ETC LM2904

LM2904
LOW POWER DUAL OPERATIONAL AMPLIFIER
■ INTERNALLY FREQUENCY COMPENSATED
■ LARGE DC VOLTAGE GAIN : 100dB
■ WIDE BANDWIDTH (unity gain): 1.1MHz
(temperature compensated)
■ VERY LOW SUPPLY CURRENT/OP (500µA)
■
■
■
■
■
ESSENTIALLY INDEPENDENT OF SUPPLY
VOLTAGE
LOW INPUT BIAS CURRENT: 20nA
(temperature compensated)
LOW INPUT OFFSET CURRENT: 2nA
INPUT COMMON-MODE VOLTAGE RANGE
INCLUDES GROUND
DIFFERENTIAL INPUT VOLTAGE RANGE
EQUAL TO THE POWER SUPPLY VOLTAGE
LARGE OUTPUT VOLTAGE SWING 0V TO
(VCC - 1.5V)
N
DIP8
(Plastic Package)
D
SO8
(Plastic Micropackage)
DESCRIPTION
This circuit consists of two independent, high gain,
internally frequency compensated which were designed specifically for automotive and industrial
control system. It operates from a single power
supply over a wide range of voltages. The low
power supply drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers,
dc gain blocks and all the conventional op-amp
circuits which now can be more easily implemented in single power supply ssystems. For example,
these circuits can be directly supplied with off the
standard +5V which is used in logic systems and
will easily provide the required interface electronics without requiring any additional power supply.
In the linear mode the input common-mode voltage range includes ground and the output voltage
can also swing to groung, even though operated
from only a single power supply voltage.
P
TSSOP8
(Thin Shrink Small Outline Package)
S
MiniSO8
(MiniSO Package)
PIN CONNECTIONS (top view)
8
1
ORDER CODE
Part
Number
LM2904
Package
Temperature
Range
N
D
P
S
-40°C, +125°C
•
•
•
•
N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
P = Thin Shrink Small Outline Package (TSSOP) only available
in Tape & Reel (PT)
S = MiniSO Package (MiniSO) only available in Tape & Reel (ST)
January 2002
2
-
3
+
4
7
-
6
+
5
1/11
LM2904
SCHEMATIC DIAGRAM (1/2 LM2904)
V CC
6µA
4µA
100µA
Q5
Q6
CC
Q3
Q2
Inverting
input
Q1
Q7
Q4
R SC
Q11
Non-inverting
input
Output
Q13
Q10
Q8
Q12
Q9
50mA
GND
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
VCC
Supply Voltage
Vid
Differential Input Voltage
VI
Input Voltage
Value
Unit
+32
V
+32
V
-0.3 to +32
V
500
mW
50
mA
Output Short-circuit to Ground 1)
ptot
Iin
Power Dissipation 2)
Input Current
3)
Toper
Operating Free-Air Temperature Range
-40 to +125
°C
Tstg
Storage Temperature Range
-65 to +150
°C
1.
Short-circuits from the output to Vcc can cause excessive heating if Vcc + > 15V. The maximum output current is approximately 40mA,
independent of the magnitude of Vcc . Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
2.
Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.
3.
This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP
transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on
the IC chip. This transistor action can cause the output voltages of the Op-Amps to go to the VCC voltage level (or to ground for a large overdrive)
for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.
2/11
LM2904
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, V cc- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
Vio
Input Offset Voltage 1)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax.
2
7
9
mV
Iio
Input Offset Current
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax.
2
30
40
nA
Iib
Input Bias Current 2)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax.
20
150
200
nA
Avd
Large Signal Voltage Gain
VCC+ = +15V,R L=2kΩ, Vo = 1.4V to 11.4V
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax.
50
25
100
SVR
Supply Voltage Rejection Ratio (RS ≤10kΩ)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax.
65
65
100
Icc
Supply Current, all Amp, no load
VCC = +5V
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax.
VCC = +30V
0.7
Vicm
Input Common Mode Voltage Range (Vcc= +30V) 3)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax.
0
0
CMR
Common-mode Rejection Ratio (RS = 10kΩ)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax.
70
60
85
Isource
Output Short-circuit Current
VCC = +15V, Vo = +2V, Vid = +1V
20
40
Output Sink Current
VO = 2V
VO = +0.2V
10
12
20
50
Isink
VCC = +5V
VCC = +15V
VOPP
Output Voltage Swing (RL = 2kΩ
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
0
0
VOH
High Level Output Voltage (Vcc + 30V)
Tamb = +25°C
RL = 2kΩ
Tmin ≤ Tamb ≤ Tmax.
Tamb = +25°C
RL = 10kΩ
Tmin ≤ Tamb ≤ Tmax.
26
26
27
27
VOL
SR
GBP
Low Level Output Voltage (RL = 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
Slew Rate
Vcc = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF,
unity gain
Gain Bandwidth Product f = 100kHz
Vcc = 30V,Vin = 10mV, RL = 2kΩ, CL = 100pF
V/mV
dB
1.2
2
mA
VCC+ -1.5
VCC+ -2
V
dB
60
mA
mA
µA
VCC+ -1.5
VCC+ -2
27
V
V
28
5
20
20
mV
V/µs
0.3
0.6
0.7
1.1
MHz
3/11
LM2904
Symbol
Parameter
Min.
Typ.
Total Harmonic Distortion
f = 1kHz, AV = 20dB, RL = 2kΩ, Vo = 2Vpp,
CL = 100pF, Vcc = 30V
THD
Max.
Unit
%
0.02
DVio
Input Offset Voltage Drift
7
30
µV/°C
DIio
Input Offset Current Drift
10
300
pA/°C
4)
Channel Separation
1kHz ≤ f ≤ 20kHz
VO1/VO2
1.
2.
3.
4.
dB
120
VO = 1.4V, RS = 0Ω, 5V < VCC+ < 30V, 0V < Vic < VCC+ - 1.5V
The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so no loading charge
change exists on the input lines
The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the
common-mode voltage range is VCC+ –1.5V, but either or both inputs can go to +32V without damage.
Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically
can be detected as this type of capacitance increases at higher frequences.
VOLAGE FOLLOWER PULSE RESPONSE
OPEN LOOP FREQUENCY RESPONSE (NOTE 3)
4
140
VCC
-
100
VI
VCC/2
VO
+
80
VCC = 30V &
-55°C Tamb +125°C
60
RL 2 kΩ
VCC = +15V
3
2
1
0
40
3
20
VCC = +10 to + 15V &
-55°C Tamb +125°C
0
1.0
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
INPUT
VOLTAGE (V)
VOLTAGE GAIN (dB)
OUTPUT
VOLTAGE (V)
10MΩ
0.1µF
120
2
1
0
+
2k Ω
10
5
0
1k
1
v cc
v cc /2
100k
1M
-
0.1
IO
VO
+
Tamb = +25°C
0.01
10k
FREQUENCY (Hz)
4/11
OUTPUT VOLTAGE (V)
OUTPUT SWING (Vpp)
VO
+7V
VCC = +5V
VCC = +15V
VCC = +30V
+15V
VI
40
10
100k Ω
15
30
OUTPUT CHARACTERISTICS
20
-
20
TIME (µs)
LARGE SIGNAL FREQUENCY RESPONSE
1k Ω
10
0,001
0,01
0,1
1
10
100
OUTPUT SINK CURRENT (µ A)
LM2904
INPUT VOLTAGE RANGE
VOLTAGE FOLLOWER PULSSE RESPONSE
(SMALL SIGNAL)
15
INPUT VOLTAGE (V)
OUTPUT VOLTAGE (mV)
500
+
450
eO
el
-
50pF
400
Input
350
Output
300
10
Positive
5
Tamb = +25°C
VCC = 30 V
250
0
1
2
3
4
5
6
7
8
0
TIME (m s)
5
SUPPLY CURRENT
V CC
VCC
5
SUPPLY CURRENT (mA)
+
V CC /2
VO
IO
-
4
Independent of V CC
3
T amb = +25°C
2
ID
mA
3
-
2
+
Tamb = 0°C to +125°C
1
Tamb = -55°C
1
0,001 0,01
0,1
1
10
100
0
OUTPUT SOURCE CURRENT (mA)
10
20
INPUT CURRENT (Note 1)
80
160
R L = 20kΩ
VOLTAGE GAIN (dB)
VI = 0 V
70
VCC = +30 V
60
50
VCC = +15 V
40
30
VCC = +5 V
20
30
POSITIVE SUPPLY VOLTAGE (V)
90
INPUT CURRENT (mA)
15
4
7
6
10
POWER SUPPLY VOLTAGE (±V)
OUTPUT CHARACTERISTICS
8
TO VCC+ (V)
OUTPUT VOLTAGE REFERENCED
Négative
120
R L = 2k Ω
80
40
10
0
-55 -35
-15
5
25
45
65
85 105
0
125
CURRENT LIMITING (Note 1)
INPUT CURRENT (nA)
OUTPUT CURRENT (mA)
-
IO
70
60
20
30
40
100
90
80
10
POSITIVE SUPPLY VOLTAGE (V)
TEMPERATURE (°C)
+
50
40
30
20
75
50
25
Tamb= +25°C
10
0
-55 -35
-15
5
25
45
65
85 105
TEMPERATURE (°C)
125
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
5/11
LM2904
TYPICAL SINGLE - SUPPLY APPLICATIONS
AC COUPLED INVERTING AMPLIFIER
160
R L = 20k Ω
VOLTAGE GAIN (dB)
120
Rf
100kΩ
R L = 2k Ω
80
AV = -
R1
10kΩ
CI
40
Co
1/2
LM2904
0
10
20
30
eI ~
R2
VCC 100kΩ
Rf
R1
(as shown AV = -10)
2VPP
0
eo
RB
6.2kΩ
R3
100kΩ
RL
10kΩ
C1
10µF
1.5
1.35
1.2
1.05
0.9
0.75
0.6
VCC =
15V
AC COUPLED NON-INVERTING AMPLIFIER
0.45
0.3
0.15
R1
100kΩ
0
-55-35-15 5 25 45 65 85 105 125
POWER SUPPLY REJECTION RATIO (dB)
COMMON MODE REJECTION RATIO (dB)
A V= 1 + R2
R1
(as shown A V = 11)
C1
0.1µF
TEMPERATURE (°C)
6/11
R2
1MΩ
CI
Co
1/2
LM2904
RB
6.2kΩ
115
110
SVR
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
R3
1MΩ
eI ~
2VPP
0
eo
RL
10k Ω
R4
100kΩ
VCC
C2
10µF
R5
100kΩ
NON-INVERTING DC GAIN
TEMPERATURE (°C)
115
110
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
A V = 1 + R2
R1
(As shown A V = 101)
10kΩ
1/2
LM2904
R2
1M Ω
R1
10kΩ
eO
+5V
e O (V)
GAIN BANDWIDTH PRODUCT (MHz)
POSITIVE SUPPLY VOLTAGE (V)
0
e I (mV)
LM2904
HIGH INPUT Z ADJUSTABLE GAIN DC
INSTRUMENTATION AMPLIFIER
DC SUMMING AMPLIFIER
e1
100kΩ
R1
100k Ω
100kΩ
e2
100kΩ
e3
100kΩ
1/2
LM2904
eO
R4
100k Ω
eO
1/2
LM2904
Gain adjust
R2
2k Ω
R5
100k Ω
100kΩ
e4
R3
100k Ω
1/2
LM2904
e1
R6
100k Ω
1/2
LM2904
R7
100k Ω
e2
100kΩ
If R1 = R5 and R3 = R4 = R6 = R7
eo = [ 1 + 2R1 ] (e2 - e1)
R2
As shown eo = 101 (e2 - e1)
eo = e1 + e2 - e3 - e4
where (e1 + e2) ≥ (e3 + e4)
to keep eo ≥ 0V
HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER
LOW DRIFT PEAK DETECTOR
IB
1/2
eI
R4
100kΩ
R2
100kΩ
R1
100kΩ
1/2
LM2904
+V1
+V2
ZI
1/2
eI
IB
2IB
Vo
R1
100kΩ
C1
330pF
1/2
LM2904
R2
100kΩ
2N 929
+V1
IB
3MΩ
1.5MΩ
IB
Input current
compensation
ACTIVER BADPASS FILTER
eo
I B LM2904
1/2
LM2904
3R
3M Ω
IB
R3
100kΩ
1/2
LM2904
R5
470kΩ
R4
10MΩ
0.001µ F
IB
0.001µ F
IB
R
1M Ω
USING SYMMETRICAL AMPLIFIERS TO
REDUCE INPUT CURRENT
I
Zo
2IB
2N 929
If R1 = R5 and R3 = R4 = R6 = R7
eo = [ 1 + 2R1 ] (e2 - e1)
R2
As shown eo = 101 (e2 - e1)
I
C
1µ F
R3
100kΩ
1/2
LM2904
eo
I B LM2904
1/2
LM2904
C2
330pF
1/2
LM2904
R6
470kΩ
Vo
1/2
LM2904
R7
100kΩ
VCC
R8
100kΩ
Input current compensation
C3
10µF
Fo = 1kHz
Q = 50
Av = 100 (40dB)
7/11
LM2904
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP
Millimeters
Inches
Dimensions
Min.
A
a1
B
b
b1
D
E
e
e3
e4
F
i
L
Z
8/11
Typ.
Max.
Min.
3.32
0.51
1.15
0.356
0.204
1.65
0.55
0.304
10.92
9.75
7.95
0.020
0.045
0.014
0.008
Max.
0.065
0.022
0.012
0.430
0.384
0.313
2.54
7.62
7.62
3.18
Typ.
0.131
0.100
0.300
0.300
6.6
5.08
3.81
1.52
0.125
0260
0.200
0.150
0.060
LM2904
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
s
b1
b
a1
A
a2
C
c1
a3
L
E
e3
D
M
5
1
4
F
8
Millimeters
Inches
Dimensions
Min.
A
a1
a2
a3
b
b1
C
c1
D
E
e
e3
F
L
M
S
Typ.
Max.
0.65
0.35
0.19
0.25
1.75
0.25
1.65
0.85
0.48
0.25
0.5
4.8
5.8
5.0
6.2
0.1
Min.
Typ.
Max.
0.026
0.014
0.007
0.010
0.069
0.010
0.065
0.033
0.019
0.010
0.020
0.189
0.228
0.197
0.244
0.004
45° (typ.)
1.27
3.81
3.8
0.4
0.050
0.150
4.0
1.27
0.6
0.150
0.016
0.157
0.050
0.024
8° (max.)
9/11
LM2904
PACKAGE MECHANICAL DATA
8 PINS -THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
k
c
0.25mm
.010 inch
GAGE PLANE
L1
L
L
L1
C
SEATING
PLANE
E1
A
E
A2
A1
5
4
4
5
D
b
e
8
1
8
1
PIN 1 IDENTIFICATION
Millimeters
Inches
Dimensions
Min.
A
A1
A2
b
c
D
E
E1
e
k
l
L
L1
10/11
0.05
0.80
0.19
0.09
2.90
4.30
0°
0.50
0.45
Typ.
1.00
3.00
6.40
4.40
0.65
0.60
0.600
1.000
Max.
Min.
1.20
0.15
1.05
0.30
0.20
3.10
0.01
0.031
0.007
0.003
0.114
4.50
0.169
8°
0.75
0.75
0°
0.09
0.018
Typ.
0.039
0.118
0.252
0.173
0.025
0.0236
0.024
0.039
Max.
0.05
0.006
0.041
0.15
0.012
0.122
0.177
8°
0.030
0.030
LM2904
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (miniSO)
k
0,25mm
.010inch
GAGEPLANE
C
SEATING
PLANE
E1
L1
L
c
A
E
A2
A1
4
8
1
e
C
ccc
b
D
5
PIN1IDENTIFICA TION
Millimeters
Inches
Dimensions
Min.
A
A1
A2
b
c
D
E
E1
e
L
L1
k
aaa
0.050
0.780
0.250
0.130
2.900
4.750
2.900
0.400
0d
Typ.
0.100
0.860
0.330
0.180
3.000
4.900
3.000
0.650
0.550
0.950
3d
Max.
Min.
1.100
0.150
0.940
0.400
0.230
3.100
5.050
3.100
0.002
0.031
0.010
0.005
0.114
0.187
0.114
0.700
0.016
6d
0.100
0d
Typ.
0.004
0.034
0.013
0.007
0.118
0.193
0.118
0.026
0.022
0.037
3d
Max.
0.043
0.006
0.037
0.016
0.009
0.122
0.199
0.122
0.028
6d
0.004
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com
11/11