LM2904 LOW POWER DUAL OPERATIONAL AMPLIFIER ■ INTERNALLY FREQUENCY COMPENSATED ■ LARGE DC VOLTAGE GAIN : 100dB ■ WIDE BANDWIDTH (unity gain): 1.1MHz (temperature compensated) ■ VERY LOW SUPPLY CURRENT/OP (500µA) ■ ■ ■ ■ ■ ESSENTIALLY INDEPENDENT OF SUPPLY VOLTAGE LOW INPUT BIAS CURRENT: 20nA (temperature compensated) LOW INPUT OFFSET CURRENT: 2nA INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND DIFFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE POWER SUPPLY VOLTAGE LARGE OUTPUT VOLTAGE SWING 0V TO (VCC - 1.5V) N DIP8 (Plastic Package) D SO8 (Plastic Micropackage) DESCRIPTION This circuit consists of two independent, high gain, internally frequency compensated which were designed specifically for automotive and industrial control system. It operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, dc gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply ssystems. For example, these circuits can be directly supplied with off the standard +5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to groung, even though operated from only a single power supply voltage. P TSSOP8 (Thin Shrink Small Outline Package) S MiniSO8 (MiniSO Package) PIN CONNECTIONS (top view) 8 1 ORDER CODE Part Number LM2904 Package Temperature Range N D P S -40°C, +125°C • • • • N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) only available in Tape & Reel (PT) S = MiniSO Package (MiniSO) only available in Tape & Reel (ST) January 2002 2 - 3 + 4 7 - 6 + 5 1/11 LM2904 SCHEMATIC DIAGRAM (1/2 LM2904) V CC 6µA 4µA 100µA Q5 Q6 CC Q3 Q2 Inverting input Q1 Q7 Q4 R SC Q11 Non-inverting input Output Q13 Q10 Q8 Q12 Q9 50mA GND ABSOLUTE MAXIMUM RATINGS Symbol Parameter VCC Supply Voltage Vid Differential Input Voltage VI Input Voltage Value Unit +32 V +32 V -0.3 to +32 V 500 mW 50 mA Output Short-circuit to Ground 1) ptot Iin Power Dissipation 2) Input Current 3) Toper Operating Free-Air Temperature Range -40 to +125 °C Tstg Storage Temperature Range -65 to +150 °C 1. Short-circuits from the output to Vcc can cause excessive heating if Vcc + > 15V. The maximum output current is approximately 40mA, independent of the magnitude of Vcc . Destructive dissipation can result from simultaneous short-circuits on all amplifiers. 2. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded. 3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-Amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 2/11 LM2904 ELECTRICAL CHARACTERISTICS VCC+ = 5V, V cc- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Vio Input Offset Voltage 1) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax. 2 7 9 mV Iio Input Offset Current Tamb = 25°C Tmin ≤ Tamb ≤ Tmax. 2 30 40 nA Iib Input Bias Current 2) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax. 20 150 200 nA Avd Large Signal Voltage Gain VCC+ = +15V,R L=2kΩ, Vo = 1.4V to 11.4V Tamb = 25°C Tmin ≤ Tamb ≤ Tmax. 50 25 100 SVR Supply Voltage Rejection Ratio (RS ≤10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax. 65 65 100 Icc Supply Current, all Amp, no load VCC = +5V Tamb = 25°C Tmin ≤ Tamb ≤ Tmax. VCC = +30V 0.7 Vicm Input Common Mode Voltage Range (Vcc= +30V) 3) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax. 0 0 CMR Common-mode Rejection Ratio (RS = 10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax. 70 60 85 Isource Output Short-circuit Current VCC = +15V, Vo = +2V, Vid = +1V 20 40 Output Sink Current VO = 2V VO = +0.2V 10 12 20 50 Isink VCC = +5V VCC = +15V VOPP Output Voltage Swing (RL = 2kΩ Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 0 0 VOH High Level Output Voltage (Vcc + 30V) Tamb = +25°C RL = 2kΩ Tmin ≤ Tamb ≤ Tmax. Tamb = +25°C RL = 10kΩ Tmin ≤ Tamb ≤ Tmax. 26 26 27 27 VOL SR GBP Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Slew Rate Vcc = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity gain Gain Bandwidth Product f = 100kHz Vcc = 30V,Vin = 10mV, RL = 2kΩ, CL = 100pF V/mV dB 1.2 2 mA VCC+ -1.5 VCC+ -2 V dB 60 mA mA µA VCC+ -1.5 VCC+ -2 27 V V 28 5 20 20 mV V/µs 0.3 0.6 0.7 1.1 MHz 3/11 LM2904 Symbol Parameter Min. Typ. Total Harmonic Distortion f = 1kHz, AV = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, Vcc = 30V THD Max. Unit % 0.02 DVio Input Offset Voltage Drift 7 30 µV/°C DIio Input Offset Current Drift 10 300 pA/°C 4) Channel Separation 1kHz ≤ f ≤ 20kHz VO1/VO2 1. 2. 3. 4. dB 120 VO = 1.4V, RS = 0Ω, 5V < VCC+ < 30V, 0V < Vic < VCC+ - 1.5V The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so no loading charge change exists on the input lines The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ –1.5V, but either or both inputs can go to +32V without damage. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. VOLAGE FOLLOWER PULSE RESPONSE OPEN LOOP FREQUENCY RESPONSE (NOTE 3) 4 140 VCC - 100 VI VCC/2 VO + 80 VCC = 30V & -55°C Tamb +125°C 60 RL 2 kΩ VCC = +15V 3 2 1 0 40 3 20 VCC = +10 to + 15V & -55°C Tamb +125°C 0 1.0 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) INPUT VOLTAGE (V) VOLTAGE GAIN (dB) OUTPUT VOLTAGE (V) 10MΩ 0.1µF 120 2 1 0 + 2k Ω 10 5 0 1k 1 v cc v cc /2 100k 1M - 0.1 IO VO + Tamb = +25°C 0.01 10k FREQUENCY (Hz) 4/11 OUTPUT VOLTAGE (V) OUTPUT SWING (Vpp) VO +7V VCC = +5V VCC = +15V VCC = +30V +15V VI 40 10 100k Ω 15 30 OUTPUT CHARACTERISTICS 20 - 20 TIME (µs) LARGE SIGNAL FREQUENCY RESPONSE 1k Ω 10 0,001 0,01 0,1 1 10 100 OUTPUT SINK CURRENT (µ A) LM2904 INPUT VOLTAGE RANGE VOLTAGE FOLLOWER PULSSE RESPONSE (SMALL SIGNAL) 15 INPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 500 + 450 eO el - 50pF 400 Input 350 Output 300 10 Positive 5 Tamb = +25°C VCC = 30 V 250 0 1 2 3 4 5 6 7 8 0 TIME (m s) 5 SUPPLY CURRENT V CC VCC 5 SUPPLY CURRENT (mA) + V CC /2 VO IO - 4 Independent of V CC 3 T amb = +25°C 2 ID mA 3 - 2 + Tamb = 0°C to +125°C 1 Tamb = -55°C 1 0,001 0,01 0,1 1 10 100 0 OUTPUT SOURCE CURRENT (mA) 10 20 INPUT CURRENT (Note 1) 80 160 R L = 20kΩ VOLTAGE GAIN (dB) VI = 0 V 70 VCC = +30 V 60 50 VCC = +15 V 40 30 VCC = +5 V 20 30 POSITIVE SUPPLY VOLTAGE (V) 90 INPUT CURRENT (mA) 15 4 7 6 10 POWER SUPPLY VOLTAGE (±V) OUTPUT CHARACTERISTICS 8 TO VCC+ (V) OUTPUT VOLTAGE REFERENCED Négative 120 R L = 2k Ω 80 40 10 0 -55 -35 -15 5 25 45 65 85 105 0 125 CURRENT LIMITING (Note 1) INPUT CURRENT (nA) OUTPUT CURRENT (mA) - IO 70 60 20 30 40 100 90 80 10 POSITIVE SUPPLY VOLTAGE (V) TEMPERATURE (°C) + 50 40 30 20 75 50 25 Tamb= +25°C 10 0 -55 -35 -15 5 25 45 65 85 105 TEMPERATURE (°C) 125 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) 5/11 LM2904 TYPICAL SINGLE - SUPPLY APPLICATIONS AC COUPLED INVERTING AMPLIFIER 160 R L = 20k Ω VOLTAGE GAIN (dB) 120 Rf 100kΩ R L = 2k Ω 80 AV = - R1 10kΩ CI 40 Co 1/2 LM2904 0 10 20 30 eI ~ R2 VCC 100kΩ Rf R1 (as shown AV = -10) 2VPP 0 eo RB 6.2kΩ R3 100kΩ RL 10kΩ C1 10µF 1.5 1.35 1.2 1.05 0.9 0.75 0.6 VCC = 15V AC COUPLED NON-INVERTING AMPLIFIER 0.45 0.3 0.15 R1 100kΩ 0 -55-35-15 5 25 45 65 85 105 125 POWER SUPPLY REJECTION RATIO (dB) COMMON MODE REJECTION RATIO (dB) A V= 1 + R2 R1 (as shown A V = 11) C1 0.1µF TEMPERATURE (°C) 6/11 R2 1MΩ CI Co 1/2 LM2904 RB 6.2kΩ 115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 R3 1MΩ eI ~ 2VPP 0 eo RL 10k Ω R4 100kΩ VCC C2 10µF R5 100kΩ NON-INVERTING DC GAIN TEMPERATURE (°C) 115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) A V = 1 + R2 R1 (As shown A V = 101) 10kΩ 1/2 LM2904 R2 1M Ω R1 10kΩ eO +5V e O (V) GAIN BANDWIDTH PRODUCT (MHz) POSITIVE SUPPLY VOLTAGE (V) 0 e I (mV) LM2904 HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER DC SUMMING AMPLIFIER e1 100kΩ R1 100k Ω 100kΩ e2 100kΩ e3 100kΩ 1/2 LM2904 eO R4 100k Ω eO 1/2 LM2904 Gain adjust R2 2k Ω R5 100k Ω 100kΩ e4 R3 100k Ω 1/2 LM2904 e1 R6 100k Ω 1/2 LM2904 R7 100k Ω e2 100kΩ If R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2R1 ] (e2 - e1) R2 As shown eo = 101 (e2 - e1) eo = e1 + e2 - e3 - e4 where (e1 + e2) ≥ (e3 + e4) to keep eo ≥ 0V HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER LOW DRIFT PEAK DETECTOR IB 1/2 eI R4 100kΩ R2 100kΩ R1 100kΩ 1/2 LM2904 +V1 +V2 ZI 1/2 eI IB 2IB Vo R1 100kΩ C1 330pF 1/2 LM2904 R2 100kΩ 2N 929 +V1 IB 3MΩ 1.5MΩ IB Input current compensation ACTIVER BADPASS FILTER eo I B LM2904 1/2 LM2904 3R 3M Ω IB R3 100kΩ 1/2 LM2904 R5 470kΩ R4 10MΩ 0.001µ F IB 0.001µ F IB R 1M Ω USING SYMMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT I Zo 2IB 2N 929 If R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2R1 ] (e2 - e1) R2 As shown eo = 101 (e2 - e1) I C 1µ F R3 100kΩ 1/2 LM2904 eo I B LM2904 1/2 LM2904 C2 330pF 1/2 LM2904 R6 470kΩ Vo 1/2 LM2904 R7 100kΩ VCC R8 100kΩ Input current compensation C3 10µF Fo = 1kHz Q = 50 Av = 100 (40dB) 7/11 LM2904 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP Millimeters Inches Dimensions Min. A a1 B b b1 D E e e3 e4 F i L Z 8/11 Typ. Max. Min. 3.32 0.51 1.15 0.356 0.204 1.65 0.55 0.304 10.92 9.75 7.95 0.020 0.045 0.014 0.008 Max. 0.065 0.022 0.012 0.430 0.384 0.313 2.54 7.62 7.62 3.18 Typ. 0.131 0.100 0.300 0.300 6.6 5.08 3.81 1.52 0.125 0260 0.200 0.150 0.060 LM2904 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) s b1 b a1 A a2 C c1 a3 L E e3 D M 5 1 4 F 8 Millimeters Inches Dimensions Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S Typ. Max. 0.65 0.35 0.19 0.25 1.75 0.25 1.65 0.85 0.48 0.25 0.5 4.8 5.8 5.0 6.2 0.1 Min. Typ. Max. 0.026 0.014 0.007 0.010 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.189 0.228 0.197 0.244 0.004 45° (typ.) 1.27 3.81 3.8 0.4 0.050 0.150 4.0 1.27 0.6 0.150 0.016 0.157 0.050 0.024 8° (max.) 9/11 LM2904 PACKAGE MECHANICAL DATA 8 PINS -THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) k c 0.25mm .010 inch GAGE PLANE L1 L L L1 C SEATING PLANE E1 A E A2 A1 5 4 4 5 D b e 8 1 8 1 PIN 1 IDENTIFICATION Millimeters Inches Dimensions Min. A A1 A2 b c D E E1 e k l L L1 10/11 0.05 0.80 0.19 0.09 2.90 4.30 0° 0.50 0.45 Typ. 1.00 3.00 6.40 4.40 0.65 0.60 0.600 1.000 Max. Min. 1.20 0.15 1.05 0.30 0.20 3.10 0.01 0.031 0.007 0.003 0.114 4.50 0.169 8° 0.75 0.75 0° 0.09 0.018 Typ. 0.039 0.118 0.252 0.173 0.025 0.0236 0.024 0.039 Max. 0.05 0.006 0.041 0.15 0.012 0.122 0.177 8° 0.030 0.030 LM2904 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (miniSO) k 0,25mm .010inch GAGEPLANE C SEATING PLANE E1 L1 L c A E A2 A1 4 8 1 e C ccc b D 5 PIN1IDENTIFICA TION Millimeters Inches Dimensions Min. A A1 A2 b c D E E1 e L L1 k aaa 0.050 0.780 0.250 0.130 2.900 4.750 2.900 0.400 0d Typ. 0.100 0.860 0.330 0.180 3.000 4.900 3.000 0.650 0.550 0.950 3d Max. Min. 1.100 0.150 0.940 0.400 0.230 3.100 5.050 3.100 0.002 0.031 0.010 0.005 0.114 0.187 0.114 0.700 0.016 6d 0.100 0d Typ. 0.004 0.034 0.013 0.007 0.118 0.193 0.118 0.026 0.022 0.037 3d Max. 0.043 0.006 0.037 0.016 0.009 0.122 0.199 0.122 0.028 6d 0.004 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com 11/11