LM224A - LM324A Low Power Quad Operational Amplifiers ■ ■ ■ ■ ■ ■ ■ ■ ■ Wide gain bandwidth: 1.3MHz Large voltage gain: 100dB Very low supply current/ampli: 375µA Low input bias current: 20nA Low input offset voltage: 3mV max. Low input offset current: 2nA Wide power supply range: Single supply: +3V to +30V Dual supplies: ±1.5V to ±15V Input common-mode voltage range includes ground ESD internal protection: 2KV N DIP14 (Plastic Package) D SO-14 (Plastic Micropackage) Description These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. All the pins are protected against electrostatic discharges up to 2KV (as a consequence, the input voltages must not exceed the magnitude of VCC+ or VCC-.) P TSSOP-14 (Thin Shrink Small Outline Package) Order Codes Part Number LM224AN LM224AD/ADT Temperature Range -40°C, +105°C LM224APT LM324AN LM324AD/ADT LM324APT February 2005 0°C, +70°C Package Packaging DIP SO TSSOP (Thin Shrink Outline Package) DIP SO TSSOP (Thin Shrink Outline Package) Tube Tube or Tape & Reel Revision 2 Tape & Reel Tube Tube or Tape & Reel Tape & Reel 1/16 LM224A-LM324A Pin & Schematic Diagram 1 Pin & Schematic Diagram Figure 1: Pin connections (top view) Output 1 1 14 Output 4 Inverting Input 1 2 - - 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 11 VCC - VCC + 4 Non-inverting Input 2 Inverting Input 2 5 + + 10 Non-inverting Input 3 6 - - 9 Inverting Input 3 8 Output 3 Output 2 7 Figure 2: Schematic diagram (1/4 LM124A) 2/16 Absolute Maximum Ratings 2 LM224A-LM324A Absolute Maximum Ratings Table 1: Key parameters and their absolute maximum ratings Symbol VCC Vi Vid Ptot Parameter LM124A Supply voltage Input Voltage Differential Input Voltage 1 Power DissipationN Suffix D Suffix 500 Output Short-circuit Duration 2 Iin Toper Tstg Storage Temperature Range Rthja Thermal Resistance Junction to Ambient SO14 TSSOP14 DIP14 LM324A Unit ±16 or 32 -0.3 to Vcc + 0.3 V V 32 V 500 400 500 400 mW mW Infinite 3 Input Current Operating Free-air Temperature Range LM224A 50 -55 to +125 -40 to +105 mA 0 to +70 °C -65 to +150 °C 103 100 66 °C/W 1) Either or both input voltages must not exceed the magnitude of VCC+ or VCC-. 2) Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. 3) This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 3/16 LM224A-LM324A 3 Electrical Characteristics Electrical Characteristics Table 2: VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified Symbol Parameter Min. Typ. Max. 2 3 5 1 Vio Input Offset Voltage - note Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Iio Input Offset Current Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 2 20 40 Iib Input Bias Current - note 2 Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 20 100 200 Avd mV nA nA Large Signal Voltage Gain VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax V/mV 50 25 100 Supply Voltage Rejection Ratio (Rs ≤ 10kΩ) SVR VCC+ = 5V to 30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax dB 65 65 110 ICC Supply Current, all Amp, no load Tamb = +25°C VCC = +5V VCC = +30V Tmin ≤ Tamb ≤ Tmax VCC = +5V VCC = +30V Vicm Input Common Mode Voltage Range VCC = +30V - note 3 Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 0 0 CMR Common Mode Rejection Ratio (Rs ≤ 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 70 60 80 Isource Output Current Source (Vid = +1V) VCC = +15V, Vo = +2V 20 40 Isink Output Sink Current (Vid = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V 10 12 20 50 VOH High Level Output Voltage VCC = +30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Tamb = +25°C Tmin ≤ Tamb ≤ Tmax VCC = +5V, RL = 2kΩ Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 4/16 Unit mA 0.7 1.5 0.8 1.5 1.2 3 1.2 3 V VCC 1.5 VCC -2 dB mA 70 mA µA V RL = 2kΩ RL = 10kΩ 26 26 27 27 3.5 3 27 28 Electrical Characteristics LM224A-LM324A Table 2: VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified Symbol Parameter Min. Typ. Max. 5 20 20 VOL Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax SR Slew Rate VCC = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity Gain 0.4 GBP Gain Bandwidth Product VCC = 30V, f =100kHz,Vin = 10mV, RL = 2kΩ, CL = 100pF 1.3 THD Total Harmonic Distortion f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VCC = 30V Unit mV V/µs MHz % 0.015 Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω, VCC = 30V 40 DVio Input Offset Voltage Drift 7 30 µV/°C DIIio Input Offset Current Drift 10 200 pA/°C en Vo1/Vo2 Channel Separation - note 1kHz ≤ f ≤ 20kHZ 4 nV -----------Hz dB 120 1) Vo = 1.4V, Rs = 0Ω, 5V < VCC+ < 30V, 0 < Vic < VCC + - 1.5V 2) The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 3) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 4) Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. 5/16 LM224A-LM324A Figure 3: Input bias current vs. ambient temperature Electrical Characteristics Figure 6: Current limiting INPUT BIAS CURRENT versus AMBIENT TEMPERATURE IB (nA) 24 21 18 15 12 9 6 3 0 -55-35-15 5 25 45 65 85 105 125 AMBIENT TEMPERATURE (°C) Figure 4: Input voltage range Figure 7: Supply current SUPPLY CURRENT 4 SUPPLY CURRENT (mA) VCC ID mA 3 - 2 + Tamb = 0°C to +125°C 1 Tamb = -55°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) Figure 5: Gain bandwidth product 6/16 Figure 8: Common mode rejection ratio Electrical Characteristics LM224A-LM324A Figure 9: Electrical curves 7/16 LM224A-LM324A Electrical Characteristics Figure 10: Input current Figure 12: Voltage gain Figure 11: Power supply & common mode rejection ratio Figure 13: Large signal voltage gain 8/16 Typical Single - Supply Applications 4 Typical Single - Supply Applications Figure 14: AC coupled interting amplifier LM224A-LM324A Figure 17: High input Z adjustable gain DC instrumentation amplifier if R1 = R5 and R3 = R4 = R6 = R7 Figure 15: AC coupled non inverting amplifier 2R 1 e0 = 1 + ----------R 2 (e2 -e1) As shown e0 = 101 (e2 - e1). Figure 18: DC summing amplifier Figure 16: Non-inverting DC gain e0 = e1 +e2 -e3 -e4 Where (e1 +e2) ≥ (e3 +e4) to keep e0 ≥ 0V 9/16 LM224A-LM324A Figure 19: Low drift peak detector Typical Single - Supply Applications Figure 21: High input Z, DC differential amplifier R1 R4 For ------- = ------R R 2 3 (CMRR depends on this resistor ratio match) Figure 20: Activer bandpass filter e0 ⎛ 1 + R-------4⎞ ⎝ R3⎠ (e2 - e1) As shown e0 = (e2 - e1) Figure 22: Using symetrical amplifiers to reduce input current (general concept) Fo = 1kHz Q = 50 Av = 100 (40dB) 10/16 Typical Single - Supply Applications LM224A-LM324A Table 3: Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Avd RL = 2kΩ Icc No load, per amplifier Vicm VOH RL = 2kΩ (VCC VOL RL = 10kΩ +=15V) Value Unit 0 mV 100 V/mV 350 µA 0 to +13.5 V +13.5 V 5 mV +40 mA GBP Vo = +2V, VCC = +15V RL = 2kΩ, CL = 100pF 1.3 MHz SR RL = 2kΩ, CL = 100pF 0.4 V/µs Ios 11/16 LM224A-LM324A 5 Macromodel Macromodel Warning: Please consider following remarks before using this macromodel: All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT LM324 1 2 3 4 5 *************************** .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 ENDS 12/16 Package Mechanical Data 6 LM224A-LM324A Package Mechanical Data 6.1 DIP14 Package Plastic DIP-14 MECHANICAL DATA mm. inch DIM. MIN. a1 0.51 B 1.39 TYP MAX. MIN. TYP. MAX. 0.020 1.65 0.055 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 15.24 0.600 F 7.1 0.280 I 5.1 0.201 L Z 3.3 1.27 0.130 2.54 0.050 0.100 P001A 13/16 LM224A-LM324A Package Mechanical Data 6.2 SO-14 Package SO-14 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.068 0.2 a2 0.003 0.007 0.46 0.013 0.018 0.25 0.007 1.65 b 0.35 b1 0.19 C MAX. 0.064 0.5 0.010 0.019 c1 45˚ (typ.) D 8.55 8.75 0.336 E 5.8 6.2 0.228 0.344 0.244 e 1.27 0.050 e3 7.62 0.300 F 3.8 4.0 0.149 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M S 0.68 0.157 0.026 8 ˚ (max.) PO13G 14/16 Package Mechanical Data LM224A-LM324A 6.3 TSSOP14 Package TSSOP14 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. MAX. 1.2 A1 0.05 A2 0.8 b 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 1 e 0.65 BSC K 0˚ L 0.45 A 0.60 0.0256 BSC 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 A2 A1 b e K L c E D E1 PIN 1 IDENTIFICATION 1 0080337D Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 15/16 LM224A-LM324A 7 Summary of Changes Summary of Changes Date Revision 01 March 2001 1 01 Feb. 2005 2 16/16 Description of Changes First Release - Table 1 on page 3: explanation of Vid and Vi limits - Macromodel updated