREQUENCY (Hz) Figure 33. THD + Noise vs. Frequency Rev. B | Page 11 of 20 100k 06527-033 (200ns/DIV) 06527-032 06527-029 (2V/DIV) (2V/DIV) VSY = 5V, VIN = 4V p-p, TA = 25°C, RL = 10kΩ, CL = 100pF Figure 29. Large-Signal Transient Response THD + N (%) 06527-031 06527-028 (50mV/DIV) (50mV/DIV) VSY = 5V, VCM = 2.5V, VIN = 100mV p-p, TA = 25°C, RL = 10kΩ, CL = 100pF AD8646/AD8647/AD8648 1 VSY = 2.7V TO 5V TA = 25°C 0.01 06527037 0.001 TIME (1s/DIV) VSY = 5V AV = 1 BW = 30kHz RL = 100kΩ f = 1kHz 0.0001 0.001 0.01 0.1 06527-034 THD + N (%) VOLTAGE (1µV/DIV) 0.1 1 OUTPUT AMPLITUDE (V rms) Figure 37. THD + Noise vs. Output Amplitude Figure 34. 0.1 Hz to 10 Hz Voltage Noise 1000 100 10 1 10 100 10k 1k FREQUENCY (Hz) VSY = 5V 100 10 1 0.1 25 80 105 125 Figure 38. Input Bias Current vs. Temperature 5.0 TA = 25°C VSY = 5V VIN = 4.9V AV = 1 RL = 10kΩ TA = 25°C 4.5 4.0 OUTPUT SWING (V p-p) 2.0 1.5 1.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 Figure 36. Supply Current per Amplifier vs. Supply Voltage 0 100 1k FREQUENCY (kHz) Figure 39. Maximum Output Swing vs. Frequency Rev. B | Page 12 of 20 10k 06527-036 0.5 06527-039 SUPPLY CURRENT PER AMPLIFIER (mA) 65 TEMPERATURE (°C) Figure 35. Voltage Noise Density vs. Frequency 2.5 45 06527-038 INPUT BIAS CURRENT (pA) VSY = 2.7V TO 5V TA = 25°C 06527-035 VOLTAGE NOISE DENSITY (nV/√Hz) 1000 AD8646/AD8647/AD8648 0 VOUT = VSY/2 CHANNEL SEPARATION (dB) –20 3.0 2.5 VSY = 2.7V 2.0 VSY = 5V 1.5 1.0 V+ 3 VIN –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) + – 0 2 V– U1 V+ V– R3 2kΩ V– U2 5 V– V+ R2 6 200Ω 7 V+ 0 0 0 –60 –80 VIN = 2V p-p VIN = 0.5V p-p –120 1k 10k 100k FREQUENCY (Hz) Figure 40. Supply Current per Amplifier vs. Temperature Figure 43. Channel Separation VSY = 5V RL = 1kΩ AV = 1 TA = 25°C SHUTDOWN PIN VOLTAGE (1V/DIV) VSY = 2.7V RL = 1kΩ AV = 1 TA = 25°C VOLTAGE (1V/DIV) R1 20Ω CS (dB) = 20 log (VOUT/100 = VIN) –100 0.5 0 –40 VSY = 5V RL = 2kΩ AV = –100 TA = 25°C SHUTDOWN PIN AMPLIFIER OUTPUT TIME (200ns/DIV) TIME (200ns/DIV) Figure 41. Turn-On Time Figure 44. Turn-On Time VSY = 5V RL = 1kΩ AV = 1 TA = 25°C VOLTAGE (1V/DIV) SHUTDOWN PIN SHUTDOWN PIN TIME (200ns/DIV) Figure 42. Turn-Off Time Figure 45. Turn-Off Time Rev. B | Page 13 of 20 06527-044 AMPLIFIER OUTPUT AMPLIFIER OUTPUT 06527-046 VOLTAGE (1V/DIV) VSY = 2.7V RL = 1kΩ AV = 1 TA = 25°C TIME (200ns/DIV) 06527-043 06527-045 AMPLIFIER OUTPUT 06527-042 3.5 06527-040 SUPPLY CURRENT PER AMPLIFIER (mA) 4.0 AD8646/AD8647/AD8648 100 VSY = 2.7V 10 ISY (nA) ISY (nA) 10 1 0.1 1 0.1 –25 –10 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 06527-048 0.01 –40 VSY = 5V Figure 46. Supply Current with Op-Amp Shutdown vs. Temperature 0.01 –40 –25 –10 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 06527-047 100 Figure 47. Supply Current with Op-Amp Shutdown vs. Temperature Rev. B | Page 14 of 20 AD8646/AD8647/AD8648 THEORY OF OPERATION POWER-DOWN OPERATION 1/2 AD8647 8 9 The shutdown function of the AD8647 is referenced to the negative supply voltage of the operational amplifier. A logic level high (> 2.0 V) enables the device, while a logic level low (< 0.8 V) disables the device and places the output in a high impedance condition. Several outputs can be wire-OR’ed, thus eliminating a multiplexer. The logic input is a high impedance CMOS input. If dual or split supplies are used, the logic signals must be properly referred to the negative supply voltage. 7 6 5kHz 5V 1/2 AD8647 2 10 1 3 4 13kHz 5 Because each op amp has a separate logic input enable pin, the outputs can be connected together if it can be guaranteed that only one op amp is active at any time. By connecting the op amps as shown in Figure 48, a multiplexer can be eliminated. With the reasonably short turn-on and turn-off times, low frequency signal paths can be smoothly selected. The turn-off time is slightly faster than the turn-on time so, even when using sections from two different packages, the overlap is less than 300 nanoseconds. 1 2 2kHz 06527-049 MULTIPLEXING OPERATION Figure 48. AD8647 Output Switching 2V 1V 0V 5V TIME (200µs/DIV) Figure 49. Switching Waveforms Rev. B | Page 15 of 20 06527-050 0V AD8646/AD8647/AD8648 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 4.00 (0.1574) 3.80 (0.1497) 5 1 6.20 (0.2441) 5.80 (0.2284) 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) COPLANARITY 0.10 SEATING PLANE 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 012407-A COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 50. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 3.20 3.00 2.80 8 3.20 3.00 2.80 1 5 5.15 4.90 4.65 4 PIN 1 0.65 BSC 0.95 0.85 0.75 0.15 0.00 1.10 MAX 0.38 0.22 COPLANARITY 0.10 0.23 0.08 8° 0° SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 51. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. B | Page 16 of 20 0.80 0.60 0.40 AD8646/AD8647/AD8648 3.10 3.00 2.90 6 10 3.10 3.00 2.90 1 5.15 4.90 4.65 5 PIN 1 0.50 BSC 0.95 0.85 0.75 1.10 MAX 0.15 0.05 0.33 0.17 SEATING PLANE 0.23 0.08 8° 0° 0.80 0.60 0.40 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-BA Figure 52. 10 Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 1.05 1.00 0.80 0.65 BSC 1.20 MAX 0.15 0.05 0.30 0.19 0.20 0.09 SEATING COPLANARITY PLANE 0.10 8° 0° COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 53. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters Rev. B | Page 17 of 20 0.75 0.60 0.45 AD8646/AD8647/AD8648 8.75 (0.3445) 8.55 (0.3366) 8 14 1 7 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 0.50 (0.0197) 0.25 (0.0098) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 060606-A 4.00 (0.1575) 3.80 (0.1496) Figure 54. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model AD8646ARZ 1 AD8646ARZ-REEL1 AD8646ARZ-REEL71 AD8646ARMZ-R21 AD8646ARMZ-REEL1 AD8647ARMZ-R21 AD8647ARMZ-REEL1 AD8648ARZ1 AD8648ARZ-REEL1 AD8648ARZ-REEL71 AD8648ARUZ1 AD8648ARUZ-REEL1 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 10-Lead MSOP 10-Lead MSOP 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead TSSOP 14-Lead TSSOP Z = RoHS Compliant Part. Rev. B | Page 18 of 20 Package Option R-8 R-8 R-8 RM-8 RM-8 RM-10 RM-10 R-14 R-14 R-14 RU-14 RU-14 Branding A1V A1V A1W A1W AD8646/AD8647/AD8648 NOTES Rev. B | Page 19 of 20 AD8646/AD8647/AD8648 NOTES ©2006–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06527-0-10/07(B) Rev. B | Page 20 of 20